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VORONOVSKAJA’S THEOREM FOR SCHOENBERG OPERATOR

GANCHO TACHEV

(Communicated by R. Mohapatra)

Abstract. In this paper we represent new quantitative variants of Voronovskaja’s Theorem for
Schoenberg variation-diminishing spline operator. We estimate the rate of uniform convergence
for f ∈C2[0,1] and generalize the results obtained earlier by Goodman, Lee, Sharma, Gonska
etc.

1. Introduction

We start with the definition of variation-diminishing operator, introduced by I.
Schoenberg. For the case of equidistant knots we denote it by Sn,k . Consider the knot
sequence Δn = {xi}n+k

−k , n � 1, k � 1 with equidistant “interior knots”, namely

Δn : x−k = . . . = x0 = 0 < x1 < x2 < .. . < xn = . . . = xn+k = 1

and xi = i
n for 0 � i � n . For a bounded real-valued function f defined over the interval

[0,1] the variation-diminishing spline operator of degree k w.r.t. Δn is given by

Sn,k( f ,x) =
n−1

∑
j=−k

f (ξ j,k)Ṅj,k(x) (1.1)

for 0 � x < 1 and
Sn,k( f ,1) = lim

y→1,y<1
Sn,k( f ,y)

with the nodes (Greville abscissas)

ξ j,k :=
x j+1 + . . .+ x j+k

k
, −k � j � n−1, (1.2)

and the normalized B− splines as fundamental functions

Nj,k(x) := (x j+k+1− x j)[̇x j,x j+1, . . . ,x j+k+1](·− x)k
+.

The first quantitative variant of Voronovskaja’s Theorem for a broad class of linear
positive operators L was obtained very recently by H. Gonska, P. Pitul and I. Rasa in
[6] (see the proof of Theorem 6.2). We cite this result below.

Mathematics subject classification (2010): 41A10, 41A15, 41A17, 41A25, 41A17, 41A25, 41A36.
Keywords and phrases: Schoenberg-spline operator, Voronovskaja-type theorem, Degree of approxi-

mation.

c© � � , Zagreb
Paper MIA-15-05

49



50 G. TACHEV

THEOREM A. Let L : C[0,1]→C[0,1] be a positive, linear operator reproducing
linear functions. If f ∈C2[0,1] and x ∈ [0,1] then∣∣∣∣L( f ;x)− f (x)− 1

2
· f ′′(x) ·L((e1− x)2;x)

∣∣∣∣
� 1

2
·L((e1 − x)2;x) · ω̃

(
f ′′,

1
3
·
√

L((e1 − x)4;x)
L((e1 − x)2;x)

)
. (1.3)

Here en : x ∈ [0,1] → xn, n = 0,1, . . . are the monomial functions and ω̃( f , ·) de-
notes the least concave majorant of ω( f , ·) given by

ω̃( f ,ε) = sup
0�x�ε�y�1,x�=y

(ε − x)ω( f ,y)+ (y− ε)ω( f ,x)
y− x

,

for 0 � ε � 1.
We use Theorem A as an auxiliary tool to prove our main results – Theorems

2.1, 3.1 and 4.1. Here we point out that to estimate the argument of ω̃( f ′′, ·) we need
a “good” upper bound for L((e1 − x)4;x) and a “good” lower bound for the second
moment L((e1 − x)2;x) . As far as we know, explicit presentation in compact form
are still not available neither for the second moment, nor for the fourth moment of
Schoenberg operator, except for the case Sn,1 – the piecewise linear interpolant at the
knots i

n , 0 � i � n and when n= 1, k > 1 – the Bernstein polynomial of degree k, S1,k =
Bk . The problem to study the order of uniform convergence in Voronovskaja’s Theorem
for these two classical operators was very recently solved in [6,7]. For example for the
case k = 1,n > 1 – linear interpolant at the knots xi , H. Gonska established in [7] the
following result (see Ex. 6.2):

THEOREM B. If zn(x) = {nx} := nx− [nx] is the fractional part of nx then∣∣∣∣ n2

zn(x)(1− zn(x))
[Sn,1( f ,x)− f (x)]− 1

2
f ′′(x)

∣∣∣∣� 1
2
ω̃
(

f ′′,
1
3n

)
. (1.4)

This is obtained via representation of the second and fourth moments as given by
A.Lupas in his Ph.D. thesis [8]

Sn,1((e1 − x)2;x) =
1
n2 zn(x)(1− zn(x))

Sn,1((e1− x)4;x) =
1
n4 zn(x)(1− zn(x))[1−3zn(x)(1− zn(x))].

In [7] it was proposed to find quantitative statements also for cases other than Sn,1 .
At the same time the degree changing of polynomials and the size of equidistance knots
should be considered. Several authors – Schoenberg, Marsden, Riemenschneider, Lee,
Goodman, Sharma [4, 9, 10, 11, 12] have established different types of Voronovskaja’s
Theorem for the Schoenberg operator. All these results are proved by the assumption
that

lim
(n+k)→∞

n
k

= λ , (1.5)
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where λ ∈ [0,∞) . For example λ = ∞ is the case, considered by Schoenberg in [12]
(see Theorem C). The case 0 � λ �∞ was studied by Marsden in [11]. Note that n+k
is the number of data points f (ξ j,k) , needed to specify Sn,k( f ,x) , so that n+ k is a
measure of the “complexity” of Sn,k . What is missing is to prove estimates, similar to
Theorem A and thus showing the rate of uniform convergence in a quantitative form
when f ∈C2[0,1] . Our second goal is to prove variants of Voronovskaja’s Theorem –
see Theorems 2.1 and 3.1, without the condition (1.5) and as a corollary to obtain the
results mentioned above.

Also in Theorem 3.1 we establish for the first time a lower bound for the second
moment of Schoenberg operator. In Corollary 3.4 we prove for f ∈ C2[0,1] uniform
convergence by Bernstein operator, which is in a form stronger than that in original
Theorem of E.Voronovskaja. We give several examples as applications of Theorems
2.1 and 3.1. As a result of Theorem A we obtain in Section 4 strong converse inequality
for approximation by Bernstein operator in pointwise form, when f ′′ belongs to some
classes Lipα (L) of Hölder continuous functions.

To estimate the second and fourth moments in (1.3) we differ the cases k � n and
k � n . In section 2 we consider the so-called “spline” case (k � n) and in section 3 we
study the “polynomial” case (k � n) . In the last section we make concluding remarks
and compare our results with other previous established versions of Voronovskaja’s
Theorem.

2. The case k � n

The main result in this section is

THEOREM 2.1. For f ∈C2[0,1] we have∣∣∣∣Sn,k( f ,x)− f (x)− 1
2
Sn,k((e1 − x)2,x) f ′′(x)

∣∣∣∣
� 1

2
Sn,k((e1 − x)2,x) · ω̃

(
f ′′,

1
3
· k+1

2n

)
. (2.1)

Proof. First we observe that in the definition of the fourth moment of Schoenberg
operator given by

Sn,k((e1 − x)4,x) =
n−1

∑
j=−k

(ξ j,k − x)4Nj,k(x) (2.2)

only those summands are different from 0, for which x ∈ [x j,x j+k+1] – the support of
Nj,k(x) by fixed x . Following the definition of ξ j,k in (1.2) it is easy to compute

|ξ j,k − x| � k+1
2n

. (2.3)

From (2.2) and (2.3) we get

Sn,k((e1 − x)4,x) �
(

k+1
2n

)2

·Sn,k((e1 − x)2,x).

Now using the estimate (1.3) in Theorem A we complete the proof. �
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COROLLARY 2.2. If k = 1 and using the representation of the second moment of
piecewise linear interpolant we get the estimate (1.4) proved in [7].

The following upper bound for the second moment of Sn,k valid for all n,k � 1
and x ∈ [0,1] was recently proved in [1]

Sn,k((e1 − x)2,x) � 1 · min
{
2x(1− x); k

n

}
n+ k−1

. (2.4)

Suppose that k
n → 0 (when k+n → ∞) and that

lim
n2

k
·Sn,k((e1 − x)2,x) = g(x),

where the convergence is uniform w.r.t. x ∈ [0,1] . Now from (2.1) we get

COROLLARY 2.3. If k
n → 0 then

lim
n+k→∞

n2

k
· [Sn,k( f ,x)− f (x)] =

1
2

f ′′(x) ·g(x).

The convergence is uniform w.r.t. x ∈ [0,1] .

The last statement is the same as in Theorem 3 in [4], where it was supposed that
f is integrable, bounded and has a second derivative at the point x in (0,1) . Here we
show the uniform convergence for f ∈C2[0,1] .

Here we recall that in the spline case ( k
n → 0) it was I.Schoenberg, who proves

the first known Voronovskaja – type theorem in [12] which we formulate as

THEOREM C. Let f be bounded in [0,1] and k > 2 . If x ∈ (0,1) is such that
f ′′(x) exists then the following pointwise convergence holds

lim
k
n→0

n2

k
· [Sn,k( f ,x)− f (x)] =

f ′′(x)
24

3. The case k � n

For the polynomial case of Schoenberg operator k � n we prove the following

THEOREM 3.1. For f ∈C2[0,1] we have∣∣∣∣Sn,k( f ,x)− f (x)− 1
2
Sn,k((e1 − x)2,x) f ′′(x)

∣∣∣∣
� 1

2
Sn,k((e1 − x)2,x) · ω̃

(
f ′′,

1
3
·
√
Δn,k(x)

)
, (3.1)
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where Δn,k(x) is defined as

3
n
k
·
[
3

(
1− 2

k

)
x(1− x)+

1
k

]
:= Δn,k(x). (3.2)

Proof. If f is a convex function it is known that – see [3], p. 115 or Theorem 1 in
[5]

Sn,k( f ,x) � Bk( f ,x),

where Bk( f ,x) is the Bernstein operator of degree k . Therefore from the well-known
representation of the fourth moment of Bk( f ,x) we have

Sn,k((e1− x)4,x) � Bk((e1 − x)4,x) =
x(1− x)

k2 ·
[
3

(
1− 2

k

)
x(1− x)+

1
k

]
(3.3)

Next we are going to prove a lower bound for the second moment of Sn,k . The
following lower bound for the second moment in “spline case” , i.e. 2 � k � n−1 was
established in Theorem 12 in [2]

ck ·
min

{
2x(1− x); k

n

}
n(k−1)

� Sn,k((e1− x)2,x),

where c2 = 3
124 � 1

42| and ck = 9
88 � 1

10 for k � 3. We can not use the last estimate
because it is valid only when 2 � k � n− 1. Here we point out that the new lower
bound for the second moment of Sn,k is valid for all k � 2,n � 2. In Theorem 3 in [2]
it was proved that

Sn,k((e1 − x)2,x) = Sn,k(g2,x), (3.4)

where the function g2 is given by

g2(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−y2 +

y
3

√
8k
n
· y+

1
n2

)
· 1
k−1

0 � y � min
{

k+1
2n , n−1

2k

}
,

1
k−1

·
(

y− y2− n2−1
6nk

)
, n−1

2k � y � 1
2 ,

1
k−1

· (k+1)(k−1)
12n2 , k+1

2n � y � 1
2 ,

g2(1− y), 1
2 � y � 1.

(3.5)

The function g2(y) is not concave and our goal is to bound it from below by an
appropriate concave function h2(y) . If this is possible it is easy to calculate

Sn,k(g2,x) � Sn,k(h2,x) � Bk(h2,x) (3.6)

and consequently

1
Sn,k((e1− x)2,x)

=
1

Sn,k(g2,x)
� 1

Bk(h2,x)
. (3.7)
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To define the function h2 we observe that

g′2(0) =
1

3n(k−1)
(3.8)

for all n,k � 2. If

h2(y) =
1

3n(k−1)
y(1− y),y ∈ [0,1] (3.9)

we verify that
g2(y) � h2(y). (3.10)

Further we compute

Bk(h2,x) =
1

3n(k−1)
·
[
x−
(

x2 +
x(1− x)

k

)]
=

x(1− x)
(
1− 1

k

)
3n(k−1)

. (3.11)

The estimates (3.3) and (3.11) lead us to

Sn,k((e1 − x)4,x)
Sn,k((e1 − x)2,x)

� x(1− x)
k2 · 3n(k−1)

x(1− x)(1− 1
k )

·
[
3

(
1− 2

k

)
x(1− x)+

1
k

]

= 3
n
k
·
[
3

(
1− 2

k

)
x(1− x)+

1
k

]
= Δn,k(x). (3.12)

When k
n →∞ (the polynomial case ) then lim k

n→∞Δn,k(x) = 0. We apply Theorem

A and the proof of Theorem 3.1 is completed. �
From (2.4) it follows that

k ·Sn,k((e1 − x)2,x) � 2x(1− x)k
n+ k−1

� 2x(1− x)

when k
n → ∞ . So if

lim
k→∞

kSn,k((e1− x)2,x) = e(x)

then (3.11) yields∣∣∣∣k · (Sn,k( f ,x)− f (x))− 1
2
· k ·Sn,k((e1 − x)2,x) f ′′(x)

∣∣∣∣
� x(1− x) · ω̃

(
f ′′,

1
3
·
√
Δn,k(x)

)
, (3.13)

Hence we arrive at

COROLLARY 3.2. If k
n → ∞ and f ∈C2[0,1] then

lim
n+k→∞

k · [Sn,k( f ,x)− f (x)] =
1
2
e(x) f ′′(x).

The convergence is uniform w.r.t. x ∈ [0,1] .

The last statement is the same as in Theorem 1 in [4], where it was supposed, that
f is integrable, bounded and has a second derivative at the point x in (0,1) . Here
we show the uniform convergence, while the convergence in Theorem 1 in [4] is in a
pointwise form.



VORONOVSKAJA’S THEOREM FOR SCHOENBERG OPERATOR 55

COROLLARY 3.3. If we set n = 1 in (3.2) we get exactly the result of Gonska,
Rasa and Pitul in [6] (see Theorem 5.1 on p. 108 ), i.e.

∣∣∣∣k · [S1,k( f ,x)− f (x)]− x(1− x)
2

f ′′(x)
∣∣∣∣� x(1− x)

2
· ω̃
(

f ′′,

√
1
k2 +

x(1− x)
k

)
.

COROLLARY 3.4. If f ∈C2[0,1] we have for x ∈ [0,1]

lim
k→∞

k · (Bk( f ,x)− f (x))
x(1− x)

=
f ′′(x)

2
. (3.14)

The convergence is uniform w.r.t. x ∈ [0,1] .

Proof. From Corollary 3.3 we get

∣∣∣∣k · (Bk( f ,x)− f (x))
x(1− x)

− f ′′(x)
2

∣∣∣∣� ω̃

(
f ′′,

√
1
k2 +

x(1− x)
k

)
.

The estimate (3.14) follows easily due to the fact that the argument of the modulus
in the last inequality uniformly goes to 0 when k → ∞ . We recall the Theorem of
Voronovskaja for Bernstein operator in its original form – see [13]

lim
k→∞

k · (Bk( f ,x)− f (x)) =
x(1− x)

2
· f ′′(x), (3.15)

where the convergence is uniform w.r.t. x ∈ [0,1] for f ∈C2[0,1] . It is easy to verify
that the statement of Corollary 3.4 is stronger than that in (3.15). �

COROLLARY 3.5. For f ∈C2[0,1] it holds

lim
k→∞

k · sup
x∈[0,1]

∣∣∣∣Bk( f ,x)− f (x)
x(1− x)

∣∣∣∣ =
‖ f ′′‖

2
.

4. Concluding remarks

Next we suppose that

lim
(n+k)→∞

n
k

= λ ,

where 0 < λ < ∞ . The cases λ = 0 and λ = ∞ are considered in Theorems 3.1 and
2.1 respectively. Consequently k → ∞ . In this case it was proved by Goodman etc. in
[4] (see Section 4 – p. 73) that the following uniform w.r.t. x ∈ [0,1] convergence holds

lim
k→∞

Sn,k((e1 − x)2,x) = e(x),
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where

e(x) =

⎧⎪⎪⎨
⎪⎪⎩

((2x)
3
2

1

3
√
λ
− x2, 0 � x � λ

2

x− x2− λ
6

, λ
2 � x � 1− λ

2 ,

(4.1)

if 0 < λ � 1 and for 1 � λ < ∞ the function is defined by

e(x) =

⎧⎪⎪⎨
⎪⎪⎩

((2x)
3
2

1

3
√
λ
− x2, 0 � x � 1

2λ

1
12λ 2 , 1

2λ � x � 1− 1
2λ ,

and e(x) = e(1− x) . The same asymptotic uniform estimate was also established by
M. Marsden in [11]. From Theorem 1a in [4] follows that

lim
k→∞

k2 ·Sn,k((e1 − x)4,x) =
4!
2!

·
(

e2(x)
2

)2

= 3e2(x). (4.2)

THEOREM 4.1. For f ∈C2[0,1] and ε > 0 there exists N > 0 – integer number,
such that for each k � N we have∣∣∣∣Sn,k( f ,x)− f (x)− 1

2
Sn,k((e1 − x)2,x) f ′′(x)

∣∣∣∣
� 1

2
Sn,k((e1 − x)2,x) · ω̃

(
f ′′,

1
3
·
√

1
k
(3e(x)+ ε)

)
. (4.3)

Proof. We present the ratio of the fourth and second moments of Schoenberg op-
erator as

Sn,k((e1 − x)4,x)
Sn,k((e1 − x)2,x)

=
1
k
· k2Sn,k((e1− x)4,x)

kSn,k((e1 − x)2,x)
(4.4)

From the last formula,(4.1) and (4.2) using Theorem A we establish the proof of
Theorem 4.1. �

Therefore the following holds true

COROLLARY 4.2. If

lim
(n+k)→∞

n
k

= λ , λ ∈ (0,∞)

then

lim
(n+k)→∞

Sn,k( f ,x)− f (x)
Sn,k((e1− x)2,x)

=
f ′′(x)

2
.

The convergence is uniform for f ∈C2[0,1] .

We believe that it is possible to prove estimates similar to (4.3) for the case when
the sequence ( n

k ) is not convergent if n+ k → ∞ . In this case we formulate the follow-
ing
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CONJECTURE 4.3. For all k � 1, n � 1

Sn,k((e1− x)4,x)
Sn,k((e1− x)2,x)

� Bk((e1− x)4,x)
Bk((e1− x)2,x)

. (4.5)

This conjecture is confirmed at least when k = n,k→∞ by numerical experiments
with MATLAB. If (4.5) is true then for f ∈C2[0,1] we would be able to verify that∣∣∣∣Sn,k( f ,x)− f (x)− 1

2
Sn,k((e1 − x)2,x) f ′′(x)

∣∣∣∣
� 1

2
Sn,k((e1 − x)2,x) · ω̃

(
f ′′,

1
3
· 1√

k
·
√

3

(
1− 1

2

)
x(1− x)+

1
k

)
.

The last statement would lead us to

COROLLARY 4.4. For f ∈C2[0,1] the following convergence is uniform

lim
(n+k)→∞

Sn,k( f ,x)− f (x)
Sn,k((e1− x)2,x)

=
f ′′(x)

2
.

As application of Theorem 2.1 we study the rate of approximation by Schoenberg
operator for some concrete functions.

EXAMPLE 4.5. Let f (x) = x3, x ∈ [0,1], k = 1, n > 1, i.e. Sn,1 – is a piecewise
linear interpolant It is known the exact presentation of ω̃ via K -functional

K
(ε

2
, f ′′;C[0,1],C1[0,1]

)
=

1
2
· ω̃( f ′′,ε), ε � 0, (4.6)

K
(ε

2
, f ′′;C[0,1],C1[0,1]

)
:= inf

g∈C1[0,1]

{
‖ f ′′ −g‖C +

ε
2
‖g′‖c

}
. (4.7)

Putting g = f ′′ in (4.7) from (2.1) we obtain

|Sn,1( f ,x)− f (x)| � 1
n2 · zn(x)(1− zn(x)) ·

(
3x+

1
n

)
. (4.8)

To obtain lower bound for the error of approximation we calculate from (2.1)

|Sn,1( f ,x)− f (x)| � 1
2
Sn,1((e1− x)2;x) ·

[
| f ′′(x)|− ω̃

(
f ′′,

1
3n

)]

� 1
2
Sn,1((e1− x)2;x) ·

[
6x− 1

3n
6

]
= Sn,1((e1 − x)2;x)

(
3x− 1

n

)
.

(4.9)

EXAMPLE 4.6. Let again f (x) = x3, k = 2, n > 1. Here we use the upper bound
(2.4) for the second moment. Here we point out that (2.4) is the first pointwise up-
per bound for the second moment of Schoenberg operator, which is a crucial step to
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establish various direct and inverse theorems. Hence

|Sn,2( f ,x)− f (x)| � 1
2
· min

{
2x(1− x); 2

n

}
n+1

·
(

6x+
3
2n

)

<
1

n(n+1)
·
(

6x+
3
2n

)
.

(4.10)

Our next goal is to establish strong converse inequality for approximation by Bern-
stein operator Bk( f ,x) in pointwise form for some subspace of f ∈C2[0,1] . We con-
sider the class Lipα(L) of Hölder continuous functions with exponent α for some
0 < α � 1 and constant L ,i.e. which obey

| f (x)− f (y)| � L · |x− y|α , x,y ∈ [0,1].

THEOREM 4.7. Let f ′′ ∈ Lipα(L), 0 < α � 1 and f ′′(x) �= 0 at some fixed point
x ∈ [0,1] . Then there exists a natural number k0 = k0(x,L,α, f ) such that for every
k � k0 the following holds true

1
4
· x(1− x)

k
· | f ′′(x)| < |Bk( f ,x)− f (x)| <

3
4
· x(1− x)

k
· | f ′′(x)|. (4.11)

Proof. It is known that

ω̃( f ,ε) � 2ω( f ,ε), ε > 0,

where ω( f ,ε) is the usual modulus of continuity. Hence

ω̃( f ,ε) � 2Lεα .

This observation and Corollary 3.2 lead us to

k|Bk( f ,x)− f (x)|
x(1− x)

� | f ′′(x)|
2

+
1
2
ω̃

(
f ′′,

√
1
k2 +

x(1− x)
k

)

� | f ′′(x)|
2

+L ·
(

1
k2 +

x(1− x)
k

) α
2

.

(4.12)

If f ′′(x) �= 0 then there exists a natural number k0 = k0(x,L,α, f ) such that for
k � k0

L ·
(

1
k2 +

x(1− x)
k

) α
2

<
| f ′′(x)|

4
. (4.13)

Obviously

k|Bk( f ,x)− f (x)|
x(1− x)

� | f ′′(x)|
2

−L ·
(

1
k2 +

x(1− x)
k

) α
2

. (4.14)

The last three inequalities complete the proof of Theorem 4.7. �
As a straightforward corollary from Theorem 4.7 we get



VORONOVSKAJA’S THEOREM FOR SCHOENBERG OPERATOR 59

COROLLARY 4.8. Let f ′′ ∈ Lipα(L) , 0 < α � 1 and | f ′′(x)| > m > 0 for all
x ∈ [0,1] . Then there exists a natural number k0 = k0(m,L,α) , independent on the
position of x , such that for k � k0 and for all x ∈ [0,1] the strong converse pointwise
inequality (4.11) holds true.

It is easy to observe that the constants 3
4 and 1

4 in Theorem 4.7 and Corollary 4.8
could be replaced by 1

2 + c and 1
2 − c for c > 0-arbitrary small and appropriate choice

of k0 .
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