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ON A JENSEN–HOSSZÚ EQUATION, II

ZYGFRYD KOMINEK AND JUSTYNA SIKORSKA

(Communicated by Z. Páles)

Abstract. We solve functional equation of the form

f (x+ y− xy)+ f (xy) = 2 f

(
x+ y

2

)

in the class of functions transforming the unit interval into the space of all reals. We also prove
that this equation is stable in the Hyers-Ulam’s sense.

1. Introduction

It is well-known that in the class of functions transforming the closed or open unit
interval I as well as the set of all reals R into the set of all reals the Jensen functional
equation

2 f

(
x+ y

2

)
= f (x)+ f (y)

and the Hosszú functional equation

f (x+ y− xy)+ f (xy) = f (x)+ f (y)

are equivalent and the general solution has the form f (x) = a(x)+ c, x ∈ I , where a
is an additive function and c is an arbitrary constant [3]. Recall that a : R → R is an
additive function if it satisfies the following Cauchy functional equation

a(x+ y) = a(x)+a(y), x,y ∈ R.

We will consider the functional equation in which the left-hand side has the same form
as in the Hosszú equation and the right-hand side coincides with the left-hand side of
the Jensen equation, i.e., the following functional equation

f (x+ y− xy)+ f (xy) = 2 f

(
x+ y

2

)
, x,y ∈ I. (1)

We will prove that equation (1) is also equivalent to the Hosszú (and for the same reason
to the Jensen) equation and, moreover, (1) is stable in the sense of Hyers and Ulam. In
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[2] it is proved that equation (1) in the class of functions acting from R into itself is
stable (in the sense of Hyers and Ulam). Note also that L. Losonczi [5] (cf. also [7])
have proved the Hyers-Ulam stability of the Hosszú functional equation in the class of
functions transforming the set of all reals into itself, while Jacek Tabor [6] have proved
that this equation is not stable in the class of functions transforming the unit real interval
into R .

2. Results

We start with the easier case when I = [0,1] . Assume that δ � 0 is a fixed number
and f : [0,1] → R is a solution of the following inequality

∣∣∣∣ f (x+ y− xy)+ f (xy)−2 f

(
x+ y

2

)∣∣∣∣ � δ , x,y ∈ [0,1]. (2)

It is easy to see that the function f̃ (x) := f (x)− f (0), x ∈ R also satisfies (2). Thus
without loss of generality we may assume that

f (0) = 0. (3)

Take an arbitrary (u,v) ∈ D := {(u,v) ∈ [0,1]2; (u+ v)2−4v � 0} .

0
u

v

1

1

D

Then the quadratic equation of the form x2 − (u+ v)x+ v = 0 has solutions:

x =
u+ v−

√
(u+ v)2−4v
2

and y =
u+ v+

√
(u+ v)2−4v
2

.

It is not hard to check that x,y ∈ [0,1] . It follows from the equalities

x+ y = u+ v, and xy = v

that
u = x+ y− xy and v = xy

and hence ∣∣∣∣ f (u)+ f (v)−2 f

(
u+ v

2

)∣∣∣∣ � δ (4)
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for every (u,v) ∈ D . Putting y = 0 in (4) we get∣∣∣ f (x)−2 f
( x

2

)∣∣∣ � δ , x ∈ [0,1]. (5)

For arbitrary non-negative integer n let us put

D0 := {(u,v) ∈ D;u+ v � 1}, P :=
[
0, 3

4

]× [0, 1
4 ],

Dn+1 :=
{
(u,v) ∈ P;

(
u,

v
2

)
∈ Dn

}
.

Observe that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D0 ⊂ D,

if (u,v) ∈ Dn+1, then
(
u,

v
2

)
∈ Dn,

if (u,v) ∈ Dn+1, then
(
u+

v
2
,
v
2

)
∈ Dn ∪D0.

(6)

Below, we show the drafts of sets D0 and D1 .

0
u

v

3
4

1

1
4

1

D0

0
u

v

u1 3
4

1

1
4

1

D1

Putting un := 1√
2
n − 1

4·2n for n ∈ N∪{0} , one can easily check that the rectangle[
un,

3
4

]× [
0, 1

4

]
is a subset of Dn . Because of the inequality u6 < 1

8 we infer that

[
1
8
,
1
4

]2

⊂ D6. (7)

Moreover, by the triangle inequality for any u,v ∈ D0∪P we have∣∣∣∣ f (u)+ f (v)−2 f

(
u+ v

2

)∣∣∣∣ �
∣∣∣ f (v)−2 f

( v
2

)∣∣∣
+

∣∣∣∣2 f

(
u+ v

2

2

)
− f

(
u+

v
2

)∣∣∣∣
+

∣∣∣∣ f
( v

2

)
+ f

(
u+

v
2

)
−2 f

(
u+ v

2

)∣∣∣∣
+

∣∣∣∣ f (u)+ f
( v

2

)
−2 f

(
u+ v

2

2

)∣∣∣∣ .

(8)
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Putting a0 = 1, an+1 = 2(1+an), n∈ N∪{0}, we will show that for any n ∈ N∪{0} ,
∣∣∣∣ f (u)+ f (v)−2 f

(
u+ v

2

)∣∣∣∣ � anδ , (u,v) ∈ Dn. (9)

On account of the inclusion D0 ⊂ D , it is clear for n = 0. Assume (9) for an n ∈
N∪{0} . Then (9) is a consequence of (8), (5) and (6). In particular, by (6), (7) and (9)
we have ∣∣∣∣ f (u)+ f (v)−2 f

(
u+ v

2

)∣∣∣∣ � a6δ , (u,v) ∈
[
1
8
,
1
4

]2

.

By [4, Theorem 3] (see also [1, Theorem 3]) there exist an additive function a : R → R

and a constant λ ∈ R, λ � 1 (not depending on f ), such that

| f (x)−a(x)| � λδ , x ∈
[
1
8
,
1
4

]
. (10)

According to the inequality

∣∣∣ f ( x
2

)
−a

(x
2

)∣∣∣ �
∣∣∣∣ f

( x
2

)
− 1

2
f (x)

∣∣∣∣+
∣∣∣∣12( f (x)−a(x))

∣∣∣∣ , x ∈
[
1
8
,
1
4

]
,

(5) and (10) we obtain

| f (x)−a(x)| � δ
2

+
1
2
λδ � λδ , x ∈

[
1
16

,
1
8

]
.

By induction one can prove that

| f (x)−a(x)| � λδ , x ∈
[
0,

1
4

]
.

This together with (5), for arbitrary x ∈ [0,1] , yields

| f (x)−a(x)| �
∣∣∣ f (x)−2 f

( x
2

)∣∣∣+ ∣∣∣2 f
( x

2

)
−4 f

( x
4

)∣∣∣+ ∣∣∣4 f
( x

4

)
−4a

(x
4

)∣∣∣
� δ +2δ +4λδ = (3+4λ )δ .

Thus we have proved the following theorem.

THEOREM 1. If f : [0,1]→ R satisfies inequality (2), then there exist an additive
function a : R → R and a constant μ ∈ R such that

| f (x)− f (0)−a(x)| � μδ , x ∈ [0,1].

Putting δ = 0, as a simple consequence of Theorem 1 we obtain the following
theorem.
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THEOREM 2. A function f : [0,1] → R is a solution of functional equation (1)
if and only if there exist an additive function a : R → R and a real constant c such
that f (x) = a(x)+ c, x ∈ [0,1] . In other words, the Jensen-Hosszú functional equation
and the Jensen functional equation are equivalent in the class of functions transforming
interval [0,1] into R .

If a function f : (0,1) → R satisfies inequality (2) for all x,y ∈ (0,1) then we
can prove an analogue results to Theorems 1 and 2. But in this case we have some
difficulties to obtain condition (5). Thus we use a slightly different method to prove
this theorem.

THEOREM 3. Let f : (0,1) → R be a function satisfying (2) for all x,y ∈ (0,1) .
Then there exist an additive function a : R → R and real constants c and μ such that

| f (x)−a(x)− c|� μδ , x ∈ (0,1).

Proof. Let us define

D := {(u,v) ∈ (0,1)2;(u+ v)2−4v � 0}.
Similarly as in the proof of Theorem 1 one can prove that∣∣∣∣ f (u)+ f (v)−2 f

(
u+ v

2

)∣∣∣∣ � δ , (u,v) ∈ D. (11)

It is easy to check that the function F of the form

F(x) := f (x)+ c1, x ∈ (0,1),

where c1 := f ( 1
2 )−2 f ( 1

4) , fulfills
∣∣∣∣F(u)+F(v)−2F

(
u+ v

2

)∣∣∣∣ � δ , (u,v) ∈ D. (12)

Putting ε := 7−4
√

3 and taking arbitrary y ∈ (0,ε) , by virtue of (11) we have
∣∣∣∣ f

(
1− y

2

)
+ f (y)−2 f

(
1+ y

4

)∣∣∣∣ � δ ,

∣∣∣∣ f
(

1− y
2

)
+ f

( y
2

)
−2 f

(
1
4

)∣∣∣∣ � δ

and ∣∣∣∣ f
( y

2

)
+ f

(
1
2

)
−2 f

(
1+ y

4

)∣∣∣∣ � δ .

Therefore, ∣∣∣∣ f (y)−2 f
( y

2

)
− f

(
1
2

)
+2 f

(
1
4

)∣∣∣∣ � 3δ ,
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which is equivalent to ∣∣∣F(y)−2F
( y

2

)∣∣∣ � 3δ , y ∈ (0,ε). (13)

For arbitrary x ∈ (0,2ε) we can choose a y ∈ (0,ε) such that ( x
2 , y

2 ) ∈ D, x+y
2 ∈ (0,ε) .

Then (x,y) ∈ D and by (12) and (13),

∣∣∣2F
( x

2

)
−F(x)

∣∣∣ �
∣∣∣∣−F(x)−F(y)+2F

(
x+ y

2

)∣∣∣∣
+

∣∣∣∣4F

(
x+ y

4

)
−2F

(
x+ y

2

)∣∣∣∣+
∣∣∣F(y)−2F

( y
2

)∣∣∣
+

∣∣∣∣2F
( x

2

)
+2F

( y
2

)
−4F

(
x+ y

4

)∣∣∣∣
� δ +6δ +3δ +2δ = 12δ .

Repeating this approximation procedure, after finite number of steps (three steps yet)
we get the existence of a constant λ ∈ R such that∣∣∣2F

( x
2

)
−F(x)

∣∣∣ � λδ , x ∈ (0,1),

thus we have got an analogue of (5). The rest of the proof of Theorem 3 goes along the
same lines as in the proof of Theorem 1 (after (5)). Therefore, there exist an additive
function a : R → R and a constant c2 ∈ R such that

|F(x)−a(x)− c2| � μδ , x ∈ (0,1).

Setting c = c2 + c1 , by definition of F we get

| f (x)−a(x)− c|� μδ , x ∈ (0,1).

This ends the proof of Theorem 3. �
Setting δ = 0 in Theorem 3 we obtain the following

THEOREM 4. A function f : (0,1) → R is a solution of functional equation (1)
if and only if there exist an additive function a : R → R and a real constant c such
that f (x) = a(x)+c, x ∈ (0,1) . In other words, the Jensen-Hosszú functional equation
and the Jensen functional equation are equivalent in the class of functions transforming
interval (0,1) into R .

REMARK 1. The estimation constant obtained in Theorem 3 is much greater than
the constant obtained in Theorem 1, so we provided first the case where f was defined
on the closed unit interval.

REMARK 2. The results will remain true if we change the target space R for an
arbitrary real Banach space. For the approximation (10), however, we can use only [1,
Theorem 3].
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