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Abstract. Let Gp be p -series field. We prove the restricted two-parameter Sunouchi operator
T χ
h is bounded from H�

q to Lq for 0 < q � 1 . By means of interpolation and duality argument,
this theorem can be extended to Hardy-Lorentz spaces. As a consequence, we prove the restricted
Sunouchi operator is of weak type (L1,L1) .

1. Introduction

The operator T (called Sunouchi operator) was introduced and first investigated by
Sunouchi [1], [2] in Walsh-Fourier analysis. For example he showed a characterization
for the Lp spaces for p > 1 by means of T . Since this characterization fails to hold for
p = 1, it was of interest to investigate the boundedness of T on a Hardy space. In [3]
Simon showed that T is a sublinear bounded map from the dyadic Hardy space H1 into
L1 . Moreover Weisz [4] proved the restricted double Sunouchi operator T χ

h is bounded
from H�

q to Lq for 0 < q � 1 and double Sunouchi operator T χ is bounded from Hq

to Lq for 2/3 < q � 1, respectively.
The Vilenkin analogue of the Sunouchi operator was given by Gát [5], [6]. He

investigated the boundedness of T from (Vilenkin) H1 into L1 and proved that if a
Vilenkin group has an unbounded structure and H1 is defined by means of the usual
maximal function, then T is not bounded. Furthermore, if we consider a modified
H1 space (introduced by Simon [7]), then a necessary and sufficient condition can be
given for a Vilenkin group that T : H1 → L1 be bounded. All Vilenkin groups with
bounded structure and also certain groups without this boundedness property satisfy the
condition given by Gát. Thus, in the so-called bounded case the (H1,L1) boundedness
of T remains true also for Vilenkin system. In [8] Simon extended this result, by
showing the (Hq,Lq)-boundedness of T for all 0 < q � 1. Moreover, the equivalence

‖ f‖Hq ∼ ‖T f‖q (
1
2

< q � 1)
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was also obtained for f with mean value zero.
For Walsh-Kaczmarz system, G. Gát [9] proved that the Sunouchi operator is of

weak type (L1,L1) , of type (p, p) (1 < p < ∞) and of type (H1,L1). In this paper we
consider the restricted Sunouchi operator of the character system of p -series field in
the Kaczmarz rearrangement.

2. Martingale Hardy space

Let P denote the set of positive integers, N := P∪{0} and N
2 be its Descartes

product N×N . An element from N
2 will be denoted by (n,m) or simply by n . Let

2 � p ∈ N and denote by Zp the p -th cyclic group. That is Zp can be represented
by the set {0,1, · · · , p−1} , where the group operator is the mod p addition and every
subset is open. Harr measure on Zp is given in the way that μ({ j}) = 1

p( j ∈ Zp) . Let
Gp denote the complete direct product of Zp ’s equipped with product topology and
product measure μ , then Gp forms a compact Abelian group with Haar measure 1.
The elements of Gp are sequences of the form (x0,x1, · · · ,xk, · · ·), where xk ∈ Zp for
every k ∈ N and the topology of the group Gp is completely determined by the sets

In(0) := {(x0,x1, · · · ,xk, · · ·) ∈ Gm : xk = 0 (k = 0, · · · ,n−1)}
(I0(0) := Gp). Let In(x) := In(0)+ x (n ∈ N) and In,n(x,y) := In(x)× In(y) . The σ -
algebra generated by the rectangles {In,n(x,y) : x,y ∈ Gp} will be denoted by Σn(n ∈
N) .

The expectation and the conditional expectation operators relative to Σn are de-
noted by E , En , respectively. Let Lq(G2

p) denote the usual Lebesgue space and the

norm or quasinorm of this space is defined by ‖ f‖q := (E| f |q)1/q (0 < q � ∞) . For
simplicity, we assume that for a function f ∈ L1 we have E0 f = 0 (n ∈ N) .

An integrable sequence ( f = fn,n ∈ N
2) is said to be a martingale if

1) it is adapted, i.e. fn is Σn measurable for all n ∈ N
2 and

2) En fm for all n � m, where for n = (n1,n2), m = (m1,m2) ∈ N
2, n � m means

that n1 � m1 and n2 � m2 . For simplicity, we always suppose that for a martingale f
we have fn = 0 if n1 or n2 = 0.

The martingale f = ( fn,n ∈ N
2) is said to be Lq bounded if fn ∈ Lq and

‖ f‖q := sup
n
‖ fn‖q < ∞.

The diagonal maximal function of a martingale f = ( fn,n ∈ N
2) is defined by

f � := supn | fn,n| . It is easy to see that the maximal function can also be given by

f �(x,y) = sup
n∈N

1
μ(In,n(x,y))

|
∫

In,n(x,y)
f dμ |.

The corresponding quadratic variations of a martingale f is introduced with

S�( f ) := (∑
n∈N

| fn,n − fn−1,n−1|2)1/2
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Obviously,
‖ f‖1 � ‖ f �‖1.

It was proved by Burkholder, Davis and Gundy [13], [14], [15] in the one parameter
case and by Brossard [16], [17] and Metraux [18] in the two parameter case that

‖S�( f )‖p ∼ ‖ f �‖p

for each 0 < p < ∞ , where ∼ denotes the equivalence of the norms. The equivalences

‖ f ∗‖p ∼ ‖ f �‖p ∼ ‖ f‖p

for 1 < p < ∞ follow from Doob’s inequality (see Neveu[19], Cairoli[20] ).
For 0 < q,s � ∞ the martingale Hardy-Lorentz Space H�

q,s consist of all martin-
gales for which

‖ f‖H�
q,s

:= ‖S�( f )‖q,s < ∞.

Note that in case q = s the usual definition of Hardy spaces H�
q,q = H�

q is obtained.

3. Character system in the Kaczmarz rearrangement

Let Γ(p) denote the character group of Gp . We enumerate the elements of Γ(p)
as follows: for k ∈ N and x ∈ Gp we denote rk the k -th generalized Rademacher
function

rk(x) := exp

(
2π ıxk

p

)
(ı :=

√−1, x ∈ Gp, k ∈ N).

It is known that
p−1

∑
l=0

rl
n(x) =

{
p if xn = 0
0 if xn 	= 0.

(1)

Let n∈ N . Then n can be uniquely expressed as n =∑∞
k=0 nkpk, 0 � nk < p, nk ∈

N. The sequence (n0,n1, · · ·) is called the expansion of n with respect to number sys-
tem based p . We often use the following notations: |n| := max{k ∈ N : nk 	= 0} (that
is, p|n| � n < p|n|+1) and n(k) = ∑∞

j=k n j p j.
Now, we define the sequence of function ψ := (ψn : n ∈ N) by

ψn(x) :=
∞

∏
k=0

(rk(x))nk (x ∈ Gp, n ∈ N).

We remark that Γ(p) = {ψn : n ∈ N} is a complete orthonormal system relate to the
normalized Haar measure on Gp .

The character group Γ(p) can be given in the Kaczmarz enumeration as follows:
Γ(p) = {χn : n ∈ N} , where

χn(x) := r
n|n|
|n|

|n|−1

∏
k=0

(r|n|−1−k(x))
nk (x ∈ Gp, n ∈ P), χ0(x) = 1 (x ∈ Gp).
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The Kronecker product αn,m of two character systems is said to be the two-
dimensional character system. Thus

αn,m(x,y) := αn(x)αm(y),

where α is χ or ψ .
The notation

rn,m(x,y) := rn(x)rm(y)

is also used. Let the transformation τA : Gp → Gp be defined as follows:

τA(x) := (xA−1,xA−2, · · · ,x0,xA,xA+1, · · ·).
The transformation τA is measure-preserving and τA(τA(x)) = x. By means of the def-
inition τA we have

χn(x) = r
n|n|
|n| ψn−n|n|p|n|

(τ|n|(x)) (x ∈ Gp, n ∈ N).

Recall that the Dirichlet kernel Dα
n := ∑n−1

k=0 αk has a closed form

Dχ
pn(x) = Dψ

pn(x) =
{

pn if x ∈ In
0 if x /∈ In,

(2)

where x ∈ Gp,α is ψ or χ .
If f ∈ L1 then the number f̂ (n,m) := E( f χn,m) is said to be the (n,m)-th coef-

ficient of f with respect to system χ . We can extend this definition to martingale as
well.

Denote by sn,m f the (n,m)-th partial sum of the Fourier series of a martingale f
with respect to character system χ , namely,

sn,m f :=
n−1

∑
k=0

m−1

∑
l=0

f̂ (k, l)χk,l

It is easy to see that
spn,pm f = fn,m.

For n,m ∈ N and a martingale f the Cesàro mean of order (n,m) of the double
Fourier series of f with respect to character system χ is given by

σn,m f :=
1

nm

n

∑
k=1

m

∑
l=1

sk,l f =
n

∑
k=1

m

∑
l=1

(1− k
n
)(1− l

m
) f̂ (k, l)χk,l(x,y).

The n -th partial sum in the first (resp. second) variable of the Fourier series of
the martingale f with respect to character system χ is denoted by s1

n f (resp. s2
n f ) and

the one dimensional Cesàro operators are denoted by σ1
n and σ2

n . Thus sn,m = s1
ns

2
m ,

σn,m = σ1
nσ2

m,

s1
nσ

2
m f (x,y) =

1
m

m

∑
l=1

sn,l f =
n

∑
k=1

m

∑
l=1

(1− l
m

) f̂ (k, l)χk,l(x,y)
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and

σ1
n s2

m f (x,y) =
1
n

n

∑
k=1

sk,m f =
n

∑
k=1

m

∑
l=1

(1− k
n
) f̂ (k, l)χk,l(x,y).

Let Kα
n := 1

n ∑
n
k=1 Dα

k , where α is χ or ψ . The next equality will also be used in
our investigations(see [6] or [11]): if x ∈ Gp, n ∈ N , then

Kψ
pn(x) =

pn +1
2pn Dψ

pn(x)+
1
pn

n

∑
k=0

p−1

∑
i=1

pk

1− rk((p− i)ek)
Dψ

pn(x+ iek), (3)

where ( jel)k = 0 (k 	= l) and ( jel)l = j. Furthermore, for x ∈ IK−r(ve j) , ( j = 0, · · · ,
K− r−1; v = 1, · · · p−1) and t ∈ IK−r,

Kψ
pn(x− t) =

1
pn

p j

1− r j(ve j)
Dpn(x− t +(p− v)e j). (4)

It is simple to show that in case f ∈ L1

sn,m f (x,y) =
∫

Gp

∫
Gp

f (t,u)Dχ
n (x− t)Dχ

m(y−u)dμ(t)dμ(u),

s1σ2
m f (x,y) =

∫
Gp

∫
Gp

f (t,u)Dχ
n (x− t)Kχ

m(y−u)dμ(t)dμ(u),

σ1
n s2

m f (x,y) =
∫

Gp

∫
Gp

f (t,u)Kχ
n (x− t)Dχ

m(y−u)dμ(t)dμ(u),

and
σn,m f (x,y) =

∫
Gp

∫
Gp

f (t,u)Kχ
n (x− t)Kχ

m(y−u)dμ(t)dμ(u).

4. The boundedness of restricted double Sunouchi operator on H�
q

The atomic decomposition is a useful characterization of Hardy spaces. To demon-
strate this let us introduce first the concept of an atom.

DEFINITION 1. A bounded measurable function a is an H�
q - atom if there exists

a square I such that
∫
I a = 0, ‖a‖∞ � μ(I)−1/q and {a 	= 0} ⊂ I.

Motivated by the definition in Móricz, Schipp, Wade [21], we introduce the quasi-
local operators. Their definition is weakened and extended here. For each interval I let
Ir be the interval for which I ⊂ Ir and μ(Ir) = prμ(I). If I := I1 × I2 is a rectangle
then set Ir := Ir

1× Ir
2.

DEFINITION 2. An operator V which maps the set of martingales into the col-
lection of measurable functions is called H�

q -quasi-local if there exist r ∈ N and a
constant cq > 0 such that ∫

G2
p\Ir

|Va|qdμ � cq
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for every H�
q -atom a where I is the support of the atom.

We say that the operator T is of type (q,q) if ‖T f‖q � cq‖ f‖q for some constant
cq for all f ∈ Lq. T is said to be of weak type (L1,L1) if there exists a c > 0 such that
for all λ > 0, f ∈ L1, the inequalities μ(y ∈ Gp, |T f (y)| > λ ) � c‖ f‖1/λ holds.

THEOREM A. [26] Suppose that the operator V is sublinear and H�
q -quasi-local

for any 0 < q � 1 . If V is bounded from Lq1 to Lq1 for any q1 > 1 , then

‖V f‖q � cq‖ f‖H�
q

( f ∈ H�
q ).

We define one and two-parameter Sunouchi operator of the character system of
the p -series field in the Kaczmarz rearrangement as follows:

T χ f := (
∞

∑
n=0

|spn f −σpn f |2)1/2,

T χ f := (
∞

∑
n=0

∞

∑
m=0

|spn,pm f − s1
pnσ2

pm f −σ1
pns2

pm f +σpn,pm f |2)1/2.

In [25] we have verified that in the one parameter case

‖T χ f‖q � c‖ f‖q (1 < q < ∞, f ∈ Lq(Gp)). (5)

To investigate the Sunouchi operator on Hardy space we need another operator

T χ
v f :=

∞

∑
n=0

∞

∑
m=0

vn,mrn,m(spn,pm f − s1
pnσ2

pm f −σ1
pns2

pm f +σpn,pm f ),

where rn,m are the generalized Rademacher functions and v : (vn,m) is a sequence of
±1. In this section we consider the restricted Sunouchi operator

T χ
h f := ( ∑

n,m∈N,|n−m|�h

|spn,pm f − s1
pnσ2

pm f −σ1
pns2

pm f +σpn,pm f |2)1/2

and the similarly defined T χ
hv operator where h � 0 is fixed.

LEMMA 1. [4] Let 1 < q < ∞ . Then

‖T χ
v f‖q � c1‖T χ f‖q � c2‖ f‖q

and the same holds for the operator T χ
hv and T χ

h .

THEOREM 1. (Main) Let 0 < q � 1 . Then

‖T χ
hv f‖q � cq‖ f‖H�

q
( f ∈ H�

q ).
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Proof. By Theorem A and Lemma 1 we have only to prove that the operator T χ
hv

is H�
q -quasi-local for every 0 < q � 1. Let a be an arbitrary H�

q -atom with support
I × J and μ(I) = μ(J) = p−K , K ∈ N . Without loss of generalization, we suppose
I = J = IK ,

T χ
hva(x,y) = ∑

n,m∈N,|n−m|�h

vn,mrn,m(x,y)

×
∫

Gp

∫
Gp

a(t,u)(Dχ
pm(y−u)−Kχ

pm(y−u))(Dχ
pn(x− t)−Kχ

pn(x− t))dμ(t)dμ(u).

By the definition of atom and by (2)
∫

Gp

∫
Gp

a(t,u)(Dχ
pm(y−u)−Kχ

pm(y−u))(Dχ
pn(x− t)−Kχ

pn(x− t))dμ(t)dμ(u) = 0

if n < K and m < K . Therefore we can suppose that n � K or m � K. Choose r ∈ N

such that r−1 < h � r. If n � K then m � n−h � K−r. Let n � K−r and m � K−r.
To prove the quasi-locality of T χ

hv we have to integrate T χ
hv over G2

p\(Ir × Jr).

Step 1: Integrating over (Gp\Ir)× Jr . It is shown in [22] that

pnKχ
pn(x) = 1+

n−1

∑
j=0

p−1

∑
l=1

rl
j(x)p

jKψ
p j(τ j(x))+

n−1

∑
j=0

p jDψ
p j(x)

p−1

∑
l=1

l−1

∑
i=0

ri
j(x).

If j � K− r , x /∈ IK−r and t ∈ IK then x− t /∈ IK , i.e by (2) Dχ
pn(x− t) = 0.

Denote Im,l
K−r := IK−r(x0, · · · ,xm 	= 0,0, · · · ,0,xl 	= 0, · · · ,0) , then

Gp\IK−r =
K−r−1⋃

l=0

l−1⋃
m=−1

p−1⋃
x0=0

· · ·
p−1⋃

xm−1=0

p−1⋃
xm=1

p−1⋃
xl=1

Im,l
K−r.

Let i � K− r and x /∈ IK−r . Then by [23] Kψ
pi(τi(x− t)) 	= 0 implies that

t ∈ Ii(0, · · · ,0,xK−r, · · ·xi−1) and m = l, x0 = xm−1 = 0. (6)

Let x ∈ Il
K−r, t ∈ Ii(0, · · · ,0,xK−r, · · ·xi−1) . Thus z := τi(x− t) ∈ Ii(0, · · · ,0,xi−l, · · ·0).

By (2) and (4) we have

Kψ
pi(z) =

1
pi

pi−l

1− ri−l(xi−lei−l)
Dpi(z+(p− xi−l)ei−l). (7)

So by Hölder inequality and Lemma 1 we have
∫

Jr
|T χ

hva(x,y)|qdμ(y) � μ(Jr)1−q[ ∑
n�K−r

∫
Jr

∫
Gp

| ∑
m�K−r,|n−m|�h

vn,mrm(y)

×
∫

Gp

a(t,u)(Dχ
pm(y−u)−Kχ

pm(y−u))dμ(u)|

×(Dχ
pn(x− t)−Kχ

pn(x− t))dμ(t)]qdμ(y)
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= μ(Jr)1−q[ ∑
n�K−r

∫
Jr

∫
Gp

| ∑
m�K−r,|n−m|�h

vn,mrm(y)
∫

Gp

a(t,u)(Dχ
pm(y−u)

−Kχ
pm(y−u))dμ(u)|

×(
1
pn

n−1

∑
i=K−r+1

pi
p−1

∑
s=1

rs
i (x− t)Kψ

pi(τi(x− t)))dμ(t)]qdμ(y)

� cμ(Jr)1−q/2[ ∑
n�K−r

∫
Gp

(
∫

Gp

|a(t,y)|2dμ(y))1/2

×(
1
pn

n−1

∑
i=K−r+1

pi
p−1

∑
s=1

rs
i (x− t)Kψ

pi(τi(x− t)))dμ(t)]q

� cμ(Jr)1−q/2[ ∑
n�K−r

1
pn

n−1

∑
i=K−r+1

pi
∫

(Ii(0,···,0,xi−l ,···0)(t)
(
∫

Gp

|a(t,y)|2dμ(y))1/2

×(
pi−l

1− ri−l(xi−lei−l)

p−1

∑
s=1

rs
i (x− t)dμ(t)]q×1IlK−r

(x)

� cμ(Jr)1−q/2[ ∑
n�K−r

1
pn

n−1

∑
i=K−r+1

p2i−l
∫

(Ii(0,···,0,xi−l ,···0)(t)
(
∫

Gp

|a(t,y)|2dμ(y))1/2

×(
p−1

∑
s=0

rs
i (x− t)−1)dμ(t)]q×1IlK−r

(x)

� cμ(Jr)1−q/2{ ∑
n�K−r

1
pn

n−1

∑
i=K−r+1

pi−l[Ei+1(
∫

Gp

|a(x,y)|2dμ(y))1/2

−Ei(
∫

Gp

|a(x,y)|2dμ(y))1/2]}q1IlK−r
(x).

Hence we have
∫

Gp\Ir

∫
Jr
|T χ

hva(x,y)|qdμ(y)dμ(x)

� c
K−r−1

∑
l=0

μ(Jr)1−q/2×{ ∑
n�K−r

1
pnq

n−1

∑
i=K−r+1

p(i−l)q

×
∫

Ir
[Ei+1(

∫
Gp

|a(t,y)|2dμ(y))1/2−Ei(
∫

Gp

|a(t,y)|2dμ(y))1/2]}q1IlK−r
(x)dμ(x)

� c
K−r−1

∑
l=0

μ(Jr)1−q/2×{ ∑
n�K−r

1
pn

n−1

∑
i=K−r+1

p(i−l)

×
∫

Ir
[Ei+1(

∫
Gp

|a(x,y)|2dμ(y))1/2−Ei(
∫

Gp

|a(x,y)|2dμ(y))1/2]}2dμ(x)}q/2μ(Ir)1−q/2

� c
K−r−1

∑
l=0

p−2lμ(Jr)2−q‖
∞

∑
n=K−r

n

∑
i=K−r+1

pi−n(Ei+1B−EiB)‖q
2,
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where B = (
∫
Gp

|a(x,y)|2dμ(y))1/2. l < m implies

E0((El+1B−ElB)(Em+1B−EmB))
= E0(El+1((El+1B−ElB)(Em+1B−EmB)))
= E0((El+1B−ElB)El+1((Em+1B−EmB))) = 0.

From this and Bessel’s inequality we have

‖(
∞

∑
n=K−r

|p−n
n−1

∑
i=K−r+1

p j(Ej+1B−EjB)|2)1/2‖2
2

�
∫

Gp

∞

∑
n=K−r

n−1

∑
i=K−r+1

p2i−2n|Ej+1B−EjB(x)|2dx

�
∫

Gp

∞

∑
i=0

∞

∑
n=i

p2i−2n|Ej+1a(x)−Eja(x)|2dx

�
∫

Gp

∞

∑
i=0

|Ei+1B(x)−EiB(x)|2dx

� ‖B‖2
2 = ‖a‖2

2.

Therefore we have
∫

Gp\Ir

∫
Jr
|T χ

hva(x,y)|qdμ(y)dμ(x)

� c
K−r−1

∑
l=0

p−2l p(−K+r)(2−q)‖a‖q
2

� c
K−r−1

∑
l=0

p−2l p(−K+r)(2−q)‖a‖q
∞μ(I× J)q

� c
K−r−1

∑
l=0

p−2l p(−K+r)(2−q)p2K(1−q) � c. (8)

Step 2: Integrating over (Gp\Ir)× (Gp\Jr) . Similarly to Step 1 we can show that
for x ∈ (Gp\Ir) and y ∈ (Gp\Jr)

|T χ
hva(x,y)|q � [ ∑

n,m�K−r

∫
I

∫
J
|a(t,u)Kχ

pm(y−u))×Kχ
pn(x− t))|dμ(t)dμ(u)]q

� [ ∑
n,m�K−r

∫
I

∫
J
|a(t,u)× (

1
pm

m−1

∑
j=K−r+1

p j
p−1

∑
s=1

rs
j(x− t)Kψ

p j(τ j(x− t)))

×(
1
pn

n−1

∑
i=K−r+1

pi
p−1

∑
s′=1

rs′
i (x− t)Kψ

pi(τi(x− t)))dμ(t)dμ(u)|]q
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� [ ∑
n�K−r

∫
J
∑

m�K−r

∫
I
|a(t,u)× (

1
pm

m−1

∑
j=K−r+1

p j
p−1

∑
s=1

rs
j(x− t)Kψ

p j(τ j(x− t)))dμ(t)

×(
1
pn

n−1

∑
i=K−r+1

pi
p−1

∑
s′=1

rs′
i (x− t)Kψ

pi(τi(x− t)))dμ(u)|]q.

By using twice the method of proving of Step 1, we have

|T χ
hva(x,y)|

�
∞

∑
n=K−r

1
pn

n−1

∑
i=K−r+1

pi−l′ {Ei+1[
∞

∑
m=K−r

1
pm

m−1

∑
j=K−r+1

p j−l[Ej+1|a(x,y)|−Ej(|a(x,y)|)]

−Ei[
∞

∑
m=K−r

1
pm

m−1

∑
j=K−r+1

p j−l[Ej+1|a(x,y)|−Ej(|a(x,y)|)]}1IlK−r
(x)1

Il
′

K−r
(y).

Therefore∫
(Gp\Ir)×(Gp\Jr)

|T χ
hva(x,y)|qdμ(t)dμ(u)

� c
K−r−1

∑
l′=0

p−2l′ p(−K+r)(1−q/2)‖
∞

∑
m=K−r

1
pm

m−1

∑
j=K−r+1

p j−l[Ej+1|a(x,y)|−Ej(|a(x,y)|)‖q
2

� c
K−r−1

∑
l′=0

p−2l′ p(−K+r)(1−q/2)
K−r−1

∑
l=0

p−2l p(−K+r)(1−q/2)‖a‖q
2

� cp(−K+r)(2−q)‖a‖q
∞μ(I× J)q/2 � c

K−r−1

∑
l=0

p−2l p(−K+r)(2−q)p2K(1−q/2) � cq,r. (9)

Step 3: Integrating over Ir × (Gp\Jr) . This case is analogous to Step 1.
Taking into account (8) and (9) we conclude that∫

G2
p\(Ir×Jr)

|T χ
hva|qdμ � cq,

which complete the proof. �
The results concerning the T χ

h operator follow easily from this theorem.

COROLLARY 1. Let 0 < q � 1 . Then

‖T χ
h ‖q � cq‖ f‖H�

q
( f ∈ H�

q ).

COROLLARY 2. Let 0 < q < ∞ and 0 < s � ∞. Then

‖T χ
h f‖q,s � cq,s‖ f‖H�

q,s
( f ∈ H�

q,s).

Especially, if f ∈ L1, then

sup
λ>0

μ(|T χ
h f | > λ ) � c1‖ f‖1.
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[5] G. GÁT, Investigation of some operators with respect to Vilenkin systems, Acta Math. Hungar. 61

(1993), 131–144.
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itiés XII, Lect. Notes., vol. 649, Springer (Berlin, Heidelberg, New York, 1978), pp. 170–179.

[19] J. NEVEU, Discrete-parameter Martingale, Nort-Holland, 1971.
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