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EIGENVALUE ESTIMATES FOR STABLE MINIMAL HYPERSURFACES
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(Communicated by H. Martini)

Abstract. In this article we provide estimates on the first eigenvalue of stable minimal hyper-
surfaces in a Riemannian manifold with sectional curvature bounded from below and above by
negative constants. We also obtain a lower bound of the total scalar curvature of a stable minimal
hypersurface if the scalar curvature of the ambient space is positive.

1. Introduction

As it is well known, the first Dirichlet eigenvalue of a Riemannian manifold Σ
with boundary is characterized as

λ1 = inf
f

∫
Σ |∇ f |2∫
Σ f 2 ,

where the infimum is taken over all piecewise smooth functions in Σ vanishing on the
boundary ∂Σ . Recently Candel [1] gave an upper bound for the first eigenvalue of a
stable minimal surface in H

3 . We say that a minimal hypersurface Σ in an (n + 1)-
dimensional Riemannian manifold M is stable if the second variation of its volume is
always nonnegative for every compactly supported deformation of Σ in Mn+1 . More
precisely, an n -dimensional minimal hypersurface Σ in a Riemannian manifold M is
called stable if for any compactly supported Lipschitz function f on M

∫
Σ
|∇ f |2 − (Ric(en+1)+ |A|2) f 2 � 0 (1.1)

holds, where Ric(en+1) is the Ricci curvature of M in the direction of en+1 , en+1 is the
unit normal vector of Σ in M , and |A|2 is the squared length of the second fundamental
form of Σ .

Recall that the Yamabe invariant of the conformal class [g] of an n -dimensional
Riemannian manifold Σ is defined by

Y (g) = inf{E(g) : g = u(x)
2n

n−2 g,u(x) > 0,u ∈ H1(M)},
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where E(g) is defined by

E(g) =

∫
Σ(

4(n−1)
n−2 |∇u|2 +Rgu2)dvg

(
∫
Σ u

2n
n−2 dvg)

n−2
n

.

Here Rg and dvg denote the scalar curvature and the volume form of the metric g on
Σ , respectively. Then the Yamabe invariant of Σ is defined by

σ(Σ) = sup{Y (g) : g is a smooth metric on Σ }.
Ho [4] generalized Candel’s result to higher-dimensional cases. He gave estimates on
the first eigenvalue of a stable minimal hypersurface Σ in hyperbolic space H

n+1 for
n � 3 under the assumption that the Yamabe invariant σ(Σ) satisfies that σ(Σ) < 0.
Actually he proved

THEOREM 1.1. Let Σ ⊂ H
n+1 be a compact stable minimal hypersurface with

boundary. If σ(Σ) < 0 , then the first eigenvalue of Σ satisfies

1
4
(n−1)2 � λ1(Σ) <

n2(n−2)
7n−6

.

In this paper we extend Ho’s result to stable minimal hypersurfaces in a Rieman-
nian manifold of variable curvature. We provide the upper bound of the first eigenvalue
when the ambient space has negative scalar curvature. More precisely, we prove

THEOREM 1.2. Let M be an (n+1)-dimensional Riemannian manifold with sca-
lar curvature S satisfying that −S0 � S < 0 for some positive constant S0 , n � 3 . Let
Σ ⊂ M be a compact stable minimal hypersurface with boundary. If σ(Σ) < 0 , then
the first eigenvalue of Σ satisfies

λ1(Σ) <
S0(n−2)

2n
.

If the ambient space M has sectional curvature bounded from below and above by
negative constants, we can extend Theorem 1.1 as follows.

THEOREM 1.3. Let M be an (n+1)-dimensional Riemannian manifold with sec-
tional curvature KM satisfying −b � KM � −a < 0 for some positive constants a and
b, n � 3 . Let Σ⊂M be a compact stable minimal hypersurface with boundary. Assume
that σ(Σ) < Cσ for some constant Cσ ∈ [0, 3n−2

n−2
1
Cs

) , where Cs is a Sobolev constant
in [5]. Then the first eigenvalue of Σ satisfies

(n−1)2

4
a � λ1(Σ) <

n(n+1)b−na
3n−2
n−2 −CσCs

.

When the scalar curvature of the ambient space is positive, we estimate the total
scalar curvature of a stable minimal hypersurface Σ and the Yamabe invariant σ(Σ) of
Σ .
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THEOREM 1.4. Let M be an (n+1)-dimensional compact Riemannian manifold
with scalar curvature S � n(n+1)k > 0 for some positive constant k . Let Σ⊂ M be a
compact stable minimal hypersurface without boundary. Then we have the following.

(i)
∫
Σ
R � n(n+1)kVol(Σ) , where R is the scalar curvature of Σ .

(ii) σ(Σ) > 0 , when n � 3 .

We note that the Yamabe invariant σ(Σ) is positive if and only if Σ admits a metric of
positive scalar curvature. (See [6], [7] and [9].)

2. Proof of the theorems

Let M be an (n + 1)-dimensional Riemannian manifold and let Σ be a stable
minimal hypersurface in M . Choose an orthonormal frame {e1, · · · ,en,en+1} adapted
to M , so that e1, · · · ,en are tangential and en+1 is the unit normal vector. For 1 �
i, j,k, l � n + 1, let Ri jkl denote the curvature tensor of M . For 1 � i, j,k, l � n , let
Ki jkl denote the curvature tensor of Σ with respect to the induced metric from M . For

1 � i, j � n , let hi j = −〈∇eien+1,e j〉 be the second fundamental form of Σ , where ∇
is the Riemannian connection on M . Then the Gauss curvature equation says

Ki ji j = Ri ji j +hiih j j −h2
i j (2.1)

for 1 � i, j � n . Summing (2.1), we get

n

∑
i, j=1

Ki ji j =
n

∑
i, j=1

Ri ji j +
( n

∑
i=1

hii

)2 −
n

∑
i, j=1

h2
i j .

Since ∑n
i=1 hii = 0 by the minimality of Σ , the scalar curvature S of M is

S =
n+1

∑
i, j=1

Ri ji j = 2
n

∑
i=1

Rn+1,i,n+1,i +
n

∑
i, j=1

Ri ji j

= 2Ric(en+1)+R+
n

∑
i, j=1

h2
i j (2.2)

= 2Ric(en+1)+R+ |A|2,
where R is the scalar curvature of Σ . Putting this into the stability inequality (1.1), we
therefore get

1
2

∫
Σ
S f 2 − 1

2

∫
Σ
R f 2 +

1
2

∫
Σ
|A|2 f 2 �

∫
Σ
|∇ f |2 (2.3)

for any compactly supported smooth function f defined on Σ .

Proof of Theorem 1.2. By the inequality (2.3), for any compactly supported func-
tion f , we have

∫
Σ
S f 2 � 2

∫
Σ
|∇ f |2 +

∫
Σ
R f 2. (2.4)
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Since σ(Σ) < 0, Y (g) < 0 for the induced metric g on Σ ⊂ M . Thus there exists a

smooth function f on Σ such that E( f
2n

n−2 g) < 0, which implies

∫
Σ
R f 2 +

4(n−1)
n−2

∫
Σ
|∇ f |2 < 0. (2.5)

Combining (2.4) and (2.5), we have

∫
Σ
R f 2 < 2

∫
Σ
|∇ f |2 − 4(n−1)

n−2

∫
Σ
|∇ f |2.

Thus the curvature assumption on M gives

2n
n−2

∫
Σ
|∇ f |2 < −

∫
Σ
S f 2 � S0

∫
Σ

f 2,

which implies

λ1(Σ) �
∫
Σ |∇ f |2∫
Σ f 2 <

S0(n−2)
2n

. �

Before proving Theorem 1.3, we need the following Sobolev inequality.

LEMMA 2.1. ([5]) Let Σ be an n-dimensional complete immersed minimal sub-
manifold in a Riemannian manifold M with nonpositive sectional curvature, n � 3 .
Then for any φ ∈W 1,2

0 (M) we have

(∫
Σ
|φ | 2n

n−2 dv
) n−2

n � Cs

∫
Σ
|∇φ |2dv,

where Cs depends only on n.

In [10], the author recently proved a lower bound part in Theorem 1.3. However,
for completeness we shall give this part again here.

Proof of Theorem 1.3. First we estimate a lower bound of λ1(Σ) . The Laplacian
of the distance function r on Σ⊂ M satisfies

Δr �
√

a(n−|∇r|2)coth
√

ar � (n−1)
√

a,

see [3]. Integrating both sides over a domain Ω⊂ Σ , we get

(n−1)
√

aArea(Ω) �
∫
Ω
Δrdv =

∫
∂Ω

∂ r
∂ν

ds � Length(∂Ω). (2.6)

Recall that for a Riemannian manifold Σ , the Cheeger constant h(Σ) is defined by

h(Σ) := inf
Ω

Length(∂Ω)
Area(Ω)

,
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where Ω ranges over all open submanifolds of Σ with compact closure in Σ . Then,
applying Cheeger’s inequality [2] and inequality (2.6), we obtain

λ1(Σ) � 1
4
h(Σ)2 =

(n−1)2

4
a, (2.7)

which gives the proof for the lower bound part.
Now we prove the upper bound part of the first eigenvalue λ1(Σ) . Since Σ is

stable, we have
∫
Σ
(Ric(en+1)+ |A|2) f 2 �

∫
Σ
|∇ f |2

for any compactly supported smooth function f on Σ . Using the equation (2.2), we get
∫
Σ
S f 2−

∫
Σ
R f 2 −

∫
Σ
Ric(en+1) f 2 �

∫
Σ
|∇ f |2.

From the curvature assumption on M , we have

−n(n+1)b � S � −n(n+1)a < 0 and

−nb � Ric(en+1) = Rn+1,1,n+1,1 + · · ·+Rn+1,n,n+1,n � −na < 0.

Hence

−n(n+1)b
∫
Σ

f 2 +na
∫
Σ

f 2 �
∫
Σ
R f 2 +

∫
Σ
|∇ f |2. (2.8)

Since σ(Σ) < Cσ , Y (g) < Cσ for the induced metric g on Σ . Then there exists a
smooth function f satisfying

∫
ΣR f 2 + 4(n−1)

n−2

∫
Σ |∇ f |2

(∫
Σ f

2n
n−2

) n−2
n

< Cσ .

Applying Sobolev’s inequality (Lemma 2.1), we have

∫
Σ
R f 2 +

4(n−1)
n−2

∫
Σ
|∇ f |2 < CσCs

∫
Σ
|∇ f |2. (2.9)

Combining the inequalities (2.8) and (2.9), we obtain

(3n−2
n−2

−CσCs

)∫
Σ
|∇ f |2 < (n(n+1)b−na)

∫
Σ

f 2.

Note that the assumption on Cσ implies that 3n−2
n−2 −CσCs > 0. Therefore it follows

that

λ1(Σ) �
∫
Σ |∇ f |2∫
Σ f 2 <

n(n+1)b−na
3n−2
n−2 −CσCs

,
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which completes the proof of the upper bound part. �

In particular, when a = b = 1, the ambient space M is isometric to the hyperbolic
space H

n+1 . As a consequence of Theorem 1.3, we improve the upper bound of the
Yamabe invariant in Theorem 1.1 as follows.

COROLLARY 2.2. Let Σ⊂ H
n+1 be a compact stable minimal hypersurface. As-

sume that σ(Σ) < Cσ for some constant Cσ ∈ [0, 3n−2
n−2

1
Cs

) , where Cs is a Sobolev
constant as in Theorem 1.3. Then the first eigenvalue of Σ satisfies

(n−1)2

4
� λ1(Σ) <

n2

3n−2
n−2 −CσCs

.

REMARK 2.3. If Cσ = 0, then this result is exactly the same as Theorem 1.1.
Note that our scalar curvature is exactly twice the scalar curvature in Ho’s paper [4].

Proof of Theorem 1.4. The inequality (2.3) says that

1
2

∫
Σ
S f 2 �

∫
Σ
|∇ f |2 +

1
2

∫
Σ
R f 2

for any compactly supported smooth function f defined on Σ .
Since S � n(n+1)k > 0 by assumption, we have

n(n+1)k
2

∫
Σ

f 2 �
∫
Σ
|∇ f |2 +

1
2

∫
Σ
R f 2. (2.10)

Choosing a test function f ≡ 1 on Σ gives

n(n+1)k
∫
Σ
S �

∫
Σ
R,

which completes the proof of (i).
For (ii), suppose that σ(Σ) � 0. Then there exists a smooth function f > 0 on Σ

satisfying that
∫
Σ
R f 2 +

4(n−1)
n−2

∫
Σ
|∇ f |2 � 0. (2.11)

Then by (i) it is easy to see that f cannot be constant. Using the inequalities (2.10) and
(2.11), we get

0 < n(n+1)k
∫
Σ

f 2 � 2
∫
Σ
|∇ f |2 − 4(n−1)

n−2

∫
Σ
|∇ f |2 = − 2n

n−2

∫
Σ
|∇ f |2 < 0,

which is a contradiction. Therefore we see that σ(Σ) > 0. �

REMARK 2.4. In particular, when n = 2, it follows from the above theorem that∫
ΣKΣ > 0, where KΣ is the Gaussian curvature of Σ . By the Gauss-Bonnet theorem, Σ

cannot have positive genus, which is a result of Schoen-Yau [8].
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