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HARMONIC–GEOMETRIC–ARITHMETIC MEANS INEQUALITIES
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Abstract. In this note, we derive non trivial sharp bounds related to the weighted harmonic-
geometric-arithmetic means inequalities, when two out of the three terms are known. As appli-
cation, we give an explicit bound for the trace of the inverse of a symmetric positive definite
matrix and an inequality related to the coefficients of polynomials with positive roots.

1. Introduction and main results

The well known weighted harmonic-geometric-arithmeticmeans inequalities (HGA)
can be stated as follows. Let αi > 0 and xi > 0, i = 1, . . . ,n with ∑iαi = 1, and define
h,g,a by

h =

(
n

∑
i=1

αi

xi

)−1

, g =
n

∏
i=1

xαi
i , a =

n

∑
i=1

αixi.

Then the HGA inequalities state that

h � g � a. (1)

One equality is reached if and only if all the xi are equal, which then implies that both
inequalities are in fact equalities. The terms of the previous inequalities are respectively
called the harmonic, the geometric and the arithmetic mean of the xi with weight αi .
There exist several extensions of these inequalities, see for example [2, 4, 5, 6]. In this
note we focus on the case where two of the means are known and non trivial bounds
on the third have to be determined. Actually, Theorem 1.1 below gives a sharp lower
bound and a sharp upper bound on the harmonic mean, when both the arithmetic and
the geometric means are known. The dual bounds, i.e., an upper and a lower bound on
the arithmetic mean when both the harmonic and the geometric means are known can
easily be deduced with the change of variables yi = x−1

i . Theorem 1.2 gives a sharp
lower bound and a sharp upper bound on the geometric mean, when both the harmonic
and the arithmetic means are known, extending Inequalities (1) above when the two
extreme values are in fact known.
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The theory of complementary inequalities is a field, where upper bounds for the
ratios a/g , a/h , g/h and for the differences a−g , a−h , g−h are obtained in terms of
the upper and lower bounds for the variables xi . For instance, Kantorovich’s inequality,
see e.g. [6], provides a well-known upper bound for a/h under these conditions. De-
spite our search for a similar result in the vast literature on the subject, we were not able
to find the inequalities presented in this article in any published work. Related to our
results, let us however mention [7], where the author considers the interplay of the three
means h,g,a . In this paper, it is shown that the moment space of the triplets (h,g,a)
is the set M = {(u,v,w) ∈ R

3 : 0 � u � v � w} . This means that for any positive ε ,
there exists n ∈ N , x1, . . . ,xn > 0 such that

|h−u|� ε, |g− v|� ε, |a−w|� ε.

The meaning of the result is that if n is not fixed, then the only meaningful inequality
for the three means is h � g � a . In the present paper, n is fixed and we will suppose
that at least one xi is different from the others, which insure that Inequalities (1) are
strict. The main results are the following.

THEOREM 1.1. With the above notations, if α = mini{αi} and ξ0 ∈ [0,1] , ξ1 ∈
[1,1/α] are the solutions of the equation

g = aξα
(

1−αξ
1−α

)1−α
,

then

a
ξ0(1−αξ0)
α−2αξ0 + ξ0

� h � a
ξ1(1−αξ1)
α−2αξ1 + ξ1

.

The first (resp. second) inequality reaches equality if and only if x j = ξ0 (resp. x j = ξ1 )
and xl = xk , ∀l,k �= j for some j with α j = mini{αi} .

The uniqueness of the solutions ξ0 and ξ1 will be made clear in the sequel. Based
on this result, we give explicit general lower and upper bounds for the harmonic and
arithmetic means in Corollary 2.2. As application, we give an explicit bound for the
trace of the inverse of a symmetric positive definite matrix in Example 5.1 and for the
quotient of coefficients of polynomials with positive roots in Example 5.2.

THEOREM 1.2. With the above notations, if α = mini{αi} and ξ0 ∈ [0,1] , ξ1 ∈
[1,1/α] are the solutions of the equation

h = a
ξ (1−αξ )
α−2αξ + ξ

,

then we have

aξα1

(
1−αξ1

1−α

)1−α
� g � aξα0

(
1−αξ0

1−α

)1−α
.

The first (resp. second) inequality reaches equality if and only if x j = ξ1 (resp. x j = ξ0 )
and xl = xk , ∀l,k �= j for some j with α j = mini{αi} .
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Based on this result, we give explicit sharp lower and upper bounds for the geometric
mean in Corollary 2.1 and simpler bounds in Corollary 2.2.

2. Explicit bounds

We postpone the proof of Theorem 1.1 and Theorem 1.2 and present explicit
bounds for the different means. So let αi > 0 with ∑αi = 1 and xi > 0, i = 1, . . . ,n be
real numbers such that

h =

(
n

∑
i=1

αi

xi

)−1

, g =
n

∏
i=1

xαi
i , a =

n

∑
i=1

αixi

and let α = mini{αi} . Note that ∑n
i=1αi = 1 implies that α � 1/n . In the case of

Theorem 1.2, the equation for ξ is exactly solvable, and one readily verifies that a
sharp bound in closed form can be computed as follows.

COROLLARY 2.1. With the above notations, we have α � 1/n and

g �
(

a−h(1−2α)−√(a−h)(a−h(1−2α)2)
2α

)α

×

×
(

a+h(1−2α)+
√

(a−h)(a−h(1−2α)2)
2(1−α)

)1−α
,

g �
(

a−h(1−2α)+
√

(a−h)(a−h(1−2α)2)
2α

)α

×

×
(

a+h(1−2α)−√(a−h)(a−h(1−2α)2)
2(1−α)

)1−α
.

The bounds of the next corollary are not sharp anymore but are both in closed form
and simple.

COROLLARY 2.2. With the above notations, we have

a ·
(
αe

(
a
g

)1/α
+1

)−1

< h � g � a < h ·
(
αe
(g

h

)1/α
+1

)
,

and

h ·
(

h
a

exp

(
h
a

+
n

n−1

))−α
< g < a ·

(
h
a

exp

(
h
a

+
n

n−1

))α
.
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Asymptotically with n , the last two inequalities give an improvement of the usual
HGA inequalities when h/a < t0 = 0.278464... , where t0et0+1 = 1.

Proof. Let us start with the first set of inequalities. The root ξ = ξ0 < 1 of Theo-
rem 1.1 satisfies the following inequalities,

(g/a)1/α = ξ
(

1−αξ
1−α

) 1−α
α

= ξ
(

1+
α

1−α
(1− ξ )

) 1−α
α

< ξ e1−ξ < ξ e

because α
1−α < 1 and (1 + u)v < euv , as soon as v > 0 and |u| < 1. Now, since

1−αξ
1−α > 1 and 1/ξ < e(a/g)1/α ,

1
h

=
n

∑
i=1

αi

xi
=

1
a
·

n

∑
i=1

αi

zi
� 1

a
·
(
α−2αξ + ξ
ξ (1−αξ )

)

=
1
a
·
(
α
ξ

+
(1−α)2

1−αξ

)
<

1
a
·
(
αe(a/g)1/α +1

)

which is equivalent to h > a · (αe(a/g)1/α +1
)−1

. By setting x′i = 1/xi , we have

a′ = 1/h,g′ = 1/g,h′ = 1/a and the inequality a < h ·
(
αe(g/h)1/α +1

)
is a direct

consequence. Let us now prove the second set of inequalities. Since (1−2α)2 � 1, we
have

(a−h)2 � (a−h)(a−h(1−2α)2) � (a−h(1−2α)2)2

and thus the upper bound of Corollary 2.1 gives

g �
(

a−h(1−2α)− (a−h)
2α

)α (a+h(1−2α)+ (a−h(1−2α)2)
2(1−α)

)1−α
.

Since α � 1/n , 1
1−α � 1+ n

n−1α , and after suitable simplifications, using once again
the above exponential inequality, we obtain

g � a ·
(

h
a

)α
·
(

1+
h
a
(1−2α)α

)1−α
·
(

1+
n

n−1
α
)1−α

< a ·
(

h
a

exp

(
h
a

+
n

n−1

))α
.

The reverse inequality is once again obtained by setting zi = 1/xi . This finishes the
proof of the lemma. �

3. The case n = 2

For the rest of the article, without loss of generality, we will assume that the xi are
normalized so that the arithmetic mean is equal to 1. This is simply obtained by the
change of variable x′i = xi/a , leading to a′ = 1,g′ = g/a and h′ = h/a .
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Along the way of the proofs of the main results, we start with the case n = 2. This will
turn out to be in fact the most important case, as the general case will be a consequence
of it. The next two lemmas will be useful in the sequel.

LEMMA 3.1. Let α ∈]0,1/2] and f and ϕ be the functions defined over [0,1/α]
defined by

f (x) = xα
(

1−αx
1−α

)1−α
and ϕ(x) =

√
x(1−αx)

(1−2α)x+α
. (2)

Then ϕ(0) = ϕ(1/α) = f (0) = f (1/α) = 0 , f (1) = ϕ(1) = 1 , they are strictly in-
creasing over [0,1] and strictly decreasing over [1,1/α] , and fulfill the property that
f > ϕ over [0,1[ , and f < ϕ over ]1,1/α] .

Proof. Clearly, ϕ(0) = ϕ(1/α) = f (0) = f (1/α) = 0, g(1) = f (1) = 1. A short
analysis of f and of the radical of ϕ shows that they are strictly increasing over [0,1]
and strictly decreasing over [1,1/α] . The less obvious fact is that f > ϕ over [0,1[
and f < ϕ over ]1,1/α] . In order to prove it, let us consider the quotient f/ϕ . Since
( f/ϕ)(1) = 1, the statement would be proved if we can show that f/ϕ is strictly
decreasing over [0,1/α] . Let us prove that it is the case by showing that ( f/ϕ)′ < 0
over ]0,1[∪]1,1/α[ . First

( f/ϕ) (x) =
xα
(

1−αx
1−α

)1−α
x1/2(1−αx)1/2

((1−2α)x+α)1/2

= (1−α)α−1 ·
(

1
x
−α

)1/2−α
· ((1−2α)x+α)1/2 .

After suitable simplifications, we obtain

( f/ϕ)′ (x) = −α(1−α)α−1 · (x−1)2

2x2( 1
x −α)α+1/2(α +(1−2α)x)1/2

.

Note that 1
x −α > 0 and 1−2α � 0 so the condition ( f/ϕ)′ < 0 is fulfilled. �

LEMMA 3.2. If α ∈]0,1[ and x ∈ [0,1/α] , then

1− x
1−αx

+ ln

(
1− 1− x

1−αx

)
+

(1− x)2

(1−αx)(1− (2α−1)x)

{
� 0 if x ∈ [0,1],
� 0 if x ∈ [1,1/α]. (3)

Proof. If t = 1−x
1−αx , then −∞< t � 0 for x∈ [1,1/α[ and 0 � t � 1 for x ∈ [0,1] .

Since 1−(2α−1)x
1−αx = 2− t , the above expression is equal to s(t) = 2t

2−t + ln(1− t). But

since s(0) = 0 and s has a non positive derivative s′(t) = −t2

(2−t)2(1−t) � 0, the function

s is decreasing and s � 0 for x ∈ [0,1] and s � 0 for x ∈ [1,1/α[ . �
Returning to the original problem, let us focus on the case where both g and a

are known and an upper and a lower bound on h is to be determined. If α1,α2 > 0
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and α1 +α2 = 1, up to a permutation of the indices, we can assume without loss of
generality that α1 � 1/2. The two dimensional case can be stated as follows: given
two real numbers 0 < α � 1/2 and 0 < g < 1, we want to find the minimal and the
maximal value of

H(x,y) = (α/x+(1−α)/y)−1 ,

where x and y fulfill the conditions

αx+(1−α)y = 1 and xαy1−α = g.

Clearly, these conditions imply that

f (x) = g where f (x) = xα
(

1−αx
1−α

)1−α
. (4)

Note that the function f appears in Lemma 3.1. We call x1 and x2 the two unique
solutions of Equation (4), with x1 < 1 < x2 . Then, with ϕ being the function of Lemma
3.1,

H(xi,yi) =
(
α
xi

+
1−α

yi

)−1

=
xi(1−αxi)

xi −2xiα +α
= ϕ2(xi)

and Lemma 3.1 implies that ϕ(x2) > f (x2) = f (x1) > ϕ(x1) because of the respective
positions of f and ϕ . This directly gives the following lemma:

LEMMA 3.3. Let 0 < α � 1/2 and 0 < g < 1 . If x and y fulfill the conditions

αx+(1−α)y = 1 and xαy1−α = g,

then
x1(1−αx1)

x1−2x1α +α
�
(
α
x

+
1−α

y

)−1

� x2(1−αx2)
x2 −2x2α +α

where x1 and x2 are the unique solutions over [0,1] and [1,1/α] respectively of the
equation

g = xα
(

1−αx
1−α

)1−α
. (5)

We would like now to prove that for a fixed g , and as a function of α ∈]0,1/2] , the min-
imum and the maximum values above H(x1) and H(x2) are increasing and decreasing
functions respectively. This result will be useful in the sequel. More precisely, if we set

M(x,α) =
(
α
x

+
(1−α)2

1−αx

)−1

and
λi(α) = M(xi(α),α)

where x1(α) and x2(α) are the unique roots of Equation (5) in [0,1] and in [1,1/α]
respectively, then we have the following lemma:
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LEMMA 3.4. For a fixed g ∈ [0,1] , the function λ1 is an increasing function and
the function λ2 is an decreasing function over [0, 1

2 ] .

Proof. First, let us note that the function f being strictly increasing over [0,1] and
strictly decreasing over [1,1/α] , the implicit function theorem can be used to define the

implicit function α �→ xi(α) ∈ [0,1] given by the equation g = f (x) = xα
(

1−αx
1−α

)1−α
,

where g is fixed. These functions are differentiable, and their derivative can be com-
puted by implicitly differentiating the equation. In fact, taking the natural logarithm
of Equation (5) and the derivative with respect to α , after suitable simplifications, we
obtain

x′(α) =
x
α
·
(
−1− 1−αx

1− x
· ln
(

1− 1− x
1−αx

))
.

Using the chain rule, we have

λ ′(α) =
∂M
∂x

(x(α),α) · x′(α)+
∂M
∂α

(x(α),α).

After suitable simplifications, we obtain

∂M
∂α

(x,α) = −M2(x,α) · (1− x)2

x(1−αx)2

∂M
∂x

(x,α) = −M2(x,α) · −α(1− x)(1− (2α−1)x))
x2(1−αx)2

which leads to

λ ′(α)=−M2(x,α)· 1−(2α−1)x
x(1−αx)

(
1−x

1−αx
+ ln

(
1− 1−x

1−αx

)
+

(1−x)2

(1−αx)(1−(2α−1)x)

)
.

Note that since α � 1/2, 1−(2α−1)x
x(1−αx) � 0. An application of Lemma 3.2 shows that

λ ′
1 � 0 and λ ′

0 � 0. This finishes the proof of the lemma. �

Let us now focus on the case where both a and h are known, and an upper and
a lower bound of g is to be found, when n = 2. The problem can now be formulated
as follows. Given two real numbers 0 < α � 1/2 and 0 < h < 1, we want to find the
minimal and the maximal value of

G(x,y) = xαy1−α

where x and y fulfill the conditions

αx+(1−α)y = 1 and

(
α
x

+
1−α

y

)−1

= h.
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These two conditions imply that

h =
(
α
x

+
(1−α)2

1−αx

)−1

=
x(1−αx)
α−2αx+ x

= ϕ2(x) (6)

and

G(x,y) = f (x) = xα
(

1−αx
1−α

)1−α
.

If x1 and x2 are the two unique solutions of Equation (6) with x1 < 1 < x2 , Lemma 3.1
implies that f (x1) > ϕ(x1) = ϕ(x2) > f (x2) because of the respective positions of f
and ϕ . This directly gives the following lemma:

LEMMA 3.5. Let 0 < α � 1/2 and 0 < h < 1 . If x and y fulfill the conditions

αx+(1−α)y = 1 and

(
α
x

+
1−α

y

)−1

= h,

then

xα2

(
1−αx2

1−α

)1−α
� xαy1−α � xα1

(
1−αx1

1−α

)1−α

where x1 and x2 are the unique solutions over [0,1] and [1,1/α] respectively of the
equation

h =
x(1−αx)
α−2αx+ x

. (7)

As before, we would like now to prove that for a fixed h , and as a function of α , the
minimal and maximal values above G(x2) and G(x1) are increasing and decreasing
functions respectively. More precisely, if we set

N(x,α) = xα
(

1−αx
1−α

)1−α

and
γi(α) = N(xi(α),α)

where x1(α) and x2(α) are the uniques root of Equation (7) in [0,1] and [1,1/α]
respectively, then we have the following lemma:

LEMMA 3.6. For a fixed h ∈ [0,1] , the function γ1 is a decreasing function and
the function γ2 is an increasing function over [0,1/2] .

Proof. The same argument used in the proof of Lemma 3.4 (with ϕ instead of f )
shows that the function x(α) is well defined, and after suitable simplifications, has the
following derivative

x′(α) =
x
α
· 1− x
(1−2α)x+1

.



WEIGHTED HARMONIC-GEOMETRIC-ARITHMETIC MEANS INEQUALITIES 23

Using the chain rule, we have

γ ′(α) =
∂N
∂x

(x(α),α) · x′(α)+
∂N
∂α

(x(α),α).

After suitable simplifications, we obtain

∂N
∂α

(x,α) = N(x,α) ·
(

ln

(
1− 1− x

1−αx

)
+

1− x
1−αx

)
∂N
∂x

(x,α) = N(x,α) · α
x
· 1− x
1−αx

which leads to

γ ′(α) = N(x,α) ·
(

1− x
1−αx

+ ln

(
1− 1− x

1−αx

)
+

(1− x)2

(1−αx)(1− (2α−1)x)

)
.

A straightforward application of Lemma 3.2 shows that γ ′1 � 0 and γ ′2 � 0 which fin-
ishes the proof of the lemma. �

4. Proof of Theorems 1.1 and 1.2

The proofs of the two theorems are similar, so we treat them as a whole and make
the differences precise when needed. Without loss of generality, we can suppose n � 3.
In Theorem 1.1 (resp. Theorem 1.2), we suppose that the geometric mean g > 0 (resp.
harmonic mean h > 0) and the arithmetic mean a > 0 of a list of n strictly positive reals
are given and we want to find sharp bounds on the harmonic mean (resp. geometric

mean). Before going further, let us notice that the expression
(
∑i

αi
xi

)−1
, defined for

xi > 0, can be continuously continued on [0,∞[n by setting its value to 0 as soon as
xi = 0 for some i . Let R�0 = [0,∞[ and let us define the three sets Sh,Sg and Sa as
follows:

Sa =
{
x ∈ R

n | xi ∈ [0,1/αi],∑αixi = 1
}

,

and

Sg =
{
x ∈ R

n
�0 | ∏xαi

i = g
}

, Sh =

{
x ∈ R

n
�0 |

(
∑αi

xi

)−1

= h

}
.

The condition sets C1 and C2 on the xi related to Theorems 1.1 and 1.2 respectively are
given by C1 = Sg∩Sa and C2 = Sh∩Sa . Because they are defined through the preimage
of closed sets via continuous maps, the sets Sg and Sh are closed and Sa is compact.
Therefore C1 and C2 are compact in R

n as the intersection between a compact and a
closed set. Since the functions to optimize are well defined and continuous on these
sets, their maximum and minimum are reached, and we will explicitly find them. The
constraints being of class C1 , we use the Lagrange multipliers to find these optimums.
When the expression to optimize is ∑n

i=1
αi
xi

and the geometric and the arithmetic means
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are known, the Lagrange’s conditions are

∂
∂xi

(
n

∑
i=1

αi

xi
−A ·

(
n

∑
i=1

αixi −1

)
−B ·

(
n

∑
i=1

αi ln(xi)− ln(g)

))
= 0

which gives

− 1

x2
i

−A− B
xi

= 0, ∀i = 1, ...,n.

When the expression to optimize is ∏n
i=1 xαi

i and the harmonic and the arithmetic means
are known, the Lagrange’s conditions applied to the natural logarithm of the product are

∂
∂xi

(
n

∑
i=1

αi ln(xi)−A ·
(

n

∑
i=1

αixi −1

)
−B ·

(
n

∑
i=1

αi

xi
−h−1

))
= 0

which gives
1
xi
−A− B

x2
i

= 0, ∀i = 1, ...,n.

In both cases, each xi is equal to one of the roots, say X ,Y , of a second degree polyno-
mial. Since we supposed that the xi ’s are not all equal, we have X �= Y . Now, note that
if α = ∑i∈I αi with I = {i|xi = X} , then 1−α = ∑ j∈J α j with J = { j|x j = Y} , and
we may suppose without loss of generality that α ∈ [0,1/2] . Moreover

n

∑
i=1

αixi = αX +(1−α)Y = 1

n

∏
i=1

xαi
i = XαY 1−α = g

(
n

∑
i=1

αi

xi

)−1

=
(
α
X

+
1−α

Y

)−1

= h.

Suppose both the geometric and the arithmetic means are known and the minimum and
the maximum of the harmonic mean have to be determined. Making use of Lemma
3.3 and 3.4 and the previous notations, since α � 1/2, we have H(X) < h < H(Y )
where X < 1 < Y . The functions H(X) and H(Y ) being decreasing and increasing
functions of α , the minimum of H(X) and the maximum of H(Y ) are reached when
α = mini{αi} , α = 0 being impossible.

Similarly, suppose both the harmonic and the arithmetic means are known and the
minimum and the maximum of the geometric mean have to be determined. Making
use now of Lemma 3.5 and 3.6, since α � 1/2, we have G(Y ) < h < G(X) where
X < 1 < Y . The functions G(Y ) and G(X) being decreasing and increasing functions
of α , the minimum of G(Y ) and the maximum of G(X) are reached as before when
α = mini{αi} .
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The statement of each Theorem 1.1 and 1.2 follows then directly from the state-
ments of Lemma 3.3 and 3.5.

5. Applications

EXAMPLE 5.1. The first application is a bound on the trace of the inverse of a
matrix whose eigenvalues are all positive. This problem has been treated by several
authors (see [1] and the reference therein). If λi are the eigenvalues of such an n× n
matrix A , then det(A)=∏n

i=1λi , trace(A) =∑n
i=1λi , and trace(A−1)=∑n

i=1 1/λi . The
connection with the arithmetic, geometric and harmonic means is clear, and Corollary
2.2 shows that

trace(A−1) < e ·
(

trace(A)
n

)n

· 1
det(A)

+
n2

trace(A)
.

EXAMPLE 5.2. The second application is a bound on the quotient of some coef-
ficients of polynomials with positive roots. It has been known since Fransén and Lohne
[3] (see also [5]) that if the polynomial

a0x
n +a1x

n−1 + ...+an−1x+an

has positive roots, then

|an−1| � n2

∣∣∣∣a0an

a1

∣∣∣∣ .
An application of Corollary 2.2 shows that the following reverse inequality holds:

|an−1| � n2

∣∣∣∣a0an

a1

∣∣∣∣+ e|a0|
∣∣∣∣ a1

na0

∣∣∣∣
n

.

Indeed, if λi are the roots of the polynomial, then |an/a0|=∏n
i=1λi , |a1/a0|=∑n

i=1λi ,
and |an−1/an| = ∑n

i=1 1/λi .
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Switzerland
e-mail: urs.wagner@math.uzh.ch

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


