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Abstract. In this paper, we present some lower bounds for the Perron root of a symmetric non-
negative matrix, which are then applied to give the lower bounds of the Perron root of a general
nonnegative matrix. These bounds improve the corresponding ones in [3] and [5]. Numerical
examples are supplemented to illustrate the effectiveness of the presented bounds.

1. Introduction

Let A = (ai j) ∈ Rn×n be a nonnegative matrix with entries ai j , i, j ∈ 〈n〉 := {1,2,
· · · ,n} . Then A has a real eigenvalue equal to its spectral radius by Perron-Frobenius
theory; see [1]. This eigenvalue is usually called the Perron root of A , and denoted
by ρ(A) . The localization of the Perron root of a nonnegative matrix is a key problem
in matrix theory and numerical analysis. A lot of bounds have been found by many
authors; see, e.g., [1]–[12], [14]–[15].

Especially, the simplest lower bound

ρ(A) � max
1�i�n

{aii} (1.1)

was given by Frobenius; see, e.g., [6]. Brauer and Gentry [3] showed that, for the
irreducible matrix A ,

ρ(A) >
1
2

max
i�= j

{
aii +a j j +

[
(aii −a j j)2 +4ai ja ji

] 1
2

}
, (1.2)

which is sharper than the bound (1.1). Due to the monotonicity property of the Perron
root, Kolotilina [5] further improved the lower bound (1.2) as

ρ(A) � max
1�i�n

{ςi(A)}, (1.3)
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where

ςi(A) :=
1
2

⎛
⎝aii + μ+

[
(aii− μ)2 +4∑

j �=i

ai ja ji

] 1
2
⎞
⎠ ,

and μ is the least diagonal element of A .
In this paper, we shall propose some lower bounds for the Perron root of a sym-

metric nonnegative matrix. These bounds are then used to derive the lower bounds of
the Perron root of a general nonnegative matrix. The bounds obtained here improve the
corresponding bounds (1.1)–(1.3).

The remainder of this paper is organized as follows. In Section 2, some lower
bounds for the Perron roots of nonnegative matrices are established. In Section 3, some
examples are given to illustrate the effectiveness of the presented bounds.

2. Lower bounds for the Perron root of a nonnegative matrix

Let A = (ai j) ∈ Rn×n be a symmetric nonnegative matrix, and let S be a subset of
〈n〉 . Then throughout the paper we define

ri(A) =
n

∑
k=1

a2
ik,r

(i, j)
i (A) = ∑

k �=i, j

a2
ik, ci j(A) =

n

∑
k=1

aika jk, c(i, j)
i j (A) = ∑

k �=i, j

aika jk

and A{S}= (ãi j) (see, e.g., [6]) by

ãi j =
{

0 if i,j ∈ S
ai j otherwise

.

Let B,C ∈ R
n×n . Then we denote by In the n× n identity matrix; BT the transpose

of B ; ρ(B) the spectral radius of B ; ||B||2 the spectral norm of B . We write B � C
(B�C ) if B,C are symmetric, and B−C is symmetric positive definite (semidefinite).

LEMMA 1. ([13]) Let || · || be a unitarily invariant norm, and let C′ be any sub-
matrix of an arbitrary matrix C. Then ||C′|| � ||C||.

LEMMA 2. ([1]) Let A = (ai j) ∈ Rn×n,B = (bi j) ∈ Cn×n , and let |B| � A, i.e.,
|bi j| � ai j, i, j ∈ 〈n〉 . Then ρ(B) � ρ(A).

Based on Lemma 1, we now give the first lower bound as follows, the proof of
which is simple.

THEOREM 1. Let A = (ai j) ∈ R
n×n be a symmetric nonnegative matrix, let μ be

the least diagonal element of A, and let B = A− μIn . Then

ρ(A) � μ+
[
max
i�= j

{τi j(B)}
] 1

2

, (2.1)

where

τi j(B) =
1
2

{
ri(B)+ r j(B)+

[
(ri(B)− r j(B))2 +4c2

i j(B)
] 1

2

}
.
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Proof. For any i �= j , we set

Fi j =
[

ai1 ai2 · · · aii− μ · · · ai j · · · ain

a j1 a j2 · · · a ji · · · a j j − μ · · · a jn

]
.

Since A− μIn is symmetric nonnegative, from Lemma 1 we have, for any i �= j ,

(ρ(A)− μ)2 = ||B||22 �
∥∥Fi j
∥∥2

2 = ρ
([

xT x xT y
yT x yT y

])

=
1
2

(
xT x+ yTy+

[
(xT x− yTy)2 +4(xTy)2] 1

2

)
,

where

x = (ai1,ai2, · · · ,aii− μ , · · · ,ain)T , y = (a j1,a j2, · · · ,a j j − μ , · · · ,a jn)T ,

which yields the conclusion (2.1). �

REMARK 1. Since the spectral norm and the spectral radius of any normal matrix
are equal, from the proof of Theorem 1, the conclusion of Theorem 1 still holds for any
normal nonnegative matrix A .

Due to Lemma 2, we now present the second lower bound.

THEOREM 2. Let A = (ai j) ∈ Rn×n be a symmetric nonnegative matrix, let μ be
the least diagonal element of A, and let � � μ be any lower bound of the Perron root
of A. Then

ρ(A) � μ +
[
max
i�= j

{ρ�
i j(A)}

] 1
2

, (2.2)

where

ρ�
i j(A) =

1
2

{
(�− μ)(aii +a j j −2μ)+ r(i, j)

i (A)+ r(i, j)
j (A)

+
[(

(�− μ)(aii−a j j)+ r(i, j)
i (A)− r(i, j)

j (A)
)2

+4
(
(�− μ)ai j + c(i, j)

i j (A)
)2
] 1

2
}

.

Proof. For any i �= j , setting S(i, j) = 〈n〉−{i, j} , we have

(A− μIn){S(i, j)} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1i a1 j
...

...
ai1 · · · aii− μ · · · ai j · · · ain

...
...

a j1 · · · a ji · · · a j j − μ · · · a jn
...

...
ani an j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=: Bi j.
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Obviously, Bi j is similar to the block matrix

Ci j =

[
Di j

11 Di j
12

(Di j
12)

T 0

]
,

where

Di j
11 =

[
aii− μ ai j

a ji a j j − μ

]
, Di j

12 =
[

ai1 · · · aii−1 aii+1 · · · ai j−1 ai j+1 · · · ain

a j1 · · · a ji−1 a ji+1 · · · a j j−1 a j j+1 · · · a jn

]
.

It follows from Lemma 2 that

ρ(A)− μ � ρ(Bi j) = ρ(Ci j).

We now consider the following two cases:
Case (i): ρ(Bi j) = 0. In this case, it is clear that Bi j = 0 since Bi j is a symmetric

matrix with all eigenvalues being zero. Hence, ρ�
i j(A) = 0.

Case (ii): ρ(Bi j) �= 0. The matrix ρ(Bi j)In−Ci j can be decomposed into

ρ(Bi j)In−Ci j =

[
I2

−1
ρ(Bi j)D

i j
12

In−2

][
E
ρ(Bi j)In−2

][
I2

−1
ρ(Bi j) (D

i j
12)

T In−2

]
,

where

E = ρ(Bi j)I2−Di j
11−

1
ρ(Bi j)

Di j
12(D

i j
12)

T .

Clearly,
ρ(Bi j)In−Ci j � 0,

and hence E � 0. Since

ρ(A)− μ � ρ(Bi j) � ρ(Di j
11),

we obtain

(ρ(A) − μ)2I2− (ρ(A)− μ)Di j
11−Di j

12(D
i j
12)

T

= (ρ(A)− μ)((ρ(A)− μ)I2−Di j
11)−Di j

12(D
i j
12)

T

� ρ(Bi j)(ρ(Bi j)I2−Di j
11)−Di j

12(D
i j
12)

T = ρ(Bi j)E � 0,

which implies
(ρ(A)− μ)2I2− (�− μ)Di j

11−Di j
12(D

i j
12)

T � 0.

Hence,

( ρ(A)− μ)2 � ρ((�− μ)Di j
11 +Di j

12(D
i j
12)

T ) = ρ�
i j(A).

From Cases (i) and (ii), the proof is completed. �
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REMARK 2. From the proof of Theorem 2, it should be noted that the lower bound
in Theorem 2 increases as � gets larger. Moreover, the bound in Theorem 2 can be
better than that given by Theorem 1 when � is near to ρ(A) , because of, for any i �= j ,
ρ(Bi j) = ||Bi j||2 � ||Fi j||2.

Let A = (ai j) ∈ Rn×n be a nonnegative matrix, and let S(A) = (si j) be the geo-

metric symmetrization of A with si j = (ai ja ji)
1
2 . Schwenk [11] showed that

ρ(A) � ρ(S(A)),

which, together with Theorems 1 and 2, can be applied to give the lower bounds for the
Perron root of a general nonnegative matrix.

COROLLARY 1. Let A ∈ Rn×n be a nonnegative matrix, let μ be the least diago-
nal element of A, and let B = A− μIn . Then

ρ(A) � μ+
[
max
i�= j

{
τi j (S(B))

}] 1
2

.

COROLLARY 2. Let A ∈ Rn×n be a nonnegative matrix, let μ be the least di-
agonal element of A, and let � � μ be any lower bound of the Perron root of S(A) .
Then

ρ(A) � μ+
[
max
i�= j

{
ρ�

i j (S(A))
}] 1

2

.

The following theorem shows that the bound in Corollary 1 is sharper than the
bound (1.2).

THEOREM 3. Let A = (ai j) ∈ Rn×n be a nonnegative matrix. Then the lower
bound in Corollary 1 is sharper than the bound (1.2).

Proof. Let B = A − μIn and S(B) = (si j) . From the proof of Theorem 1 and
Lemma 1 we obtain

μ+[τi j(S(B))]
1
2 = μ+

∥∥∥∥
[

si1 si2 · · · sin

s j1 s j2 · · · s jn

]∥∥∥∥
2

� μ+

∥∥∥∥∥
[

aii − μ (ai ja ji)
1
2

(ai ja ji)
1
2 a j j − μ

]∥∥∥∥∥
2

=

∥∥∥∥∥
[

aii (ai ja ji)
1
2

(ai ja ji)
1
2 a j j

]∥∥∥∥∥
2

=
1
2

(
aii +a j j +

[
(aii −a j j)2 +4ai ja ji

] 1
2

)
,

which implies that the lower bound in Corollary 1 is sharper than the bound (1.2). �
The following result shows that, the bound given by Corollary 2 is better than the

bound (1.3) when � is large enough.
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THEOREM 4. Let A = (ai j) ∈ Rn×n be a nonnegative matrix, let μ be the least
diagonal element of A, and let � be the lower bound of the Perron root of S(A) satisfy-
ing

� � μ+max
i�= j

{
ρ
(
S(B){S(i, j)}

)}
, (2.3)

where B = A− μIn, and S(i, j) is defined as in the proof of Theorem 2. Then the lower
bound in Corollary 2 is sharper than the bound (1.3).

Proof. We define, for any i ∈ 〈n〉 ,

S(B) = (si j),S(i) = 〈n〉−{i}

and, for any i �= j ,

Di j
11 =

[
sii si j

s ji s j j

]
, Di j

12 =
[

si1 · · · sii−1 sii+1 · · · si j−1 si j+1 · · · sin

s j1 · · · s ji−1 s ji+1 · · · s j j−1 s j j+1 · · · s jn

]
.

From the proof of Theorem 2 and (2.3) we can see that, for any i �= j ,

√
ρ�

i j (S(A)) =
√
ρ
(
(�− μ)Di j

11 +Di j
12(D

i j
12)T
)

�
√
ρ
(
ρ(S(B){S(i, j)})Di j

11 +Di j
12(D

i j
12)T
)

= ρ
(
S(B){S(i, j)}

)
� max

{
ρ
(
S(B){S(i)}

)
,ρ
(
S(B){S( j)}

)}
= max

{
ςi(A)− μ ,ς j(A)− μ

}
,

which implies that the bound in Corollary 2 is sharper than the bound (1.3). �

REMARK 3. The bound in Corollary 2 may be sharper than the bound (1.3) even
if the conditions of Theorem 4 are not satisfied; see Example 2 in the next section.

3. Numerical examples

In this section, the presented bounds are compared with some known ones by using
two examples.

EXAMPLE 1. Consider the positive matrix used in [3]–[5], [7], [12], [14]–[15]:

A1 =

⎡
⎣1 1 2

2 1 3
2 3 5

⎤
⎦ , ρ(A1) ≈ 7.5311.
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By some known lower bounds we get

Frobenius’ bounds (Theorem II.1.1 in [10]): ρ(A1) � 4;

Ledermann’s bounds (Theorem II.1.3 in [10]): ρ(A1) � 4.2910;

Ostrowski’s bounds (Theorem II.1.4 in [10]): ρ(A1) � 4.7321;

Brauer’s bounds (Theorem II.1.5 in [10]): ρ(A1) � 6.1623;

Brauer,Gentry’s bounds(p.106 in [2]): ρ(A1) � 4.8730;

(Theorem 2 in [3]): ρ(A1) � 6.6056;

Deutsch, Wielandt’s bounds (p. 251 in [4]): ρ(A1) � 7;

Szulc’s bounds (Theorem 1 in [14]): ρ(A1) � 4.9158;

(Theorem 2 in [15]): ρ(A1) � 5.3589;

Song’s bounds (Theorem 2 in [12]): ρ(A1) � 6.5841;see Example 2 in [12];

Kolotilina’s bounds (Corollary 3 in [5]): ρ(A1) � 6.6095;

(Theorem 5 in [5]): ρ(A1) � 7.1231;

Lu’s bounds (Theorem 4 in [7]): ρ(A1) � 6.8662;see Example 2 in [7];

Merikoski, Virtanen’s bounds (Corollary 5 in [9]): ρ(A1) � 4.9367.

Applying Corollary 1 to A1 yields ρ(A1) � 7.1111. For A1 the lower bound in
Corollary 1 is better than the other listed known ones, except for the Kolotilina’s bound
in [5, Theorem 5]. Taking the lower bounds

� = 4, � = 7, � = 7.1111 and � = 7.1231

obtained above, by Corollary 2 we have, respectively,

ρ(A1) � 6.0468, ρ(A1) � 7.3207, ρ(A1) � 7.3630 and ρ(A1) � 7.3676.

EXAMPLE 2. Consider the matrix

A2 =

⎡
⎢⎢⎣

2 1 0 1
1 0 2 1
0 2 0 0
1 1 0 1

⎤
⎥⎥⎦ , ρ(A2) ≈ 3.4551.

By simple computations, we derive

Frobenius’ bounds (Theorem II. 1.1 in [10]): ρ(A2) � 2;

Brauer, Gentry’s bounds (p. 106 in [2]): ρ(A2) � 2.5616;

(Theorem 2 in [3]): ρ(A2) � 2.6180;

Szulc’s bounds (Theorem 1 in [14]): ρ(A2) � 2.1794;

Song’s bounds (Theorem 2 in [12]): It is trivial;

Kolotilina’s bounds (Corollary 3 in [5]): ρ(A2) � 3.2500;

(Theorem 5 in [5]): ρ(A2) � 2.7321;

Merikoski, Virtanen’s bounds (Corollary 5 in [9]): ρ(A2) � 1.9315.
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Since A2 is symmetric, using Theorem 1, we can get ρ(A2) � 3, which is sharper
than ρ(A2) � 2.7321 by the Kolotilina’s bound in [5, Theorem 5]. Taking the lower
bounds

� = 2, � = 3 and � = 3.25 (3.1)

obtained above, by Theorem 2 we have, respectively,

ρ(A2) � 2.8284, ρ(A2) � 3.1817 and ρ(A2) � 3.2680,

which are all sharper than ρ(A2) � 2.7321 by (1.3). But the condition (2.3) cannot be
satisfied. In fact, by simple computations and Theorem 4, the values of � given by (3.1)
are strictly smaller than

μ +max
i�= j

{
ρ
(
S(B){S(i, j)}

)}
= 3.2774.

REMARK 4. From Examples 1-2, we remark that the lower bounds given in this
paper are effective, and improve the lower bounds (1.2) and (1.3). It is worth noting that
the presented bound in Corollary 1 is not always better than the existing lower bounds.
The bound in Corollary 2 depends on the lower bound � . If � is chosen to be large
enough, Examples 1-2 showed that the bound in Corollary 2 are always better than the
existing lower bounds.
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