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EIGENVALUE ESTIMATES FOR STABLE MINIMAL HYPERSURFACES

KEOMKYO SEO

(Communicated by H. Martini)

Abstract. In this article we provide estimates on the first eigenvalue of stable minimal hyper-
surfaces in a Riemannian manifold with sectional curvature bounded from below and above by
negative constants. We also obtain a lower bound of the total scalar curvature of a stable minimal
hypersurface if the scalar curvature of the ambient space is positive.

1. Introduction

As it is well known, the first Dirichlet eigenvalue of a Riemannian manifold X
with boundary is characterized as

S5 VP
iy e

where the infimum is taken over all piecewise smooth functions in £ vanishing on the
boundary d%. Recently Candel [1] gave an upper bound for the first eigenvalue of a
stable minimal surface in H*. We say that a minimal hypersurface = in an (n+1)-
dimensional Riemannian manifold M is stable if the second variation of its volume is
always nonnegative for every compactly supported deformation of X in M"*!. More
precisely, an n-dimensional minimal hypersurface X in a Riemannian manifold M is
called stable if for any compactly supported Lipschitz function f on M

LIV = (Riclensr) + AP > 0 (L1)

holds, where Ric(e, 1) is the Ricci curvature of M in the direction of e, 1, e,1 is the
unit normal vector of X in M, and |A|? is the squared length of the second fundamental
form of 2.

Recall that the Yamabe invariant of the conformal class [g] of an n-dimensional
Riemannian manifold X is defined by

Y(g) =inf{E(g): § = u(x)72g,u(x) > 0,u € H' (M)},
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where E(g) is defined by

4(n—1
E(g) = fz(%\VuF—i-Rng)dvg
(fpuradve) s

Here R, and dv, denote the scalar curvature and the volume form of the metric g on
X, respectively. Then the Yamabe invariant of X is defined by

o(Z) =sup{Y(g) : g is a smooth metric on X }.

Ho [4] generalized Candel’s result to higher-dimensional cases. He gave estimates on
the first eigenvalue of a stable minimal hypersurface X in hyperbolic space H"*! for
n > 3 under the assumption that the Yamabe invariant o(X) satisfies that (X)) < 0.
Actually he proved

THEOREM 1.1. Let £ C H""' be a compact stable minimal hypersurface with
boundary. If 0(X) < 0, then the first eigenvalue of X satisfies

1 n*(n—2)
—n=1<L(E) < —.
g TS AME) <= ¢

In this paper we extend Ho’s result to stable minimal hypersurfaces in a Rieman-
nian manifold of variable curvature. We provide the upper bound of the first eigenvalue
when the ambient space has negative scalar curvature. More precisely, we prove

THEOREM 1.2. Let M be an (n+ 1) -dimensional Riemannian manifold with sca-
lar curvature S satisfying that —Sy < S < 0 for some positive constant Sy, n > 3. Let
3> C M be a compact stable minimal hypersurface with boundary. If o(X) <0, then
the first eigenvalue of X satisfies

S() (n — 2)
M) < ———.
1(2) < 2

If the ambient space M has sectional curvature bounded from below and above by

negative constants, we can extend Theorem 1.1 as follows.

THEOREM 1.3. Let M be an (n+ 1)-dimensional Riemannian manifold with sec-
tional curvature Ky satisfying —b < Ky < —a < 0 for some positive constants a and
b, n > 3. Let £ C M be a compact stable minimal hypersurface with boundary. Assume
that 0(X) < Co for some constant Cs € |0, %é), where Cy is a Sobolev constant
in [5]. Then the first eigenvalue of X satisfies

—1)? 1)b—
1 () < Mot Db na
4 n—2 —CoC

When the scalar curvature of the ambient space is positive, we estimate the total
scalar curvature of a stable minimal hypersurface X and the Yamabe invariant o(X) of
z.
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THEOREM 1.4. Let M be an (n+ 1)-dimensional compact Riemannian manifold
with scalar curvature S > n(n+ 1)k > 0 for some positive constant k. Let £ C M be a
compact stable minimal hypersurface without boundary. Then we have the following.

(1) /R > n(n+ 1)kVol(Z), where R is the scalar curvature of X.
p
(ii) o(X) > 0, when n > 3.

We note that the Yamabe invariant o(X) is positive if and only if ¥ admits a metric of
positive scalar curvature. (See [6], [7] and [9].)

2. Proof of the theorems

Let M be an (n+ 1)-dimensional Riemannian manifold and let X be a stable
minimal hypersurface in M. Choose an orthonormal frame {e;,---,e,,e,+1} adapted
to M, so that e, --,e, are tangential and e, is the unit normal vector. For 1 <
i ] kil<n+1,let R, ki denote the curvature tensor of M. For 1 < i, j,k,Il <n, let

K;ji denote the curvature tensor of X with respect to the induced metric from M. For

1<i,j<n,let hjj= <Ve,en+17 ;) be the second fundamental form of X, where v
is the Riemannian connection on M. Then the Gauss curvature equation says
2
Kijij = Rijij + hiihjj — hi; 2.1
for 1 <i,j < n.Summing (2.1), we get
n
2
z Kljlj_ z lelj+<zhll> 2 hlj'
i,j=1 i,j=1 i,j=1

Since Y, h;; = 0 by the minimality of X, the scalar curvature S of M is

n+1
S= Z lelj - 22Rn+lzn+ll+ Z lelj
i,j=1 i=1 i,j=1

= 2Ric(ens1) + R+ Z h}; (2.2)
ij=1

= 2Ric(eqt1) +R+ A%

where R is the scalar curvature of 2. Putting this into the stability inequality (1.1), we

therefore get
1 1 1
3 [5P=5 [R5 [1aPr < [P 23
2Js 2 /s 2 s b

for any compactly supported smooth function f defined on X.

Proof of Theorem 1.2. By the inequality (2.3), for any compactly supported func-
tion f, we have

/sz2 >Z/Z|Vf\2+/zRf2. 2.4)



72 KEOMKYO SEO

Since 0(X) <0, Y(g) <0 for the induced metric g on X C M. Thus there exists a
smooth function f on X such that E(f n%g) < 0, which implies

/Rf y) /|Vf\2 <o0. 2.5)

Combining (2.4) and (2.5), we have

Lo <2 [ =202 e

Thus the curvature assumption on M gives

2
S <= s <so [
n—2J)s s 5

SV So(n—2)
TR O

which implies

)Ll( )\

Before proving Theorem 1.3, we need the following Sobolev inequality.

LEMMA 2.1. ([5]) Let £ be an n-dimensional complete immersed minimal sub-
manifold in a Riemannian manifold M with nonpositive sectional curvature, n > 3.
Then for any ¢ € WOI"z(M) we have

(Lloi#av) ™ <c. [ IvoPan

where Cg depends only on n.

In [10], the author recently proved a lower bound part in Theorem 1.3. However,
for completeness we shall give this part again here.

Proof of Theorem 1.3. First we estimate a lower bound of A;(X). The Laplacian
of the distance function r on X C M satisfies

Ar > Va(n — [VrP)cothv/ar > (n— 1)a,
see [3]. Integrating both sides over a domain Q C X, we get
(n—1)y/aArea(Q / Ardv = / 5L ds < Length(992). 2.6)
Recall that for a Riemannian manifold X, the Cheeger constant h(X) is defined by

. .Length(dQ)
hz) .—1?2f Area(Q) ’
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where Q ranges over all open submanifolds of ¥ with compact closure in . Then,
applying Cheeger’s inequality [2] and inequality (2.6), we obtain

12
h( > phep =, @

which gives the proof for the lower bound part.
Now we prove the upper bound part of the first eigenvalue A;(X). Since X is
stable, we have

L ®lenin) AP < [190F
z z

for any compactly supported smooth function f on 2. Using the equation (2.2), we get

|52 [rP = [Reernf? < [Ve2.

From the curvature assumption on M, we have

—nn+1)b<S< —n(n+1)a<0 and

—nb < R_ic(en-H) =Ryi11n1,1+ + Ryt nniin < —na < 0.

Hence
—n(n+l)b/2f2+na/2f2</2Rf2+/z|Vf\2. 2.8)

Since 0(Z) < Co, Y(g) < Cs for the induced metric g on X. Then there exists a
smooth function f satisfying

s R+ 4 [ VAP

(fz "’2> B

Applying Sobolev’s inequality (Lemma 2.1), we have

/ Rf?+ )/\Vf|2<CGC/\Vf|2 (2.9)

Combining the inequalities (2.8) and (2.9), we obtain

(3:__22_C0Cs>/z\Vf|2< (n(n+1)b_"a)/zf2-

Cg .

Note that the assumption on Cs implies that 3" — C5Cs > 0. Therefore it follows
that

Jo VP _ nln-+1)b—na

A(Z) < INZ 3n 2 —C.C,
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which completes the proof of the upper bound part. [J

In particular, when a = b = 1, the ambient space M is isometric to the hyperbolic
space H"*!. As a consequence of Theorem 1.3, we improve the upper bound of the
Yamabe invariant in Theorem 1.1 as follows.

COROLLARY 2.2. Let £ C H" be a compact stable minimal hypersurface. As-

sume that o(X) < Co for some constant Cq € |0, 3n” 22C1 ), where Cs is a Sobolev

constant as in Theorem 1.3. Then the first eigenvalue of satzsﬁes

(n—1)? n?
——<AME) < gH5F——.
4 1( )< 3n_2_CO'Cs

n—2

REMARK 2.3. If Cs = 0, then this result is exactly the same as Theorem 1.1.
Note that our scalar curvature is exactly twice the scalar curvature in Ho’s paper [4].

Proof of Theorem 1.4. The inequality (2.3) says that

s[5 < [wrees [re

for any compactly supported smooth function f defined on X.
Since S > n(n+ 1)k > 0 by assumption, we have

n(n+ 1)k 1
u/f2 < [1vsP+5 R (2.10)
2 ) b 2Js
Choosing a test function f =1 on X gives
n(n—l—l)k/SS/R,
z z

which completes the proof of (i).
For (ii), suppose that 0(X) < 0. Then there exists a smooth function f > 0 on X

satisfying that
Lo+ =D [ < @.11)

Then by (i) it is easy to see that f cannot be constant. Using the inequalities (2.10) and
(2.11), we get

0<nn+1k/f 2/\Vf|2 /\Vf|2 —%/wa\%o,

which is a contradiction. Therefore we see that 6(Z) > 0. O

REMARK 2.4. In particular, when n = 2, it follows from the above theorem that
fz Ks > 0, where Ky is the Gaussian curvature of X. By the Gauss-Bonnet theorem, X
cannot have positive genus, which is a result of Schoen-Yau [8].
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