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Abstract. In this paper we characterize the validity of the multidimensional reverse Hardy in-
equalities

‖gw‖Lp(Rn) � C
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for non-negative measurable functions on R
n , where B(0,t) is the closed ball in R

n centered

at zero with radius t ,
�
B(0,t) = R

n \B(0,t) , 0 < p � 1 , 0 < q � +∞ , w and v are weight
functions on R

n and (0,+∞) , respectively. Obtained conditions are the natural extensions of
one-dimensional conditions.

1. Introduction

The characterization of weights w , v for which the one-dimensional Hardy in-
equalities
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(1.1)

and
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(1.2)

hold for every non-negative Borel measurable functions f on the interval (a,b) , −∞�
a < b � +∞ , 0 < q � +∞ , 1 � p � +∞ have been extensively studied during the last
two decades. A detailed account of the history of the topic can be found in the book [5]
(see also [9] and [6]).
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In [2], W. D. Evans, A. Gogatishvili and B. Opic give a complete characterization
of weights w and v on (a,b) for which so-called reverse Hardy inequalities
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and
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(1.4)

hold for every non-negative Borel measurable functions f on the interval (a,b) , with
−∞� a < b � +∞ , 0 < q � +∞ , 0 < p � 1. In [2] the inequalities (1.3) and (1.4) were
considered for non-negativeBorel measures on (a,b) and above mentioned inequalities
are a special case if we take an absolute continuous measures with respect to Lebesgue
measure.

In [1], P. Drábek, H. P. Heinig, A. Kufner extended the inequalities (1.1) and (1.2)
to n -dimensional case. In particular, in [1] it was shown that a necessary and sufficient
conditions for validity of the inequalities

(∫
Rn

(∫
Rn\B(0,|x|)

f (x)
)q

u(x)dx

) 1
q

� C

(∫
Rn

( f (x))pv(x)dx

) 1
p

and

(∫
Rn

(∫
B(0,|x|)

f (x)
)q

u(x)dx

) 1
q

� C

(∫
Rn

( f (x))pv(x)dx

) 1
p

for every non-negative Borel measurable functions f on R
n , with weights u,v on R

n ,
1 < p < +∞ , 0 < q < +∞ , are analogous to the corresponding conditions for the one-
dimensional case.

In this paper, we will deal with multidimensional analogue of reverse Hardy in-
equalities (1.3) and (1.4). We make a comprehensive study of general inequalities of
the form

‖gw‖Lp(Rn) � C

∥∥∥∥v(t)
∫

�B(0,t)
g(y)dy

∥∥∥∥
Lq(0,+∞)

(1.5)

and

‖gw‖Lp(Rn) � C

∥∥∥∥v(t)
∫

B(0,t)
g(y)dy

∥∥∥∥
Lq(0,+∞)

(1.6)

with complete proofs and estimates of the best constants C .
The basic idea in [1] was to use polar coordinates in R

n . Our method to study the
inequalities (1.5) and (1.6) is different from the method used in [1]. Our approach for
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the inequality (1.5) based of the n-dimensional analogues of a discretization of func-
tion norms as in [2]. The discretization technique was investigated by K.-G. Grosse-
Erdmann [4], where it is called the blocking technique. In [4] the discrete analogues of
(1.3) and (1.4) were considered and it is also remarked that the techniques used in the
proofs may be applicable to the continuous versions of the inequalities, namely to (1.3)
and (1.4).

By changing variables we reduce the characterization of the inequality (1.6) to that
of the inequality (1.5). But it should be noted that the discretization method works also
for this inequality.

The paper is organized as follows. Main results, the necessary and sufficient con-
ditions for the validity of the inequality (1.5) and (1.6), are formulated in Section 2.
In Section 3, we give general discretization formulas of weighted function norms. In
section 4, proofs of main results are given.

2. Main results

We start with some notations. Given a nonempty Borel subset E of R
n and f is a

Lebesgue measurable function on E , then we put

‖ f‖Lp(E) :=

⎧⎨
⎩

(
∫
E | f (y)|pdy)

1
p if 0 < p < +∞,

esssupy∈E | f (y)| if p = ∞.

If I = (a,b) is a nonempty interval from (0,+∞) and f is a measurable function
on I , then we define ‖ f‖Lp(a,b) = ‖ f‖Lp(I) and ‖ f‖L∞(a,b) = ‖ f‖L∞(I) .

For x ∈ R
n and r > 0, let B(x,r) := {y ∈ R

n : |x− y| � r} be the closed ball

centered at x of radius r and
�
B(x,r) := R

n\B(x,r) .
Throughout the paper, u , v and w will denote weights, that is, locally integrable

non-negative functions.
By A � B we mean that A � CB with some positive constant C independent of

appropriate quantities. If A � B and B � A , we write A ≈ B and say that A and
B are equivalent. We shall use throughout the paper the convention 1/(+∞) = 0,
0 · (±∞) = 0, 0/0 = 0, and ∞/∞= 0. We put

p′ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p
1−p if 0 < p < 1,

+∞ if p = 1,
p

p−1 if 1 < p < +∞,

1 if p = +∞,

When p < q , we define r by
1
r

=
1
p
− 1

q
. (2.1)

Our first main result describes the necessary and sufficient condition for the valid-
ity of inequality (1.5) for all non-negative measurable g on R

n when 0 < q � p � 1.
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THEOREM 2.1. Assume that 0 < q � p � 1 . Let w and v be weight functions on
R

n and (0,∞) , respectively. Let ‖v‖Lq(0,t) < +∞ for all t ∈ (0,∞) . Then the inequality
(1.5) holds for all non-negative measurable g if and only if

A1 := sup
t∈(0,∞)

‖w‖Lp′ (B(0,t))‖v‖−1
Lq(0,t) < +∞.

The best possible constant C in (1.5) satisfies C ≈ A1 .

Our next result concerns the characterization of the inequality (1.5) when 0 < p �
1, p < q � +∞ .

THEOREM 2.2. Assume that 0 < p � 1 , p < q � +∞ and r is given by (2.1).
Let w and v be weight functions on R

n and (0,+∞) , respectively. Let v satisfies
‖v‖Lq(0,t) < +∞ for all t ∈ (0,+∞) and v �= 0 a.e. on (0,+∞) . Then the inequality
(1.5) holds for all non-negative measurable g on R

n if and only if

A2 :=
(∫

(0,+∞)
‖w‖r

Lp′ (B(0,t)) d
(
−‖v‖−r

Lq(0,t)

)) 1
r

+
‖w‖Lp′ (Rn)

‖v‖Lq(0,+∞)
< +∞.

The best possible constant C in (1.5) satisfies C ≈ A2 .

Our next assertion is a counterpart of Theorem 2.1 and concerns the characteriza-
tion of the inequality (1.6) when 0 < q � p � 1.

THEOREM 2.3. Assume that 0 < q � p � 1 . Let w and v be weight functions
on R

n and (0,+∞) , respectively. Let ‖v‖Lq(t,+∞) < +∞ for all t ∈ (0,+∞) . Then the
inequality (1.6) holds for all non-negative measurable functions g on R

n if and only if

B1 := sup
t∈(0,∞)

‖w‖
Lp′ (

�B(0,t))
‖v‖−1

Lq(t,+∞) < +∞. (2.2)

The best possible constant C in (1.6) satisfies C ≈ B1 .

Our last result concerns to the characterization of the inequality (1.6) when 0 <
p � 1, p < q � +∞ .

THEOREM 2.4. Assume that 0 < p � 1 , p < q � +∞ and r is given by (2.1). Let
w and v be weight functions on R

n and (0,+∞) , respectively. Let v satisfy ‖v‖Lq(t,∞) <
+∞ for all t ∈ (0,+∞) and v �= 0 a.e. on (0,+∞) . Then the inequality (1.6) holds for
all non-negative measurable functions g on R

n if and only if

B2 :=
(∫

(0,+∞)
‖w‖r

Lp′ (
�B(0,t))

d
(
‖v‖−r

Lq(t,∞)

)) 1
r

+
‖w‖Lp′ (Rn)

‖v‖Lq(0,+∞)
< +∞.

The best possible constant C in (1.6) satisfies C ≈ B2 .
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3. Discretization of function norms

We start with some basic definitions. We follow [2].
Let Z = Z∪{−∞,+∞} .

DEFINITION 3.1. Let N,M ∈ Z , N < M . A positive non-increasing sequence
{τk}M

k=N is called almost geometrically decreasing if there are α ∈ (1,+∞) and L ∈ N

such that

τk � 1
α
τk−L for all k ∈ {N +L, . . . ,M}.

A positive non-decreasing sequence {σk}M
k=N is called almost geometrically increasing

if there are α ∈ (1,+∞) and L ∈ N such that

σk � ασk−L for all k ∈ {N +L, . . . ,M}.

REMARK 3.2. Definition 3.1 implies that if 0 < q < +∞ , then the following three
statements are equivalent:

(i) {τk}M
k=N is an almost geometrically decreasing sequence;

(ii) {τq
k }M

k=N is an almost geometrically decreasing sequence;
(iii) {τ−q

k }M
k=N is an almost geometrically increasing sequence.

Let N,M ∈ Z , N � M , 0 < q � +∞ and let {wk} = {wk}M
k=N be a sequence of

positive numbers. We denote by �q({wk},N,M) the following discrete analogue of a
weighted Lebesgue space: if 0 < q < +∞ , then

�q({wk},N,M) =
{{ak}M

k=N : ‖ak‖�q({wk},N,M) :=
( M

∑
k=N

|akwk|q
) 1

q < +∞
}

and

�∞({wk},N,M) =
{{ak}M

k=N : ‖ak‖�∞({wk},N,M) := sup
N�k�M

|akwk| < +∞
}
.

If wk = 1 for all N � k � M , we write simply �q(N,M) instead of �q({wk},N,M) .

We quote some known results. Proofs can be found in [7] and [8].

LEMMA 3.3. Let N,M ∈ Z , N � M. Then, for any positive sequence {τk}M
k=N

and all m ∈ Z satisfying N < m < M,

M

∑
k=m

τk � τm (3.1)

or
m

∑
k=N

τk � τm (3.2)

if and only if the sequence {τk}M
k=N is almost geometrically decreasing or increasing,

respectively.
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LEMMA 3.4. Let q ∈ (0,+∞] , N,M ∈ Z , N � M and let {τk}M
k=N be an almost

geometrically decreasing sequence. Then

∥∥∥∥∥τk
k

∑
m=N

am

∥∥∥∥∥
�q(N,M)

≈ ‖τkak‖�q(N,M) (3.3)

and

‖τk sup
N�m�k

am‖�q(N,M) ≈ ‖τkak‖�q(N,M) (3.4)

for all non-negative sequences {ak}M
k=N .

LEMMA 3.5. Let q ∈ (0,+∞] , N,M ∈ Z , N � M and let {σk}M
k=N be an almost

geometrically increasing sequence. Then

∥∥∥∥∥σk

M

∑
m=k

am

∥∥∥∥∥
�q(N,M)

≈ ‖σkak‖�q(N,M) (3.5)

and

‖σk sup
k�m�M

am‖�q(N,M) ≈ ‖σkak‖�q(N,M) (3.6)

for all non-negative sequences {ak}M
k=N .

If ϕ is a non-negative and monotone function on (a,b) , then by ϕ(a) and ϕ(b)
we mean the values ϕ(a+) := limt→a+ϕ(t) and ϕ(b−) := limt→b−ϕ(t) , respectively.

LEMMA 3.6. ([2, Lemma 3.1]) Let ϕ be a non-negative, non-decreasing, fi-
nite and right-continuous function on (a,b) . There is a strictly increasing sequence
{xk}M+1

k=N , −∞ � N � M � +∞ , with elements from the closure of the interval (a,b) ,
such that:

(i) if N > −∞ , then ϕ(xN) > 0 and ϕ(x) = 0 for every x ∈ (a,xN); if M < +∞ ,
then xM+1 = b;

(ii) ϕ(xk+1−) � 2ϕ(xk) if N � k � M;
(iii) 2ϕ(xk−) � ϕ(xk+1) if N < k < M.

DEFINITION 3.7. ([2]) Let ϕ be a non-negative, non-decreasing, finite and right-
continuous function on (a,b) . A strictly increasing sequence {xk}M+1

k=N , −∞ � N <
M � +∞ , is said to be a discretizing sequence of the function ϕ if it satisfies the con-
ditions (i) – (iii) of Lemma 3.6.

REMARK 3.8. ([2]) We shall use the following convention: if N = −∞ , then we
put xN = limk→−∞ xk . It is clear that if N = −∞ and xN > a , then ϕ(x) = 0 for all
x ∈ (a,xN) (cf. condition (i) of Lemma 3.6).
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THEOREM 3.9. ([2, Theorem 3.4]) Let ν be a non-negative Borel measure on
I = (a,b) such that the function ϕ(t)= ν(a,t] is finite on I . If {xk}M+1

k=N is a discretizing
sequence of the function ϕ , then∫

(a,b)
h(t)dν(t) ≈

M

∑
k=N

h(xk)ν(a,xk] (3.7)

for all non-negative and non-increasing functions h on I .

THEOREM 3.10. ([2, Theorem 3.5]) Let I = (a,b) and u be a weight function
on I such that the function ‖u‖∞,(a,t] < +∞ for all t ∈ I . If {xk}M+1

k=N is a discretizing
sequence of the function ϕ(t) = ‖u‖L∞((a,t+]) , t ∈ I , then

‖hu‖L∞((a,b)) ≈ sup
N�k�M

h(xk)‖u‖L∞((a,xk+]) (3.8)

for all non-negative, non-increasing and right-continuous functions h on I .

Let ϕ be a non-negative, non-decreasing, finite and right-continuous function on
(0,∞) . Using a discretizing sequence {xk}M+1

k=N of ϕ , we define the sequence {Jk}M
k=N

and {Sk}M
k=N as follows:

Ji = (xi,xi+1], if N � i < M, and JM = (xM,∞) if M < +∞. (3.9)

Si = B(0,xi+1)\B(0,xi), if N � i < M, and

SM =
�
B(0,xM) if M < +∞.

(3.10)

THEOREM 3.11. Let 0 < q < +∞ . Suppose that v be a weight function on (0,∞) .
Let v be such that the function ϕ(t) = ‖v‖q

Lq(0,t) is finite on (0,∞) . If {xk}M+1
k=N is a

discretizing sequence of ϕ , then

∥∥∥∥v(t)
∫

�B(0,t)
g(y)dy

∥∥∥∥
Lq(0,∞)

≈
(

M

∑
k=N

(∫
Sk

g(y)dy

)q

‖v‖q
Lq(0,xk)

) 1
q

(3.11)

and

∥∥∥v(t)‖g‖
L∞(�B(0,t))

∥∥∥
Lq(0,∞)

≈
(

M

∑
k=N

‖g‖q
L∞(Sk)

‖v‖q
Lq(0,xk)

) 1
q

(3.12)

for all non-negative measurable g on R
n , where {Sk}M

k=N is defined by (3.10).

Proof. We prove (3.11) only (the proof of (3.12) is analogous). By Theorem 3.9,

∥∥∥∥v(t)
∫

�B(0,t)
g(y)dy

∥∥∥∥
Lq(0,+∞)

≈
(

M

∑
k=N

(∫
�B(0,xk)

g(y)dy

)q

‖v‖q
Lq(0,xk)

) 1
q

=

(
M

∑
k=N

(
M

∑
i=k

∫
Sk

g(y)dy

)q

‖v‖q
Lq(0,xk)

) 1
q

.
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The condition (iii) of Lemma 3.6 implies that {‖v‖q
Lq(0,xk)

}M
k=N is an almost geo-

metrically increasing sequence. (We can take α = L = 2 in Definition 3.1. Indeed, by
the monotonicity of ϕ and the condition (iii) of Lemma 3.6, 2ϕ(xk−1) � 2ϕ(xk−) �
ϕ(xk+1) if N < k < M , and, on putting k−1 = m−2, we arrive at 2ϕ(xm−2) � ϕ(xm)
if N +2 � m � M .) Thus {‖v‖Lq(0,xk)}M

k=N is also an almost geometrically increasing
sequence and (3.11) follows by applying Lemma 3.5. �

THEOREM 3.12. Suppose that v be a weight function on (0,∞) . Let v be such
that the function ϕ(t) = ‖v‖L∞(0,t) is finite on (0,∞) . If {xk}M+1

k=N is a discretizing
sequence of the function ϕ(t) = ‖v‖L∞(a,t+) := lims→t+ ‖v‖L∞(a,s) , t ∈ (0,∞) , then

∥∥∥∥v(t)
∫

�B(0,t)
g(y)dy

∥∥∥∥
L∞(0,∞)

≈ sup
N�k�M

(∫
Sk

g(y)dy

)
‖v‖L∞(0,xk+) (3.13)

and ∥∥∥v(t)‖g‖
L∞(�B(0,t))

∥∥∥
L∞(0,∞)

≈ sup
N�k�M

‖g‖L∞(Sk)‖v‖L∞(0,xk+) (3.14)

for all non-negative measurable g on R
n , where {Sk}M

k=N is defined by (3.10).

Proof. This follows from Theorem 3.10 and Lemma 3.5. �

4. Proofs

In the proof of the necessity parts of our main theorems we will need the following
two lemmas which are discrete versions of the classical Landau resonance theorems.
Proofs can be found, for example, in [3].

LEMMA 4.1. Let 0 < p � q � +∞ , N,M ∈ Z , N � M and let {vk}M
k=N and

{wk}M
k=N be two sequences of positive numbers. Assume that, there is a constant C > 0

such that
‖ak‖�q({wk},N,M) � C‖ak‖�p({vk},N,M) (4.1)

for every sequence {ak} . Then

‖{wkv
−1
k }‖�∞(N,M) � C, (4.2)

LEMMA 4.2. Let 0 < q < p � +∞ , N,M ∈ Z , N � M and let {vk}M
k=N and

{wk}M
k=N be two sequences of positive numbers. Assume that (4.1) holds. Then

‖{wkv
−1
k }‖�r(N,M) � C, (4.3)

where 1/r := 1/q−1/p
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Proof of Theorem 2.1. Let 0 < q � 1. By Theorem 3.11,

∥∥∥∥v(t)
∫

�B(0,t)
g(y)dy

∥∥∥∥
Lq(0,∞)

≈
(

M

∑
k=N

(∫
Sk

g(y)dy

)q

‖v‖q
Lq(0,xk)

) 1
q

(4.4)

for all non-negative measurable g on R
n , where {xk}M+1

k=N is a discretizing sequence
of the function ϕ(t) = ‖v‖q

Lq(0,t) , t ∈ (0,∞) , and {Sk}M
k=N is defined by (3.10). By

Lemma 3.6 (cf. also Remark 3.8),

if xN > 0, then ‖v‖Lq(0,xN) = 0; (4.5)

if M < +∞, then xM+1 = ∞;

‖v‖q
Lq(0,xk+1)

� 2‖v‖q
Lq(0,xk)

if N � k � M; (4.6)

2‖v‖q
Lq(0,xk)

� ‖v‖q
Lq(0,xk+1)

if N < k < M. (4.7)

Assume that A1 < +∞ . This condition and (4.5) imply that

‖w‖Lp′ (B(0,xN)) = 0 if xN > 0, (4.8)

thus w = 0 a.e. in B(0,xN) , consequently, ‖w‖Lp(B(0,xN)) = 0 if xN > 0. Therefore,

‖gw‖Lp(Rn) =

(
M

∑
k=N

‖gw‖p
Lp(Sk)

) 1
p

(4.9)

for any non-negative measurable g on R
n .

If E is a measurable subset of (0,+∞) and g is a non-negative measurable func-
tion on (0,+∞) , then by Hőlder’s inequality (with the exponents 1/p and p′/p ),

‖gw‖p
Lp(E) � ‖g‖p

L1(E)‖w‖p
Lp′(E). (4.10)

Identity (4.9) and (4.10) (with E = Sk , N � k � M ) give

‖gw‖Lp(Rn) �
(

M

∑
k=N

‖g‖p
L1(Sk)

‖w‖p
Lp′ (Sk)

) 1
p

�
(

sup
N�k�M

‖w‖Lp′ (Sk)‖v‖−1
Lq(0,xk)

)(
M

∑
k=N

‖g‖p
L1(Sk)

‖v‖p
Lq(0,xk)

) 1
p

.

Moreover, using the inequality 0 < q/p � 1 and (4.4), we arrive at

‖gw‖Lp(Rn) �
(

sup
N�k�M

‖w‖Lp′ (Sk)‖v‖−1
Lq(0,xk)

)(
M

∑
k=N

‖g‖q
L1(Sk)

‖v‖q
Lq(0,xk)

) 1
q

≈
(

sup
N�k�M

‖w‖Lp′ (Sk)‖v‖−1
Lq(0,xk)

)∥∥∥∥v(x)
∫

�B(0,x)
g(y)dy

∥∥∥∥
Lq(0,∞)

. (4.11)
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Applying (4.6), we get

sup
N�k�M

‖w‖Lp′ (Sk)‖v‖−1
Lq(0,xk)

� 2
1
q sup

N�k�M
‖w‖Lp′ (B(0,xk+1))‖v‖−1

Lq(0,xk+1)
� 2

1
q A1. (4.12)

The inequality (1.5) (with C � A1 ) follows from (4.11) and (4.12).
We now prove necessity. The validity of the inequality (1.5) and (4.4) imply that

(
M

∑
k=N

‖gw‖p
Lp(Sk)

) 1
p

� C

(
M

∑
k=N

(∫
Sk

g(y)dy

)q

‖v‖q
Lq(0,xk)

) 1
q

(4.13)

for all non-negative measurable g on R
n .

Let gk , N � k � M , be non-negative measurable functions that saturate Hőlder’s
inequality (4.10) with E = Sk , N � k � M , that is, functions satisfying

suppgk ⊂ Sk, ‖gk‖L1(Sk) = 1 and ‖gkw‖p
Lp(Sk)

� 1
2
‖w‖p

Lp′ (Sk)
. (4.14)

Then we define the test function g by

g =
M

∑
k=N

ak gk, (4.15)

where {ak} is a sequence of non-negative numbers. Consequently, (4.13) yields

(
M

∑
k=N

ap
k‖w‖p

Lp′ (Sk)

) 1
p

� C

(
M

∑
k=N

aq
k‖v‖q

Lq(0,xk)

) 1
q

, (4.16)

and, by Lemma 4.1,
sup

N�k�M
‖w‖Lp′ (Sk)‖v‖−1

Lq(0,xk)
� C. (4.17)

Assuming that xN > 0, testing (1.5) with g = χB(0,xN) and using (4.5), we arrive
at ‖w‖Lp(B(0,xN)) = 0. This implies that |B(0,xN)| = 0 or w = 0 a.e. in B(0,xN) .
Consequently, (4.8) holds.

Therefore,
A1 = sup

N�k�M
sup
x∈Jk

‖w‖Lp′ (B(0,x))‖v‖−1
Lq(0,x)

and, on using (3.9), we obtain that

A1 � sup
N�k�M

‖w‖Lp′ (B(0,xk+1))‖v‖−1
Lq(0,xk)

.

Applying (4.8) and (3.10) again, we arrive at

A1 � sup
N�k�M

(
k

∑
i=N

‖w‖p′
Lp′ (Si)

) 1
p′
‖v‖−1

Lq(0,xk)
if 0 < p < 1
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and

A1 � sup
N�k�M

(
sup

N�i�k
‖w‖Lp′ (Si)

)
‖v‖−1

Lq(0,xk)
if p = 1.

Now, using the fact that {‖v‖−1
Lq(0,xk)

}M
k=N is almost geometrically decreasing (cf. (4.7))

and Lemma 3.4 we obtain

A1 � sup
N�k�M

‖w‖Lp′ (Sk)‖v‖−1
Lq(0,xk)

,

which, together with (4.17), yields A1 � C . �

REMARK 4.3. Let A1 be the number defined in Theorem 2.1. If p = 1, then

A1 =
∥∥∥w(x)‖v‖−1

Lq(0,|x|)
∥∥∥

L∞(Rn)
.

Indeed, exchanging essential suprema, we obtain

A1 =
∥∥∥‖w‖L∞(B(0,t))‖v‖−1

Lq(0,t)

∥∥∥
L∞(0,∞)

=
∥∥∥∥
∥∥∥w(x)‖v‖−1

Lq(0,t)

∥∥∥
L∞(B(0,t))

∥∥∥∥
L∞(0,∞)

=
∥∥∥∥
∥∥∥w(x)χB(0,t)(x)‖v‖−1

Lq(0,t)

∥∥∥
L∞(Rn)

∥∥∥∥
L∞(0,+∞)

=
∥∥∥∥
∥∥∥w(x)‖v‖−1

Lq(0,t)

∥∥∥
L∞[|x|,∞)

∥∥∥∥
L∞(Rn)

=
∥∥∥w(x)‖v‖−1

Lq(0,|x|)
∥∥∥

L∞(Rn)
.

Proof of Theorem 2.2. The proof of Theorem 2.2 is analogous to the proof of
Theorem 4.4 from [2], the only difference is that the role of the interval (xi,xi+1] is
played by the set Si defined by (3.10). �

In the proof of the Theorem 2.3 and Theorem 2.4 we are going to use the substitu-
tion y = F(x) := x

|x|2 , x �= 0. Note that for the Jacobian of this mapping the equality

|detJF(x)| = |x|−2n, x �= 0

holds. Indeed, observe at first that

F−1(x) = F(x), x �= 0.
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It is easy to calculate that

JF(x) =

⎛
⎜⎜⎜⎜⎜⎝

|x|2−2x2
1

|x|4 − 2x1x2
|x|4 · · · − 2x1xn

|x|4

− 2x2x1
|x|4

|x|2−2x2
2

|x|4 · · · − 2x2xn
|x|4

· · · · · · · · · · · ·
− 2xnx1

|x|4 − 2xnx2
|x|4 · · · |x|2−2x2

n
|x|4 ,

⎞
⎟⎟⎟⎟⎟⎠

and

JF−1(F(x)) =

⎛
⎜⎜⎝

|x|2 −2x2
1 −2x1x2 · · · −2x1xn

−2x2x1 |x|2 −2x2
2 · · · −2x2xn

· · · · · · · · · · · ·
−2xnx1 −2xnx2 · · · |x|2−2x2

n

⎞
⎟⎟⎠= |x|4nJF(x).

Therefore
JF−1(F(x)) = |x|4nJF(x). (4.18)

Since
JF−1(F(x))JF(x) = I,

by (4.18) we get
|x|4nJF(x)JF(x) = I.

Thus
|detJF(x)| = |x|−2n.

Proof of Theorem 2.3. Writing the inequality (1.6) for |y|−2ng( y
|y|2 ) instead of g

and using the substitutions x = y
|y|2 on the left-hand side and x = y

|y|2 and τ = 1
t on the

right-hand side, we obtain

(∫
Rn

g(x)p
(

w

(
x
|x|2
)
|x|−

2n
p′
)p

dx

) 1
p

� C

(∫ ∞

0
v

(
1
τ

)q 1
τ2

(∫
�B(0,τ)

g(x)dx

)q

dτ
) 1

q

. (4.19)

Consequently, the inequality (1.6) holds for all non-negativemeasurable g on R
n if and

only if the inequality (4.19) holds for all non-negative measurable g on R
n . We deduce

from Theorem 2.1 that the inequality (1.6) holds for all non-negative measurable g on
R

n if and only if

sup
t∈(0,+∞)

(∫
B(0,t)

(
w

(
x
|x|2
)
|x|−

2n
p′
)p′

dx

) 1
p′ (∫ t

0
v

(
1
τ

)q 1
τ2 dτ

)− 1
q

< +∞,

that is,
sup

t∈(0,+∞)
‖w‖

Lp′ (
�B(0,t))

‖v‖−1
Lq(t,+∞) < +∞. � (4.20)
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REMARK 4.4. Let B1 be the number defined in Theorem 2.3. If p = 1, then

B1 =
∥∥∥w(x)‖v‖−1

Lq(|x|,+∞)

∥∥∥
L∞(Rn)

.

Indeed, using the idea of the proof of Theorem 2.3, we obtain the result from Re-
mark 4.3.

Proof of Theorem 2.4. Suppose first that q < +∞ . As in the proof of Theorem 2.3,
one can show that the inequality (1.6) holds if and only if the inequality (4.19) is sat-
isfied for all non-negative measurable g on R

n . Thus, by Theorem 2.2, the inequality
(1.6) holds if and only if

⎛
⎝∫

(0,+∞)

(∫
B(0,t)

(
w

(
x
|x|2
)
|x|−

2n
p′
)p′

dx

) r
p′

d

(
−
∫

(0,t)
v

(
1
τ

)q 1
τ2 dτ

)− r
q

⎞
⎠

1
r

+

(∫
Rn

(
w
(

x
|x|2
)
|x|−

2n
p′
)p′

dx

) 1
p′

(∫ +∞
0 v

(
1
τ
)q 1

τ2 dτ
) 1

q

< +∞,

that is,

(∫
(0,+∞)

‖w‖r

Lp′ (
�B(0,t))

d
(
‖v‖−r

Lq(t−,+∞)

)) 1
r

+
‖w‖Lp′ (Rn)

‖v‖Lq(0,+∞)
< +∞.

If q = +∞ , the statement can be proved analogously. �
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