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BOUNDS FOR LINEAR FUNCTIONALS ON

MONOTONE FUNCTIONS IN Lp –SPACES

AGNIESZKA GORONCY

(Communicated by B. Opic)

Abstract. We consider the Lp[a,b] space of functions which are integrable in the p -th power on
a finite interval [a,b] , for 1 � p < ∞ . We establish optimal bounds on continuous linear fun-
ctionals over this space, imposing the restrictions on elements of the space, which are assumed
to be nondecreasing, integrable to zero, with the unit norm. We mention some applications of
the bounds in the probability and statistics.

1. Introduction

Let 1 � p < ∞ . Consider the space of functions Lp[a,b] which are integrable
in the p -th power on a finite interval [a,b] . It is known (see Dunford and Schwartz,
(1958, Theorem 1, p. 286)) that every continuous linear functional on this space has
the following form

Th(g) =
∫ b

a
g(x)h(x)dx, g ∈ Lp[a,b], (1.1)

where h is an arbitrarily chosen element of Lq[a,b] , for q = p/(p− 1) if p > 1 and
q = ∞ if p = 1, with L∞[a,b] defined below. This theorem allows us to identify the
dual space of Lp[a,b] with the space Lq[a,b] . Using the Hölder inequality (see, eg.,
Mitrinović, (1970)), the norm of the functional (1.1) equals to

||Th||p = sup
0 �=g∈Lp[a,b]

Th(g)
||g||p = sup

||g||p=1
Th(g) = ||h||q =

(∫ b

a
|h(x)|qdx

)1/q

. (1.2)

By L∞[a,b] we denote the space of essentially bounded functions with the norm

||g||∞ = ess sup
a�x�b

|g(x)|.

In contrast to the case 1 � p <∞ , the dual space of L∞[a,b] is much more complicated.
It includes L1[a,b] in the sense that every element g ∈ L1[a,b] determines functional
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(1.1). However, formula (1.2) remains valid for p = ∞ , even though L1[a,b] does not
represent the whole dual space of L∞[a,b] .

We would like to improve the bound (1.2), imposing some restrictions on functions
g . We assume that they belong to the family

Cp = {g ∈ Lp[a,b] : g ↗,T1(g) = 0, ||g||p = 1} (1.3)

of nondecreasing elements of Lp[a,b] with the unit norm and integral equal to zero. We
establish

|||Th|||p = sup
g∈Cp

Th(g) = sup
g∈Cp

∫ b

a
g(x)h(x)dx (1.4)

for arbitrarily fixed 0 �= h ∈ Lq[a,b] .
There are probabilistic and statistical interpretations of (1.4) and evaluation of this

integral is of special interest to statisticians. For instance, the evaluations of linear

combinations of order statistics
n
∑
i=1

ciXi:n are interesting, with a given real coefficient

vector c̃ = (c1, . . . ,cn) , where Xi:n stands for the i-th smallest value among X1, . . . ,Xn ,
and X1, . . . ,Xn are iid random variables with a common, arbitrary, possibly continuous
distribution function F . We have

E

n

∑
i=1

ci
Xi:n − μ
σp

=
∫ 1

0

F−1(x)− μ
σp

fc̃:n(x)dx, (1.5)

where μ is the expectation of X1 , σ p
p is the p -th central absolute moment of X1 , and

fc̃:n(x) =
n

∑
i=1

cin

(
n−1
i−1

)
xi−1(1− x)n−i,

denotes the respective linear combination of densities of i-th order statistics from the
standard uniform distribution. We can also use the results concerning (1.4) in order to
determine the bounds on the expectation of record values. We define upper records Rn ,
based on an infinite sequence of iid continuous random variables, as a value which is
greater than the previously determined record, where R0 = X1 . Therefore

E
Rn − μ
σp

=
∫ 1

0

F−1(x)− μ
σp

fn(x)dx,

where

fn(x) =
[− ln(1− x)]n

n!
,

(see David and Nagaraja (2003)). Further examples of statistical functionals can be
found in Rychlik (2001).

Notice that the lower bound on (1.1) over the set (1.3) can be easily obtained using
the upper bound on another functional, because

inf
g∈Cp

Th(g) = − sup
g∈Cp

T−h(g).
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Therefore we confine ourselves to upper bounds. Notice that

inf
g∈Cp

Th(g) �= − sup
g∈Cp

Th(g),

which means that upper and lower bounds over the set (1.3) are not symmetric about
zero, in contrast to the general ones (1.2). Moreover, the supremum and infimum may
have the same sign, and in particular sup

g∈Cp

Th(g) � 0 for some h . The methods of

establishing positive and negative upper bounds are totally different. Corresponding
bounds for sequences were considered by Rychlik (1992), and Goroncy and Rychlik
(2006), respectively.

2. Positive bounds

Positive bounds (1.2) in case p = 2 were presented in Rychlik (2007). Here we
present the generalizations of his results for 1 � p � ∞ .

Notice that

Th(g) =
∫ b

a
g(x)[h(x)− c]dx � ||h− c||q,

for arbitrary real constant c , because g ∈ Cp integrates to zero. In case p = q = 2 it is
easy to show, that

inf
c∈R

||h− c||2 = ||h0||2,
where

h0(x) = h(x)− 1
b−a

∫ b

a
h(t)dt, (2.1)

is the projection of h onto the linear subspace of functions orthogonal to constants. If
h is nondecreasing, then the equality in the following inequality

Th(g) � ||h0||2, g ∈ C2, (2.2)

holds if

g(x) =
h0(x)
||h0||2 ∈ C2. (2.3)

In the opposite case the inequality (2.2) can be improved by using the following in-
equality, which was proved in a more general version by Moriguti (1953).

THEOREM 1. Let f be the integrable function on some interval [a,b] and let
F(x) =

∫ x
a f (t)dt , a � x � b be its antiderivative. Moreover, let F be the supremum

of all the convex functions on [a,b] , which are not greater than F . Let f be the right-
continuous derivative of F . Then we have the following inequality∫ b

a
g(x) f (x)dx �

∫ b

a
g(x) f (x)dx

for every nondecreasing functions g, for which both integrals exist. The equality holds
iff g is constant on every open interval, on which F > F .
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For p = 2, we put f = h0 , and we obtain the bound and attainability conditions by
replacing h0 by h0 in (2.2) and (2.3) (cf. Rychlik (2007)). Below we consider the
generalization of this result for 1 < p < ∞ .

Denote the antiderivative of h by

H(x) =
∫ x

a
h(t)dt,

and the antiderivative of (2.1) by

H0(x) =
∫ x

a
h0(t)dt =

∫ x

a
h(t)dt− x−a

b−a

∫ b

a
h(t)dt = H(x)− x−a

b−a
H(b), a � x � b.

(2.4)
Notice that H0(a) = H0(b) = 0.

THEOREM 2. Let 1 < p < ∞ and h ∈ Lq[a,b] . For every g ∈ Cp we have the
following inequality

∫ b

a
g(x)h(x)dx �

(∫ b

a
|h0(x)− cp|qdx

)1/q

= ||h0− cp||q, (2.5)

where h0 is the right-continuous derivative of the greatest convex minorant H0 of the
antiderivative H0 of function h0 , and cp is some constant.

If the antiderivative (2.4) of function (2.1) is negative for some a < x < b, then
h0 is not a constant function and there exists cp and a unique d ∈ (a,b) such that
h0(d−) � cp � h0(d+) and

d∫
a

[cp−h0(x)]
q/pdx =

b∫
d

[h0(x)− cp]q/pdx.

Moreover, the right hand-side of (2.5) is positive and the equality is attained by
the unique function

g0(x) =
|h0(x)− cp|q/p

||h0− cp||q/p
q

sgn{h0(x)− cp}. (2.6)

Proof. By using the Moriguti inequality (see Theorem 1), and the Hölder inequal-
ity (see Mitrinović, (1970)) we get

∫ b

a
g(x)h(x)dx =

∫ b

a
g(x)h0(x)dx

�
∫ b

a
g(x)h0(x)dx =

∫ b

a
g(x)(h0(x)− c)dx (2.7)

�
(∫ b

a
|g(x)|pdx

)1/p (∫ b

a
|h0(x)− c|q

)1/q

(2.8)

= ||h0(x)− c||q, (2.9)
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for an arbitrary constant c . Provided h0 is non-constant, such a value c exists and
satisfies

h0(a) < h0(d−) � c � h0(d+) < h0(b),

for some d ∈ (a,b) . Note that

∫
h0(x)<c

(c−h0(x))
q/pdx−

∫
h0(x)>c

(h0(x)− c)q/pdx

is a continuous, strictly increasing function of argument c that takes both positive and
negative values and cp is the unique point where it crosses the axes.

If H0 is negative somewhere in (a,b) , then function h0 is not constant, and so
the denominator of (2.6) is nonzero. Hence (2.6) is a well defined function and one
can easily check that it belongs to (1.3). It is the only function with the unit norm,
which ensures the equality in the Hölder inequality in (2.8). Functions (2.6) and h0
are constant on the same intervals. Hence (2.6) ensures the equality in the Moriguti
inequality in (2.7) as well. �

REMARK 1. Inequality (2.5) holds for any constant c , not just cp . The existence
of (2.6) shows that cp is the choice of c that minimizes the right-hand side of (2.5) ,
so that this bound is optimal.

Notice that if h0 is a constant function, then in Theorem 2 we obtain the trivial
zero bound.

Now we present two Theorems concerning the cases p = 1 and p = ∞ .

THEOREM 3. Let h ∈ L∞[a,b] . For every g ∈ C1 we have the following bound

∫ b

a
g(x)h(x)dx � 1

2
[h0(b)−h0(a)]. (2.10)

Moreover, if for some a < x < b we have H0(x) < 0 , then the bound (2.10) is strictly
positive, attained when

α = sup{x : h0(x) = h0(a)} > a, (2.11)

β = inf{x : h0(x) = h0(b)} < b, (2.12)

by function

gα ,β (x) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2(α−a) , a < x < α,

0, α < x < β ,

1
2(b−β ) , β < x < b.

(2.13)

If α = a or/and β = b, then the inequality in (2.10) is strict but equality is approached
by the sequences of functions (2.13) with α ↘ a or/and β ↗ b.
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Proof. Again, for every g∈C1 , by Theorem 1 and the Hölder inequality for p = 1
we have

b∫
a

g(x)h(x)dx =
b∫

a

g(x)h0(x) �
b∫

a

g(x)h0(x) =
b∫

a

g(x)(h0(x)− c)

�
b∫

a

|g(x)|dx · ess sup
a<x<b

|h0(x)− c|= ||h0− c||∞, (2.14)

where c is an arbitrary constant. Note that since h0 is nondecreasing, we have

||h0− c||∞ � (h0(b)−h0(a))/2. (2.15)

The bound in (2.14) is optimal when the equality in (2.15) holds, that is for c = c1 =
(h0(a)+h0(b))/2.

In general, the equality in (2.14) holds when g is positive if

h0− c1 = ess sup
a<x<b

|h0(x)− c1|,

negative if
h0 − c1 = −ess sup

a<x<b
|h0(x)− c1|,

and zero if

h0 − c1 ∈
(
−ess sup

a<x<b
|h0(x)− c1| , ess sup

a<x<b
|h0(x)− c1|

)
.

The last case can not arise because g is assumed to have norm equal to 1.
The simplest case is when h0 is constant on the ends of interval (0,1) , that is if

(2.11) and (2.12) hold. Then the requirement g ∈ C1 implies (2.13). Note that this also
ensures the equality in the Moriguti inequality.

If h0 is not constant on the ends of interval (0,1) , then the equality in (2.14) can
not be attained. It can only be approached by the sequences of functions (2.13) with
α ↘ a or/and β ↗ b . �

THEOREM 4. Let h ∈ L1[a,b] and m = a+b
2 . For every g ∈ C∞ we have the

following bound ∫ b

a
g(x)h(x)dx � −2H0 (m) . (2.16)

Moreover, if for some a < x < b we have H0(x) < 0 , then the bound (2.16) is strictly
positive, attained by an arbitrary element g of C∞ defined as follows. If H0(m) =
H0(m) then g(x) = 1(m,b)(x)− 1(a,m)(x) . Otherwise, let (a′,b′) be the component
of the open set {x : H0(x) > H0(x)} that contains m and then g(x) = 1(b′,b)(x) +
a′−a+b′−b

b′−a′ 1(a′,b′)(x)−1(a,a′)(x) .
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Proof. Analogously, for every g ∈ C∞ , we have

b∫
a

g(x)h(x)dx =
b∫

a

g(x)h0(x) �
b∫

a

g(x)h0(x) =
b∫

a

g(x)(h0(x)− c)

� ess sup
a<x<b

|g(x)| ·
b∫

a

|h0(x)− c|dx = ||h0− c||1, (2.17)

where c is an arbitrary constant. Taking m = a+b
2 and c = h0(m) gives,

||h0 − c||1 =
m∫

a

(c−h0(x))dx+
b∫

m

(h0(x)− c)dx = −2H0(m),

and implies (2.16).
If H0(x) < 0 for some x , then by convexity, H0(m) < 0 as well, so the right-

hand side of (2.16) is positive. Since H0 is the greatest convex minorant of H0 , either
H0(m) = H0(m) or else the graph of H0 near m is a line segment whose endpoints are
on the graph of H0 . That is, there exists an interval (a′,b′) , containing m , such that
H0(a′) = H0(a′) , H0(b′) = H0(b′) , and

H0(m) =
b′ −m
b′ −a′

H0(a′)+
m−a′

b′ −a′
H0(b′).

In the former case, the function g(x) = 1(m,b)(x)−1(a,m)(x) , which is in C∞ , produces

equality in (2.16). In the latter case, taking g(x) = 1(b′,b)(x) + a′−a+b′−b
b′−a′ 1(a′,b′)(x)−

1(a,a′)(x) (also in C∞ ) gives,

b∫
a

g(x)h(x)dx =
b∫

a

g(x)h0(x) = −H0(b′)+
a′ −a+b′−b

b′ −a′
(H0(b′)−H0(a′))−H0(a′)

= −2

(
b′ −m
b′ −a′

H0(a′)+
m−a′

b′ −a′
H0(b′)

)
= −2H0(m).

Thus, the equality in (2.16) is attained for this g . �

3. Nonpositive bounds

Here we present the results possibly improving zero bound (2.5), for the func-
tionals h , for which the antiderivative (2.4) of function (2.1) is nonnegative, and in
consequence its greatest convex minorant H0 and the derivative h0 of the minorant are
zero.

Nonpositive bounds in case p = 2 were described by Rychlik (2007, Theorems 3,
4). Below we present the generalizations of his results for 1 � p � ∞ .
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THEOREM 5. Let 1 � p < ∞ and h ∈ Lq[a,b] be fixed. If H0(x) � 0 for every
a � x � b and H0(θ ) = 0 for some a < θ < b, then for every function g ∈ Cp we have
the following inequality

b∫
a

g(x)h(x)dx � 0.

The equality holds for the following two-valued function

fθ (x) =

⎧⎨
⎩

− b−θ
[(θ−a)p(b−θ)+(θ−a)(b−θ)p]1/p , a < x < θ ,

θ−a
[(θ−a)p(b−θ)+(θ−a)(b−θ)p]1/p , θ < x < b.

(3.1)

Proof. By the assumption h0(x) = 0, a � x � b . Using the Moriguti inequality
(see Theorem 1), we have∫ b

a
g(x)h(x)dx =

∫ b

a
g(x)h0(x)dx �

∫ b

a
g(x)h0(x)dx = 0.

According to this theorem, the equality is attained for function g which is constant on
intervals (a,θ ) and (θ ,b) , with a possible positive jump in θ . The only nondecreasing
function with the unit norm which is integrable to zero and satisfies these conditions is
given by (3.1). �

Now suppose that the continuous function (2.4) is strictly positive on an open
interval (a,b) .

THEOREM 6. Let 1 � p � ∞ and h ∈ Lq[a,b] be fixed. If H0(x) > 0 for all
a < x < b, then for every function g ∈ Cp we have the following inequality

b∫
a

g(x)h(x)dx �

⎧⎨
⎩− inf

a<x<b

H0(x)(b−a)

[(x−a)p(b− x)+ (x−a)(b− x)p]1/p
, 1 � p < ∞,

0, p = ∞.

(3.2)

If 1 � p < ∞ , then the equality in the above inequality is attained for the function
of the form (3.1) , where θ ∈ (a,b) is the point at which the infimum of the right-hand
side of (3.2) is attained. If the infimum is attained in limit as x ↘ a (x ↗ b), then
the equality in (3.2) is attained in limit for sequences of functions (3.1) with θ ↘ a
(θ ↗ b).

If p = ∞ , then the equality is attained in limit by the function

fθ (x) =

{−1, a < x < θ ,

θ−a
b−θ , θ < x < b,

a < θ � a+b
2 ,

fθ (x) =

{− b−θ
θ−a , a < x < θ ,

1, θ < x < b,

a+b
2 � θ < b,

(3.3)

if θ ↘ a or θ ↗ b.
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Proof. Again, using Theorem 1 we get

Th(g) =
∫ b

a
g(x)h(x)dx �

∫ b

a
g(x)h0(x) = 0, g ∈ Cp. (3.4)

Because H0(x) > H0(x) = 0, a < x < b , then the equality in (3.4) is attained if g(x)
is constant on (a,b) . However none of the elements of (1.3) is constant, because
b∫
a

g(x)dx = 0 implies g(x) = 0, which is contradictory to the condition ||g||p = 1.

Therefore we have a sharp inequality in (3.4).
Suppose 1 � p �∞ and fix an h∈ Lq[a,b] satisfying H0(x)> 0 for each x∈ (a,b) .

For every t ∈ (a,b) , define gt by

gt(x) =

{− b−t
b−a , a < x < t,

t−a
b−a , t < x < b.

Note that gt/||gt||p ∈ Cp , it is the ft defined in (3.1). For any g ∈ Cp , dg is a non-
negative (Lebesgue-Stieltjes) measure, so

g(x) =
1

b−a

⎛
⎝ x∫

a

[g(x)−g(s)]ds−
b∫

x

[g(s)−g(x)]ds

⎞
⎠

=
1

b−a

⎛
⎜⎝

x∫
a

∫
(s,x]

dg(t)ds−
b∫

x

∫
(x,s]

dg(t)ds

⎞
⎟⎠

=
∫

(a,x)

t−a
b−a

dg(t)−
∫

(x,b)

b− t
b−a

dg(t) =
∫

(a,b)
gt(x)dg(t).

If f ∈ Lq[a,b] , then f g is integrable, and an interchange of the order of integration
shows

b∫
a

f g =
∫

(a,b)

⎛
⎝ b∫

a

f gt

⎞
⎠dg(t) �

⎛
⎝ sup

a<t<b

1
H0(t)

b∫
a

f gt

⎞
⎠ ∫

(a,b)

H0(t)dg(t).

Taking supremum over all f in the unit ball of Lq[a,b] gives,

1 �
(

sup
a<t<b

||gt ||p
H0(t)

) ∫
(a,b)

H0(t)dg(t),

or, equivalently,

−
∫

(a,b)

H0(t)dg(t) � − inf
a<t<b

H0(t)
||gt ||p .
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To see that this is (3.2), observe that
b∫
a

h0gt = −
t∫
a

h0 = −H0(t) , so

b∫
a

hg =
b∫

a

h0g =
∫

(a,b)

⎛
⎝ b∫

a

h0gt

⎞
⎠dg(t) = −

∫
(a,b)

H0(t)dg(t).

The continuity of H0(t)/||gt ||p shows that the infimum in (3.2) is obtained either when
g = gt/||gt ||p for some t ∈ (a,b) or as a limit of these as t → a or t → b . When p =∞ ,
||g||p � 1 so the infimum is zero. �

THEOREM 7. Let h∈ L1[a,b] . If H0(x) � 0 , a < x < b, and there exists a< θ < b
such that H0(θ ) = 0, then

∫ b

a
g(x)h(x)dx � 0, g ∈ C∞.

The equality is attained by the function defined in (3.3) .

The proof is analogous to the proofs of Theorems 5 and 6.
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Poland
e-mail: gemini@mat.uni.torun.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


