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GENERAL INEQUALITIES FOR MULTIPOINT PADÉ APPROXIMANTS

TO A STIELTJES FUNCTION EXPANDED AT REAL POINTS

S. TOKARZEWSKI AND E. WAJNRYB

(Communicated by J. Pečarić)

Abstract. In this paper we establish the general inequalities for diagonal and subdiagonal multi-
point Padé approximants to a Stieltjes function f in terms of power expansion of f on the real
line. The inequalities derived produce the best upper and lower bounds on f with respect to
the given coefficients of Stieltjes series. As an example of applications sequences of upper and
lower Padé bounds converging to the effective dielectric constant of a random array of spheres
are evaluated.

1. Introduction

The properties of one- two- and three-point Padé approximants to a Stieltjes func-
tion, say f , were extensively investigated in recent years. The obtained results valid in
a real domain read: (i) sequences of diagonal and subdiagonal one-point Padé approx-
imants to an expansion of f at 0 form upper and lower bounds converging to f , cf.
[1, 9, 15]; (ii) sequences of diagonal two-point Padé approximants to expansions of f at
0 and ∞ also form upper and lower bounds converging to f , cf. [6, 13]; (iii) sequences
of diagonal three-point Padé approximants to expansions of f at −1, 0, ∞ form as
previously upper and lower bounds converging to f , cf. [12]. The Padé bounds (i), (ii)
and (iii) on f are the best ones with respect to the given finite number of Stieltjes series
coefficients.

The aim of this paper is to establish the general inequalities for N -point Padé
approximants to a Stieltjes function f in terms of a given finite number of coefficients of
power expansions of f at real points z1,z2, ...,zN , where z j < zN �∞ , j = 1,2, ...,N−
1. The inequalities obtained confirm via simple mathematical formulae the special
bounding properties of multipoint point Padé approximants to the Stieltjes functions
reported earlier in [1, 3, 4, 5, 6, 12, 13] and predict new ones as well. As an example of
practical applications the sequences of upper and lower Padé bounds converging to the
effective dielectric constant of a random array of spheres are evaluated.
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2. Preliminaries

In this section the basic notions such as regular Stieltjes functions f , Stieltjes
series representing f , inclusion regions of allowed values of f , error bounds for f ,
unified linear fractional transformation of f , multipoint fractional expansions of f and
others are introduced.

2.1. Basic estimates of regular Stieltjes functions

We begin our consideration with the Stieltjes integral representation given by

ϕ(s) =
∫ ∞

0

dγ∞(v)
1+ sv

, dγ∞(v) > 0, ϕ(0) = η , 0 < η � ∞. (1)

By making the change of variables s = z+1 and v = u
1−u we obtain

ϕ(z+1) =
∫ ∞

0

dγ∞(v)
1+(z+1)v

=
∫ 1

0

dγ(u)
1+ zu

= χ(z), χ(−1) = η , (2)

where

dγ(u) = (1−u)dγ∞
[

u
1−u

]
> 0. (3)

The formula (3) transforms the measure dγ∞(v)-defined in the infinite interval [0,∞]
to the measure dγ(u)-defined in the finite one [0,1] . Now without loss of generality
we assume η = 1. For any value of η ∈ (0,∞] the considerations are analogous. On
account of that we can limit our studies to the regular Stieltjes functions f representing
in the theory, for example of inhomogeneous media, the effective transport coefficients
of composites such as electric and thermal conductivities, dielectric constants,magnetic
permittivities, diffusion coefficients [10].

DEFINITION 1. The N power expansions

f (z) = ∑
p j−1
i=0 ci j(z− z j)i +O((z− z j)p j ), j = 1,2, ...,N,

ci j = ci(z j) = f (i)(z j)
i! , f (i)

1 (z j) =
di f (z)
di(z)

∣∣∣∣
z=z j

, i = 0,1, ..., p j −1
(4)

of the function

f (z) =
∫ 1

0

dγ(u)
1+ zu

, γ(0) = 0, dγ(u) � 0, z ∈ C\[−∞,−1) (5)

satisfying the condition
f (−1) = 1 (6)

we call regular Stieltjes series (4)–(6) representing the regular Stieltjes function (5)–(6).
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Due to (4)–(6) the regular Stieltjes series possess radii of convergence at least 1
and take at z = −1 the values 1. From (5)–(6), it follows: f is real symmetric, i.e.
it takes complex conjugate values when the variable z is complex-conjugated f (z∗) =
[ f (z)]∗ . Furthermore, if zs and z∗r are conjugated numbers then coefficients cis and c∗ir
of (4) are complex-conjugated ones. With Definition 1 are connected inseparably the
sets:

• Of non-decreasing functions γ

ΓP = Γp1,p2,...,pN
z1,z2,...,zN ;+1

−1 =
{
γ; ci j given, γ(u) fulfil (4)–(6)

}
. (7)

• Of non-increasing functions of Stieltjes f :

ΦP = Φp1,p2,...,pN
z1,z2,...,zN ;+1

−1 =
{

f ; f (·) =
∫ 1

0

dγ(u)
1+(·)u , γ ∈ ΓP

}
. (8)

• Of admissible values of f (z0) called the inclusion region of f (z0) :

ΦP(z0) = Φp1,...,pN
z1,...,zN ;+1

−1 (z0) =
{

f (z0); f (z0) =
∫ 1

0

dγ(u)
1+z0u

, γ ∈ ΓP

}
. (9)

• Of a boundary of admissible values of f (z0) called the error bound for f (z0)

φP(z0) = φ p1,p2,...,pN
z1,z2,...,zN ;+1

−1 (z0) = ∂ΦP(z0). (10)

The column
p j

z j denotes the numbers of known coefficients p j of power expan-

sions of f at z j, j = 1,2, ...,N , while +1
−1 informs that f (−1) = 1. Parameter

P = ∑N
j=1 p j + 1 determines the number of available information about f given by

(4) and (6). It is worth noting that if f ′(z0) ∈ ΦP(z0) and if f ′′(z0) ∈ ΦP(z0) and if
0 � ς � 1 then [

ς f ′(z0)+ (1− ς) f ′′(z0)
] ∈ΦP(z0). (11)

Inclusions regions ΦP(z0) of admissible values f (z0) of a Stieltjes function f are
convex. Now our aim is:

PROBLEM 2. By starting from ∑N
j=1 p j coefficients of Stieltjes series (4) and the

equality (6) we evaluate an inclusion region ΦP(z0) estimating f (z0) at z0 �= z j, j =
1,2, ...,N.

2.2. Unified continued fraction expansion of a regular Stieltjes functions

We solve Problem 2 by means of a U -linear fractional transformation developed
in [14]. The U - transformation relates the Stieltjes function f1 with the Stieltjes ones
f2 and f3 , ... , and fN+1 via the relations

z f1(z) = z1 f1(z1)+ f1(z1)(z−z1)
1+zθ2 f2(z)

, z f2(z) = z2 f2(z2)+ f2(z2)(z−z2)
1+zθ3 f3(z)

, ...,

z f j(z) = z j f j(z j)+ f j(z j)(z−z j)
1+zθ j+1 f j+1(z)

, ..., z fN(z) = z j f j(z j)+ fN(zN)(z−zN)
1+zθN+1 fN+1(z)

,

(12)
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where θ j+1 are chosen in such a way that f j(−1) = 1, j = 1,2, ...,N +1. Here for the
sake of simplicity we assume that

−1 < z1 < z2 < ... < zN−1 < zN . (13)

Relations (12) lead to the U -continued fraction representation of z f1(z)

z f1(z) = z1 f1(z1)+
f1(z1)(z− z1)

1+θ2

⎛
⎜⎜⎝z2 f2(z2)+

f2(z2)(z− z2)

1+θ3

(
· · ·+ · · ··

1+θN+1z fN+1(z)

)
⎞
⎟⎟⎠

. (14)

It is convenient to rewrite (14) as follows

z f1(z) =
(
z1 f1(z1)+ f1(z1)(z−z1)

1+θ2

)
×

(
z1 f1(z1)+ f1(z1)(z−z1)

1+θ2

)
...×

(
fN(zN)+ fN(zN)(z−zN)

1+θN

)
×

z fN+1(z).
(15)

The following abbreviations of (15)

z f1(z) =
N∨

k=1

(
zk fk(zk)+

fk(zk)(z− zk)
1+θk+1

)
×

z fN+1(z), (16)

or

z f1(z) = UN(z)×z fN+1(z), UN(z) =
N∨

k=1

(
zk fk(zk)+

fk(zk)(z− zk)
1+θk+1

)
(17)

will be used in the sequel. Here N denotes the number of floors (dashes) of the U -
continued fraction, see(14).

3. Allowed range of values of a Stieltjes function

In this subsection we evaluate the inclusion region ΦP(z) estimating f1(z) at any
point z of the cut (−∞,−1) complex plane. To this end we use the U -continued
fraction rewritten in a general form (cf. (16))

z f1(z) =
(∨N

k=1
∨Pk

j=Pk−1+1

(
zk f j(zk)+

f j(zk)(z− zk)
1+θ j+1

))
×

z fP(z),

P0 = 0, Pj =∑ j
i=1 p j, P = PN +1, j = 1,2, ...,N.

(18)

The terms fk(zk) and θk+1, k = 1,2, ...,N are determined uniquely by the coefficients
of the power series (4) and the condition (6). It is proved in [14]: if f1(z) is a regular
Stieltjes function then fP(z) is a regular Stieltjes one as well. Hence the Problem 2
reduces to (cf. (18)):
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Table 1: Coefficients of continued fraction expansion of a Stieltjes function f1(z) from power
series (23)

k 1 2 3 4 5 6 7 8
fk(zk) 0.5 0.5 0.5 0.5 0.4142 0.2899 0.2612 0.2403
θk+1 0.5 0.5 0.5 0.5 0.4142 0.2899 0.2612 0.2403

PROBLEM 3. By starting from the equality fP(−1) = 1 only, we evaluate an in-
clusion region Φ1(z) estimating fP(z) at any point z of the cut (−∞,−1 ) complex
plane (cf. (9)).

Since a set Φ1(z) is convex, it suffices to compute the boundary φ1(z) of Φ1(z)
given by (10). Such a computations were carried out by Baker [1, Chapter 17, Eq.17.16,
R=1]. He obtained

φ1(z) = {w ∈ C : w = F1(z,u); −1 � u � 1} ,

F1(z,u) =

⎧⎨
⎩

u+1, −1 � u � 0,

1−u
1+ zu

, 0 � u � 1.

(19)

By replacing in (18) f1(z) by FP(z,u) and fP(z) by F1(z,u) we come to the bounding
function FP(z,u) (cf. (19)2 )

FP(z,u) =
1
z

N∨
k=1

⎛
⎝ Pk∨

j=Pk−1+1

(
zk f j(zk)+

f j(zk)(z− zk)
1+θ j+1

)⎞⎠
×

zF1(z,u), (20)

determining the error bounds φP(z) for f1(z)

φP(z) = {w ∈ C : w = FP(z,u); −1 � u � 1} . (21)

-0.1 0.2 0.5
0.0

0.2

0.4

Φj(z0),  j=2,4,6,8
Φj(z0),  j=3,5,7,9
 f1(z0)

Re(Φj(z0))

Im(Φj(z0))

Figure 1: Sequence of inclusion regions Φ2(z0), Φ3(z0), ..., Φ9(z0) of a Stieljes function f1(z0)
calculated from Stieltjes series

From the definition (9), it follows at once the inclusion relations

f1(z) ∈ΦP(z) ⊂ΦP−1(z) ⊂, ...,⊂Φ1(z). (22)

leading to:
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CONCLUSION 4. The inclusion region ΦP(z) forms the best estimate of f1(z) ob-
tainable using only the given P power series coefficients, and that the use of additional
power ones (higher P) improves the estimates ΦP(z) of f1(z).

In order to illustrate the Conclusion 4 we take as an input data the Stieltjes series
f1(z) expanded at z1 = 0, z2 = 1, z3 = 5, z4 = 7 and z5 = 9

f1(z) = 1
2 − 1

8 z+ 1
16z2 − 5

128z3 +O(z4); f1(z) = 0.4142+O(z−1),

f1(z) = 0.2899+O(z−5); f1(z) = 0.2612+O(z−7); f1(z) = 0.2403+O(z−9).
(23)

By substituting (23) to (20) and (20) to (21) we obtain the bounding functions FP(z0,u)
and consequently the error bounds φP(z0) , z0 = −15− i30, P = 2,3, ...,9. For
example F9(z0,u) is equal to (see Table 1).

F9(z0,u) = 1
z

∨5
k=1

(∨Pk
j=Pk−1+1

(
zk f j(zk)+

f j(zk)(z0 − zk)
1+θ j+1

))
×

zF1(z0,u),

P0 = 0, P1 = 4, P2 = 5, P3 = 6, P4 = 7, P5 = 8.

(24)

The results of the numerical calculations of ΦP(z0) , z0 = −15− i30, P = 2,3, ...,9
are depicted in Fig. 1.

0 1 2 3 4 5
5

8

11

14

17

lg(x)

F5(x,0)lg(Fj )

F4(x,1)

F4(x,0)

F5(x,1)

f1(x)

Figure 2: Sequences of Padé approximants F4(x,0), F4(x,1), F5(x,1) , and F5(x,0), forming
upper and lower bounds on a Stieltjes function f1(x) = − ln(0.5(x + 2))/x/ ln(0.5) , see, in-
equalities (51) and (52).

3.1. Real domain

The real domain is a particular case of the complex one. The elementary bounding
function F1(z,u) (19)2 reduces to

F1(x,u) = 1−u, 0 � u � 1, (25)

while FP(x,u) and φP(x) takes the forms (cf. (20)

FP(x,u) =
1
x

N∨
k=1

(
Pk∨

j=Pk−1+1

(
zk f j(zk)+

f j(zk)(x− zk)
1+θ j+1

))
×

x(1−u),

0 � u � 1, P0 = 0, Pj = ∑ j
i=1 p j, P = PN +1, j = 1,2, ...,N.

(26)
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Table 2: First seven coefficients of a power expansion of a Stieltjes function (q(x)−1)/x repre-
senting an effective dielectric constant q(x) of a random array of spheres (cf. (57))

j 1 2 3 4 5 6 7
c j 0.3 −0.07 0.018780 −0.005903 0.002174 −0.000918 0.000430

and (cf. (26))

φP(x) = ΦP(x) = {w ∈ R : w = FP(x,u); 0 � u � 1} . (27)

From (27), it follows that φP(x) is the interval with the ends determined by the Padé
approximants FP(x,1) and FP(x,0) . Thus we conclude:

CONCLUSION 5. The Stieltjes function f1(x) lies between the Padé approximants
FP(x,1) and FP(x,0) to (4) and (4)–(6), respectively.

Now we establish the general inequalities for a Stieltjes function f1(x) and its
Padé approximants FP(x,1) and FP(x,0). We start from the relations

lim
x→∞

FP(x,0) = 0 for P even and lim
x→∞

FP(x,0) > 0 for P odd. (28)

Due to Conclusion 5 from (28) follows

(−1)PFP(x,0) < (−1)P f1(x) < (−1)PFP(x,1) if zN < x < ∞. (29)

Since f1(zN) = FP(zN ,0) = FP(zN ,1) then

(−1)P−1FP(x,0) < (−1)P−1 f1(x) < (−1)P−1FP(x,1) if zN−1 < x < zN . (30)

Since f1(zN−1) = FP(zN−1,0) = FP(zN−1,1) we have

(−1)P−2FP(x,0) < (−1)P−2 f1(x) < (−1)P−2FP(x,1) if zN−2 < x < zN−1. (31)

Further restrictions f (zN−1) = FP(zN−1,0) = FP(zN−1,1) lead to

(−1)P−3FP(x,0) < (−1)P−3 f1(x) < (−1)P−3FP(x,1) if xN−3 < x < xN−2. (32)

By analyzing the relations (29)–(32) we deduce the general inequalities relating the
Stieltjes function f1(x) to its Padé approximants FP(x,1) and FP(x,0)

(−1)LP(x)FP(x,0) � (−1)LP(x) f1(x) � (−1)LP(x)FP(x,1), (33)

where

LP(x) = ∑N
j=1 p jH(x− z j)+1, H(x) = 0 if x < 0 or H(x) = 1 if x � 0 (34)

is a piecewise function depending on the input information x , z j and p j, j = 1,2, ...,N ,
see (4) and (6).



984 S. TOKARZEWSKI AND E. WAJNRYB

Now we show, that the inequalities (33)–(34) are valid for the Padé approximants
FP(x,1) and FP(x,0) to f1(x) expanded at zN =∞ as well. To this end we consider the
formal equalities

f1(x) = 1
x

∞

∑
i=0

d∞i
( 1

x

)i = 1
x

∞

∑
i=0

d∞i
(

1
x − 1

zN

)i
=

∞

∑
i=0

ciN (x− zN)i , zN → ∞. (35)

The relations (35) impose on the coefficients ciN and d∞j , j = 1,2..., i the restrictions

∂ n

∂xn

[
∞

∑
i=0

ciN (x− zN)i

]
x=zN

= ∂ n

∂xn

[
1
x

∞

∑
i=0

d∞i
(

1
x − 1

zN

)i
]

x=zN

, n = 0,1, ... . (36)

Hence the Padé approximants FP(x,1) , FP(x,0) to (cf. (35)2 )

f1(x) = 1
x∑∞

i=0 d∞i
( 1

x

)i
(37)

and the Padé ones FzN
P (x,1),FzN

P (x,0) to (cf. (37)4 )

f zN
1 (x) =∑∞

i=0 ciN(d∞0 ,d∞1 , ...,d∞i )(x− zN)i (38)

satisfy the relations

FP(x,0) = lim
zN→∞

FzN
P (x,0), FP(x,1) = lim

zN→∞
FzN

P (x,1). (39)

For example the general relations (35)–(39) transform the power series given by

f1(x) = 1+O(x+1), f1(x) = 1
x

(
1− 10

3

( 1
x

)
+O

(( 1
x

)2
))

(40)

to the power ones

f1(x) = 1+O(x+1), f zN
1 (x) = 1

zN
+ 10−3zN

3z3N
(x− zN)+O((x− zN)2). (41)

From (41), it follows the distribution function (cf. (34))

L2 = H(x+1)+H(x− zN), x < zN . (42)

The Padé approximants F2(x,0) to (40) and the Padé ones FzN
2 (x,0) to (41) equal to

F2(x,0) = 1
x+2 and FzN

2 (x,0) = 1
1+(x+1) zN−1

zN+1

(43)

confirm the relations (39). Moreover from (42) and (33)–(34) we obtain the inequality

f1(x) < x
x+2 , x � −1. (44)

valid for any Stieltjes function f1(x) satisfying (40).
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4. Particular cases of the general inequality

Consider now the sequences of Padé approximants FP− j(x,1) and FP− j(x,0),
j = 1,2, ...,P−1. They satisfy the inequalities (cf. (33)–(34))

(−1)LP− j(x)FP− j(x,0) � (−1)LP− j(x) f1(x) � (−1)LP− j(x)FP− j(x,1), j = 1,2, ...,P−1.
(45)

Due to Conclusion 4 the formulae (45) transform to:
If LP− j(x) = LP(x)− j then

(−1)LP(x)FP−2(x,0) � (−1)LP(x)FP−1(x,1) � (−1)LP(x)FP(x,0) � (−1)LP(x) f1(x)

(−1)LP(x) f1(x) � (−1)LP(x)FP(x,1) � (−1)LP(x)FP−1(x,0) � (−1)LP(x)FP−2(x,1).
(46)

If LP− j(x) = LP(x) then

(−1)LP(x)FP−2(x,0) � (−1)LP(x)FP−1(x,0) � (−1)LP(x)FP(x,0) � (−1)LP(x) f1(x)

(−1)LP(x) f1(x) � (−1)LP(x)FP(x,1) � (−1)LP(x)FP−1(x,1) � (−1)LP(x)FP−2(x,1).
(47)

As an example illustrating the inequalities (46) and (47) we consider the power expan-
sions

f1(x) = 0.2584962+0.01382716(x−10)+O
(
(x−10)2

)
,

f1(x) = 0.001228800+0.1084559 ·10−6(x−104)+O
(
(x−104)2

)
,

(48)

of the Stieltjes function

f1(x) = −1
x

ln(0.5(x+2)
ln(0.5)

, f1(−1) = 1. (49)

For (48) we have (cf. (34))

L5(x) = H(x+1)+2H(x−10)+2H(x−104). (50)

The function (50) substituted to (46) and (47) yield

F4(x,0) � F5(x,1) � f1(x) � F5(x,0) � F4(x,1) if x ∈ (10,104) (51)

and
F4(x,1) � F5(x,1) � f1(x) � F5(x,0) � F4(x,0) if x ∈ (1,10). (52)

Fig. 1 presents the Padé approximants F4(x,0), F4(x,1) F5(x,0) and F5(x,1) calculated
from power series (48).

The following particular sequences of the multipoint Padé approximants FP(x,0)
to a Stieltjes function f1(x) are investigated in [4, Theorem 6.1] and [5, Theorem 12.1]

F4m+1(x,0), L4m+1(x) = 2m+1 and F4m+3(x,0), L4m+3(x) = 2m+2. (53)
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-2.00 -0.25 1.50 3.25 5.00

lg(x)
0

1

2 50 1003021 15070 14141

20

31 40 151

130121q(x)-1

Figure 3: Sequence of lower 20,31,40, ...,151 and upper 21,30,41, ..,150 Padé bounds con-
verging to the effective dielectric constant q(x)− 1 of a random array of spheres of volume
fraction ϕ = 0.3 . The notations for Padé approximants K0 = xFK(x,0) and K1 = xFK(x,1),
K = 2,3, ...,15 are introduced.

By substituting (53) to (33) we obtain

(−1)2m+2F4m+3(x,0) < (−1)2m+2 f1(x) < (−1)2m+1F4m+1(x,0). (54)

Due to Conclusion 4 from (54), it follows the particular inequalities

f1(x) < ... F13(x,0) < F9(x,0) < F5(x,0) < F1(x,0)

F3(x,0) < F7(x,0) < F11(x,0) < F15(x,0) < ... < f1(x).
(55)

predicted by the Theorems [4, Theorem 6.1] and [5, Theorem 12.1], where

F4m+1(x,0) =
σ2m(x)
ϕ2m(x)

, F4m+3(x,0) =
σ2m+1(x)
ϕ2m+1(x)

, α < x < β . (56)

5. Example of practical applications

In order to apply the general inequalities (33)–(34) to practical calculations we
consider a power expansion of a Stieltjes function

f1(x) = ϕ− 1
3
ϕ(1−ϕ)x+

P−1

∑
j=2

c jx
j +O(xP), f1(−1) � 1 (57)

representing the effective dielectric constant q(x) of random array of spheres via the
relation

f1(x) =
q(x)−1

x
, x = h−1, h =

μ2

μ1
. (58)

Here μ1 and μ2 are dielectric constants of a matrix and spheres, while ϕ denotes an
inclusion volume fraction. Coefficients c j, j = 2,3, ... are calculated by the method
reported in [7, 8, 11]. The first seven ones are gathered in Table 2. Recurrence relations
(12) are used to calculate the Padé bounds FP(x,1) and FP(x,0) , P = 2,3...,15 to
power series (57). The products xFP(x,1) and xFP(x,0) , P = 2,3...,15 representing
the effective dielectric constant q(x)− 1 of a random array of spheres are depicted in
Fig. 3, see (58). Note that Padé bounds FP(x,1) and FP(x,0), x > 0, P = 2,3...,15
satisfy the fundamental inequalities (46).
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6. Summary and final remarks

It has been established the general inequalities (33)–(34) for multipoint Padé ap-
proximants to a regular Stieltjes function f expanded to Taylor-series at a finite num-
ber of real points. The inequalities derived allow us to specify Padé approximants
FP(x,1) and FP(x,0) as upper and lower bounds on f in dependence on the input pa-
rameters x, p j and x j, j = 1,2, ...,N characterizing the Stieltjes series (4). In order to
do it, it suffices to construct from (4) and (6) a distribution function (34) and substitute
it to the relations (33). Numerical examples of applications of the general inequalities
(33)–(34) and their particular cases (46) and (47) has been presented, see Fig. 2 and 3.

We incorporate into estimates of a Stieltjes function f a finite number of coeffi-
cients of power expansions of f available at arbitrary number of real points x1,x2, ...,zN ,
while Baker [1, 2] deals with one power expansion of f at 0 and the set of N discrete
values f (x1), f (x2), ..., f (zN) only. On account of that his bounds are particular cases
of the Padé ones produced by the inequalities (33)–(34). The bounding properties of
multipoint Padé approximants reported earlier in [3, 4, 5] are also particular cases of
the inequalities (33)–(34).
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[6] A. BULTHEEL, P. GONZÁLES-VERA, AND R. ORIVE, Quadrature on the half-line and two-point
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[12] S. TOKARZEWSKI, N -point Padé approximants to real valued Stieltjes series with nonzero radii of
convergence, J. Comp. Appl. Math., 75 (1996), 259–280.



988 S. TOKARZEWSKI AND E. WAJNRYB
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