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Abstract. A nonlinear differential inequality is formulated in the paper. An estimate of the rate
of growth/decay of solutions to this inequality is obtained. This inequality is of interest in a
study of dynamical systems and nonlinear evolution equations in Banach spaces. It is applied to
a study of global existence of solutions to nonlinear partial differential equations.

1. Introduction

In this paper the following nonlinear differential inequality

ġ(t) � −γ(t)g(t)+α(t,g(t))+β (t), t � t0, ġ(t) := ġ =
dg
dt

, g � 0, (1)

is studied. In equation (1), β (t) and γ(t) are Lebesgue measurable functions, defined
on [t0,∞) , where t0 � 0 is a fixed number, and α(t,g) is defined on [t0,∞)× [0,∞) .
The function α(t,g) is non-decreasing as a function of g for every t � t0 , and is
L1

loc([t0,∞))-function of t for every g � 0.
Inequality (1) was studied in [11] with α(t,y) = α̃(t)y2 , where 0 � α̃(t) is a

continuous function on [t0,∞) . This inequality arises in the study of the Dynamical
Systems Method (DSM) for solving nonlinear operator equations. Sufficient conditions
on β , α and γ which yields an estimate for the rate of growth/decay of g(t) were given
in [11]. A discrete analog of (1) was studied in [5]. An application to the study of a
discrete version of the DSM for solving nonlinear equation was demonstrated in [5].

In [6] inequality (1) is studied in the case α(t,y) = α̃(t)yp , where p > 1 and
0 � α̃(t) is a continuous function on [t0,∞) . This equality allows one to study the
DSM under weaker smoothness assumption on F than in the cited works. It allows one
to study the convergence of the DSM under the assumption that F ′ is locally Hölder
continuous. An application to the study of large time behavior of solutions to some
partial differential equations was outlined in [6].

Assumption A): Assume that 0 � α(t,g) is a non-decreasing function of g on
[0,∞] for every t � t0 , and is an L1

loc([0,∞)) function of t for every g ∈ [0,∞) , β (t)
and γ(t) are L1

loc([0,∞)) functions of t .
Under this assumption, which holds throughout the paper, we give an estimate for

the rate of growth/decay of g(t) as t → ∞ in Theorem 1.
A discrete version of (1) is also studied, and the result is stated in Theorem 3. In

Section 3 possible applications of inequality (1) to the study of large time behavior of
solutions to some partial equations are outlined.
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2. Main results

THEOREM 1. Let Assumption A) hold. Suppose there exists a function μ = μ(t) >
0 , μ ∈C1[t0,∞) , such that

α
(

t,
1

μ(t)

)
+β (t) � 1

μ(t)

[
γ(t)− μ̇(t)

μ(t)

]
, t � t0. (2)

Let g(t) � 0 be a solution to inequality (1) such that

μ(t0)g(t0) < 1. (3)

Then g(t) exists globally and the following estimate holds:

0 � g(t) <
1

μ(t)
, ∀t � t0. (4)

Consequently, if limt→∞ μ(t) = ∞ , then

lim
t→∞

g(t) = 0. (5)

If inequality (3) is replaced by
μ(t0)g(t0) � 1, (6)

then inequality (4) is replaced by

0 � g(t) � 1
μ(t)

, ∀t � t0. (7)

Proof. Denote

v(t) := g(t)e
∫ t
t0
γ(s)ds

. (8)

Then inequality (1) takes the form

v̇(t) � a(t)α
(
t,v(t)e−

∫ t
t0
γ(s)ds)+b(t), v(t0) = g(t0) := g0, (9)

where
a(t) = e

∫ t
t0
γ(s)ds

, b(t) := β (t)e
∫ t
t0
γ(s)ds

. (10)

Denote

η(t) =
e

∫ t
t0
γ(s)ds

μ(t)
. (11)

From inequality (3) and relation (11) one gets

v(t0) = g(t0) <
1

μ(t0)
= η(t0). (12)
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It follows from the inequalities (2), (9) and (12), and from the assumption that α(t,g)
is non-decreasing with respect to g , that

v̇(t0) � α(t0,
1

μ(t0)
)+β (t0) � 1

μ(t0)

[
γ(t0)− μ̇(t0)

μ(t0)

]
=

d
dt

e
∫ t
t0
γ(s)ds

μ(t)

∣∣∣∣
t=t0

= η̇(t0).

(13)

From the inequalities (12) and (13) it follows that there exists δ > 0 such that

v(t) < η(t), g(t) <
1

μ(t)
, t0 � t � t0 + δ . (14)

To continue the proof we need two Claims.
Claim 1. If

v(t) � η(t), ∀t ∈ [t0,T ], T > t0, (15)

then
v̇(t) � η̇(t), ∀t ∈ [t0,T ]. (16)

Proof of Claim 1.
It follows from inequalities (2), (9), the non-decreasing of α(t,g) with respect to

g , the inequality g(t) < 1
μ(t) for t ∈ [t0,T ) , and the inequality v(T ) � η(T ) , that

v̇(t) � e
∫ t
t0
γ(s)dsα(t,

1
μ(t)

)+β (t)e
∫ t
t0
γ(s)ds

� e
∫ t
t0
γ(s)ds

μ(t)

[
γ(t)− μ̇(t)

μ(t)

]

=
d
dt

e
∫ t
t0
γ(s)ds

μ(t)

∣∣∣∣
t=t

= η̇(t), ∀t ∈ [t0,T ].

(17)

Claim 1 is proved. �

Denote
T := sup{δ ∈ R

+ : v(t) < η(t), ∀t ∈ [t0,t0 + δ ]}. (18)

Claim 2. One has T = ∞ .
Claim 2 says that every non-negative solution g(t) to inequality (1), satisfying

assumption (3), is defined globally.
Proof of Claim 2.
Assume the contrary, that is, T < ∞ . The solution v(t) to (9) is continuous at

every point t at which it is bounded. From the definition of T and the continuity of v
and η one gets

v(T ) � η(T ). (19)

It follows from inequalities (18), (19), and Claim 1 that

v̇(t) � η̇(t), ∀t ∈ [t0,T ]. (20)
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This implies

v(T )− v(t0) =
∫ T

t0
v̇(s)ds �

∫ T

t0
η̇(s)ds = η(T )−η(t0). (21)

Since v(t0) < η(t0) by assumption (3), it follows from inequality (21) that

v(T ) < η(T ). (22)

Inequality (22) and inequality (20) with t = T imply that there exists a δ > 0 such that

v(t) < η(t), T � t � T + δ . (23)

This contradicts the definition of T in (18), and the contradiction proves the desired
conclusion T = ∞ .

Claim 2 is proved. �

It follows from the definitions of η(t) , T , v(t) , and from the relation T =∞ , that

g(t) = e−
∫ t
t0
γ(s)dsv(t) < e−

∫ t
t0
γ(s)dsη(t) =

1
μ(t)

, ∀t > t0. (24)

The last statement of Theorem 1 is proved by the standard argument, and is left to
the reader.

Theorem 1 is proved. �

THEOREM 2. Let Assumption A) hold and α(t,g) is a continuous function of t
for every g � 0 and satisfies Lipschitz condition with respect to g for every t � t0 ,
|α(t,g)−α(t,h)|� L(t)|g−h| , where L(t) <∞ for all t � t0 . Let 0 � g(t) satisfy (1),
0 < μ(t) satisfy (2), and μ(t0)g(t0) � 1 . Then

g(t) � 1
μ(t)

, ∀t � t0. (25)

Proof. Let v(t) be defined in (8). Then inequality (9) holds. Let wn(t) solve the
following differential equation

ẇn(t) = a(t)α
(
t,wn(t)e

−∫ t
t0
γ(s)ds)+b(t), wn(t0) = g(t0)− 1

n
, n � n0, (26)

where a(t) := e
∫ t
t0
γ(s)ds , n0 is sufficiently large, and g(t0) > 1

n0
. Since α(t,y) is contin-

uous with respect to t and locally Lipschitz-continuous with respect to y , there exists
a unique local solution to (26).

From the proof of Theorem 1 one gets

wn(t) <
e

∫ t
t0
γ(s)ds

μ(t)
, ∀t � t0,∀n � n0. (27)
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Let τ , t0 < τ < ∞ , be an arbitrary number, and

w(t) = lim
n→∞

wn(t), ∀t ∈ [t0,τ]. (28)

This and the fact that wn(t) is uniformly continuous on [0,τ] imply that w(t) solves
the following equation:

ẇ(t) = a(t)α
(
t,w(t)e−

∫ t
t0
γ(s)ds)+b(t), w(t0) = g(t0), ∀t ∈ [0,τ]. (29)

Note that the solution w(t) to (29) is unique since α(t,y) is continuous with respect
to t and locally Lipschitz-continuous with respect to y . From (9), (29), a comparison
lemma (see, e.g., [11], p.99), the continuity of wn(t) with respect to w0(t0) on [0,τ] ,
and (27), one gets

v(t) � w(t) � e
∫ t
t0
γ(s)ds

μ(t)
, ∀t ∈ [t0,τ], ∀n � n0. (30)

Since τ > t0 is arbitrary, inequality (25) follows from (30).
Theorem 2 is proved. �
REMARK 1. The results of Theorems 1,2 are closely related to the known com-

parison-type results in differential equations. The comparison lemmas, or lemmas about
differential inequalities, are described in many books and papers, e.g., in [3], [7], [9],
[13], [14], to mention a few.

In this remark we give an alternative proof of Theorem 1, which uses comparison
results for differential inequalities. In this proof we have to assume that the Cauchy
problem, corresponding to a differential equation, obtained from differential inequality
(1), (see problem (31) below) has a unique solution. This assumption was not used
in the proof of Theorem 1, given above. Uniqueness of the solution to this Cauchy
problem holds, for example, if the function a(t,g) satisfies Lipschitz condition with
respect to g . Less restrictive conditions, e.g., one-sided inequalities, sufficient for the
uniqueness of the solution to the Cauchy problem (31) are known (e.g., see [7]).

Let φ(t) solve the following Cauchy problem:

φ̇ (t) = −γ(t)φ(t)+α(t,φ(t))+β (t), t � t0, φ(t0) = φ0. (31)

Inequality (2) can be written as

−γ(t)μ−1(t)+α(t,μ−1(t))+β (t) � dμ−1(t)
dt

. (32)

From the known comparison result (see, e.g., [3], Theorem III.4.1) it follows that

φ(t) � μ−1(t) ∀t � t0, (33)

provided that φ(t0) � μ−1(t0) , where φ(t) is the minimal solution to problem (31).
Inequality (1) implies that

g(t) � φ(t) ∀t � t0, (34)
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provided that g(t0) � φ(t0) , where φ(t) is the maximal solution to problem (31).
Therefore, if problem (31) has at most one local solution, and

g(t0) � μ−1(t0), (35)

then

g(t) � μ−1(t) ∀t � t0. (36)

Since μ(t) is defined for all t � t0 , it follows that the solution to problem (31) with
φ(t0) = μ−1(t0) is also defined for all t � t0 . Consequently, g(t) is defined for all
t � t0 . �

Let us consider a discrete analog of Theorem 1.
We obtain an upper bound for gn as n→∞ , sufficient conditions for the validity of

the relation limn→∞ gn = 0, and estimate the rate of growth/decay of gn as n→∞ . This
result can be used in a study of evolution problems, in a study of iterative processes,
and in a study of nonlinear PDE. Let us formulate the result.

THEOREM 3. Let Assumption A) hold, gn be a non-negative sequence of numbers,
and βn, γn be sequences of real numbers. Assume that

gn+1−gn

hn
� −γngn +α(n,gn)+βn, hn > 0, 0 < hnγn < 1, (37)

or, equivalently,

gn+1 � gn(1−hnγn)+hnα(n,gn)+hnβn, hn > 0, 0 < hnγn < 1. (38)

If there is a sequence of positive numbers (μn)∞n=1 , such that the following conditions
hold:

α(n,
1
μn

)+βn � 1
μn

(
γn− μn+1− μn

μnhn

)
, (39)

g0 � 1
μ0

, (40)

then

0 � gn � 1
μn

∀n � 0. (41)

Therefore, if limn→∞ μn = ∞ , then limn→∞ gn = 0 .

Proof. Let us prove (41) by induction. Inequality (41) holds for n = 0 by assump-
tion (40). Suppose that (41) holds for all n � m . From inequalities (37), (39), and from
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the induction hypothesis gn � 1
μn

, n � m , one gets

gm+1 � gm(1−hmγm)+hmα(m,gm)+hmβm

� 1
μm

(1−hmγm)+hmα(m,
1
μm

)+hmβm

� 1
μm

(1−hmγm)+
hm

μm

(
γm − μm+1 − μm

μmhm

)

=
1

μm+1
− μ2

m+1−2μm+1μm + μ2
m

μ2
mμm+1

� 1
μm+1

.

(42)

Therefore, inequality (41) holds for n = m+1. Thus, inequality (41) holds for all n � 0
by induction. Theorem 3 is proved. �

Setting hn = 1 in Theorem 3, one obtains the following result:

THEOREM 4. Let the assumptions of Theorem 3 hold. and

gn+1 � gn(1− γn)+α(n,gn)+βn, 0 < γn < 1. (43)

If there is sequence (μn)∞n=1 > 0 such that the following conditions hold

g0 � 1
μ0

, α(n,
1
μn

)+βn � 1
μn

(
γn− μn+1− μn

μn

)
, ∀n � 0, (44)

then

gn � 1
μn

, ∀n � 0. (45)

3. Applications

Here we sketch an idea for possible applications of our inequalities in a study of
dynamical systems in a Hilbert space H , see also [12].

In this Section we assume without loss of generality that t0 = 0. Let

u̇+Au = h(t,u)+ f (t), u(0) = u0, u̇ :=
du
dt

, t � 0. (46)

To explain the ideas, let us make simplifying assumptions: A > 0 is a selfadjoint time-
independent operator in a real Hilbert space H , h(t,u) is a nonlinear operator in H ,
locally Lipschitz with respect to u and continuous with respect to t ∈ R+ := [0,∞) ,
and f is a continuous function on R+ with values in H , supt�0 ‖ f (t)‖ < ∞ . The
scalar product in H is denoted 〈u,v〉 . Assume that

〈Au,u〉 � γ〈u,u〉, γ = const > 0, ‖h(t,u)‖ � α(t,‖u‖), ∀u ∈ D(A), (47)

where α(t,y) � c|y|p , p > 1 and c > 0 are constants, and α(t,y) is a non-decreasing
C1([0,∞)) function of y . Our approach works when γ = γ(t) and c = c(t) , see Ex-
amples 1,2 below. The problem is to estimate the behavior of the solution to (46) as
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t → ∞ and to give sufficient conditions for a global existence of the unique solution to
(46). Our approach consists of a reduction of this problem to the inequality (1) and an
application of Theorem 1. A different approach, studied in the literature (see, e.g., [8],
[10]), is based on the semigroup theory.

Let g(t) := ‖u(t)‖ . Problem (46) has a unique local solution under our assump-
tions. This local solution exists globally if supt�0 ‖u(t)‖ < ∞ . Multiply (46) by u and
use (47) to get

ġg � −γ(t)g2 +α(t,g)g+β (t)g, β (t) := ‖ f (t)‖. (48)

Since g � 0, one gets

ġ � −γ(t)g+α(t,g(t))+β (t). (49)

Now Theorem 1 is applicable and yields sufficient conditions (2) and (3) for the
global existence of the solution to (46) and estimate (4) for the behavior of ‖u(t)‖
as t → ∞ . The choice of μ(t) in Theorem 1 is often straightforward. For example,
if α(t,g(t)) = c0

a(t)g
2 , where limt→∞ a(t) = 0, ȧ(t) < 0, then one can often choose

μ(t)= λ
a(t) , λ = const > 0, see [11], p.116, and [4], p.487, for examples of applications

of this approach.
The outlined approach is applicable to stability of the solutions to nonlinear differ-

ential equations, to semilinear parabolic problems, to hyperbolic problems, and other
problems. There is a large literature on the stability of the solutions to differential equa-
tions (see, e.g., [1], [2], and references therein). Our approach yields some novel results.
If the selfadjoint operator A depends on t , A= A(t) , and γ = γ(t)> 0, limt→∞ γ(t)= 0,
one can treat problems with degenerate, as t → ∞ , elliptic operators A .

For instance, if the operator A is a second-order elliptic operator with matrix
ai j(x,t) , and the minimal eigenvalue λ (x,t) of this matrix satisfies the condition

min
x
λ (x,t) := γ(t) → 0, as t → ∞,

then Theorem 1 is applicable under suitable assumptions on γ(t) , h(t,u) and f (t) .

EXAMPLE 1. Consider

u̇ = −γ(t)u+a(t)u(t)|u(t)|p+
1

(1+ t)q , u(0) = 0, (50)

where γ(t) = c
(1+t)b , a(t) = 1

(1+t)m , p , q , b , c , and m are positive constants. Our goal

is to give sufficient conditions for the solution to the above problem to converge to zero
as t → ∞ . Multiply (50) by u , denote g := u2 , and get the following inequality

ġ � −2
c

(1+ t)b g+2
1

(1+ t)mg(t)1+0.5p +2
1

(1+ t)q g0.5, g = u2. (51)

Choose μ(t) = λ (1+ t)ν , where λ > 0 and ν > 0 are constants.
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Inequality (2) takes the form:

2
(1+ t)m [λ (1+ t)ν ]−1−0.5p +

2
(1+ t)q [λ (1+ t)ν ]−0.5

� [λ (1+ t)ν ]−1
(

2
c

(1+ t)b −
ν

1+ t

)
.

(52)

Choose p,q,m,c,λ and ν so that inequality (52) be valid and λu(0)2 < 1, so that
condition (3) with t0 = 0 holds. If this is done, then u2(t) � 1

λ (1+t)ν , so limt→∞ u(t) =
0. For example, choose b = 1, ν = 1, q = 1.5, m = 1, λ = 4, c = 4, p � 1. Then
inequality (52) is valid, and if u(0)2 < 1/4, then (3) with t0 = 0 holds, so limt→∞ u(t) =
0. The choice of the parameters can be varied. In particular, the nonlinearity growth,
governed by p , can be arbitrary in power scale. If b = 1 then three inequalities m+
0.5pν � 1, q−0.5ν � 1, and λ 1/2 +λ−0.5p � c−0.5ν together with u(0)2 < λ−1 are
sufficient for (3) and (52) to hold, so they imply limt→∞ u(t) = 0.

In Example 1 one could use the argument, given in Remark 1.

EXAMPLE 2. Consider problem (46) with A,h and f satisfying (47) with γ ≡ 0.
So one gets inequality (49) with γ(t) ≡ 0. Choose

μ(t) := c+λ (1+ t)−b, c > 0, b > 0, λ > 0, (53)

where c,λ , and b are constants. Inequality (2) takes the form:

α(t,
1

μ(t)
)+β (t) � 1

μ(t)
bλ

(1+ t)[λ + c(1+ t)b]
. (54)

Let θ ∈ (0,1) , p > 0, and C > 0 be constants. Assume that

α(t, |y|) � θC|y|p bλ
(λ + c)(1+ t)1+b , β (t) � (1−θ )

bλ
(c+λ )2(1+ t)1+b , (55)

for all t � 0, and

C =
{

cp−1 if p > 1,
(λ + c)p−1 if p � 1.

(56)

Let us verify that inequality (54) holds given that (55) and (56) hold.
It follows from (53) that c < μ(t) � c+λ , ∀t � 0. This and (55) imply

β (t) � (1−θ )
1

(c+λ )2(1+ t)1+b � (1−θ )
1

μ(t)
1

(1+ t)(c+λ (1+ t)b)
. (57)

From (56) and (53) one gets

C
μ p−1(t)

� Cmax(c1−p,(c+λ )1−p) � 1, ∀t � 0. (58)
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From (55) and (58) one obtains

α(t,
1

μ(t)
) � θC

1
μ(t)

1
μ p−1(t)

bλ
(1+ t)[λ (1+ t)b + c(1+ t)b]

� θ
1

μ(t)
bλ

(1+ t)[λ + c(1+ t)b]
.

(59)

Inequality (54) follows from (57) and (59). From (54) and Theorem 1 one obtains

g(t) � 1
μ(t)

<
1
c
, ∀t > 0, (60)

provided that g(0) < (c + λ )−1 . From (49) with γ(t) = 0 and (55)–(60), one gets
ġ(t) = O( 1

(1+t)1+b ) . Thus, there exists finite limit limt→∞ g(t) = g(∞) � c−1 .
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