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AN INTEGRAL INEQUALITY FOR n-CONVEX FUNCTIONS

HACENE BELBACHIR AND MOURAD RAHMANI

(Communicated by Z. Pdles)

Abstract. We extend Lupag inequality for n-convex (n-concave) functions. As consequences
some inequalities are derived.

1. Introduction

We say that a real function f is n-convex (n € N) on the segment [a,b], if its
divided differences involving n -+ 1 points are nonnegative, i.e.

[x07x17'”7xn;f] 207 (l)

for any xo,x1,...,X, € [a,b], where divided difference is defined by recurrence as (see
(5,91

[xo; ] := f (x0),

X1,y xns f]— [xo,...,x,,,l;f].

[X0, X1, -+« X0 f] :=

Xp — X0
Note that (1) can be written as follows
1 1 - 1
X0 X1 e Xn
A T
xpx e X
f(xo) f (1) -+ f (xn)
for any xg,x1,...,X, € [a,b] such that xog < x; < --- < x,,. The 2-convexity reduces to

standard convexity.
Let f,g: [a,b] — R be integrable functions, consider the Cebysev functional

b b b
T =g [ Ws W ot [ra fsas )
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where the integrals involved exist.
In 1971, Atkinson [2] showed that if f,g are convex functions which are twice
differentiable on [a,b] and

then T(f,g) > 0. In 1972, Lupas [6] proved the following inequality for convex func-

tions
T(18) ﬁ/h (x- “;b)f(xmx/b (-5 )sax. o

a

with equality when at least one of the functions f,g is an affine function on [a,b].
In 2008, Ciobotariu-Boer [3] generalized (3) to 3-convex functions as

T(fg) > ﬁ/b (x- “;b)ﬂx)dx/b (=557 ) stax
2 (-5 - 5 e
X/b ((’“‘ a;b)z‘ (b;")z) g (x)dx,

with equality when at least one of functions f,g is a polynomial of degree at most two
on [a,b].

Our goal is to generalize the above inequalities to n-convex functions (n > 4).
For reaching this aim, we need the following result (see [3, 9]).

LEMMA 1. If f,g are n-convex (n-concave) functions on the interval [a,b], then

An(f,8) = : o : : =0, @
F e"‘l) F(e") --- F(ez"_z) F e"_lg)
F(f) Flef) - F )

where ¢ (x) = x| x € [a,b] and F is one of the following functionals:
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b
o [p@f @
F(f)i= g [f0ax, F(f):= /,,7
‘ p(x)dx

F(f) = zpif(xi) ()C,‘ € [aab};i:(ll:"';n;zpi: 1) 5
i=1

i=1

where p :|a,b] — R, be an integrable function.

2. Main results

Without loss of generality, we can work on [—1, 1], using the substitution

a+b b—a
= t
= ()

and (4) becomes

1
1 0 : %/s(t)dt
1
1
0 : 0 %/ts(t)dt
-1
An(r7s>: % 0 % : 207

1 1 1 1
Lr@yde & [er(t)yde - 3 [ ()de L [ r(2)s(2)dt
R A

where functions r and s are defined by

o ::f<a—;b+<b;a>t>’s(t) _ (a—2|—b+ (b;a)t)

119

®)

(6)

It is easy to see that functions f and g are n-convex on [a,b] if and only if the

functions r and s, define by (6) are n-convex on [—1,1].

Let us consider A,(r,s) for n =2,3 and 4. By simple computations, we obtain

1 1 1 1 1

-1 -1 -1 -1 —1

l/,(,)s(;)dz—% r(t)dt/s(t)dt—%/tr(r)dr/ts(t)dt ;
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i.e.

As (rys) = %Al (r,s) — %/tr(z)dr/m(z)dr.

—
—_
—

1

A3(r,s):%_lr(t)s(t)dt—1—12_/1t2r(t)dt_/1 ()dt—%l (t)dt_/ltr(t)dt

1 1 1 !
+%/ls(t)dt/t2r(t)dt+%/V(I)dt/tzs( )dt — % (I)dt/r(”dt’

= -1 ~1 -1 ~1 Z1

—

A3 (V,S) = Tz

1 1
4 1 3 1 3 1
A3 (1s) = 5A2(r9) = 55 (Etz — 5) r(t)dt/ (Etz — E) s(t)dt.
1

We continue in this fashion obtaining

Ay (r,s) = 135 r,s) 3375/< t ——t) )dt/: (%ﬁ—%t)s(t)dt.

We are now able to guess the relation between A, | and A,. The proof of this
statement is in Lemma 4

H 2n+1
A1 (r,s) = gHAan——irJﬂH/) m/P (7)

n

L
where H, := det((cit+;j—2))1<ij<n With ¢;:= % [ #'dt, is the Hankel determinant and
-1
P, (¢) is Legendre polynomial of degree n.

Rodrigues’ formula gives

1 4"
2n! dt"

P, (1) := (*-1)", n>0. (8)
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The following well known properties, will be used [1, 10]

P(1)=1, )
Pn(_t): (_1)nPn(t)7 (10)
@n+ )P (t) = By (1) = Py (1), (1
1 n 1 "
/h(t)Pn (1)dt = (2_2)' /(ﬂ— 1)"‘1;5”41;7 (12)
—1 —1

where £ (1) is differentiable to the n' order,on —1 <7< 1.
The first Legendre polynomials are

Py(t) =1, P (1) =1,
p(t)=4%(3%-1), Py(x) =4 (513 —31),
Py (1) = § (351* =301 +3), Ps(t) = § (6365 — 701 +15¢).

An important property of Legendre polynomials is that they are orthogonal with
respect to classical inner product on the interval [—1, 1]

2

= 5—%mn 1
2n+16’ (13)

/Pn (t) By, (¢)dt

where §,,,, denotes Kronecker symbol.
From the general theory of orthogonal polynomials, it follows that the polynomials
P, (t) must have the determinant representation

Ho Uy M2 -+ HUn
(2n) M Uy 3z - Hpgd
_ n . . . .
By (t) - Hn22n . : : : ’ (14
Hp—1 Un Un+t1 - U2n—1
1 ¢ 2 ... "

where p; 1= /tidt.
~1
The following lemma states some properties of the Hankel determinant H, .

LEMMA 2. For n> 1, we have

Zn(nfl)nfl (l')2

H, = -
" no (2 — 2y

15)

Hn+1 = Hna (16)
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2

2n+ 1 Hn+l

1
) /lt"Pn(t)dt =5 (17)

Proof. Tt is immediate that H, = 2"("—1) det< 1 , using Cauchy deter-

i+j-1 ) 1<i,j<n
minant formula we get (15). We obtain (16) as consequence of (15). For (17), let us

denote
1

I, = /I"Pn (t)dt,
-1
applying (11), we have

1 1

1 n n
I, = Tl /t P,’,+1(t)dt—/t P, (t)dt|,
~1 -1
using integration by parts, and from (9) and (10) we find
Ly=——1I
n — 2n+1 n—1,
ie.
on+l
S enrn (Y

it is obvious that this implies (17).

The notation

is used to simplify the following Lemmas. The next Lemma is needed to prove the next
result.

LEMMA 3. We have
cp €1 € -+ Cp
-1 1 €l €2 €3 - Cpyl
o Cn—1 Cn Cnyl *** C2n—1

Go 01 92 ... P
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Proof. Tt follows from (14) that

o €1 C2
o 1 €2 €3
Hy2 .
+1
(2,1) Pn( ) 2 . .
" Cn—1 Cn Cpt1 "
11
2 2t ot
Thus, upon integration
€0 C1
C1 2
H 2n 1
/P Cn—1 Cn
1 1 1
l/r(r)dr l/tr(t)dt l/tzr(t)dt
2 2 2
-1 -1 ~1

The proof is now complete. [

LEMMA 4. Forn>

Cn

Copn—

1

H, 2n+1
Arst (15) = 4, (1) = == Hy [B(0)r

n

and is given explicitly by

1

Ay (r,s) = H, %/r(t)s() 3 12"“/;)

-1

Proof. Expressing A,+1 as

Con Cn Cptl " Cop—1
Cn o €1 " Cp—1

Ani1(5S) = oyt et €n oo Cona

O G0 01 . Do %/F(Z)s(t)dt

1
t)dt/P,, (t)s(t
—1

-1

n
5t

© Cntl

1

=
—
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Cn
Cp+1

Con—1

'r (1) dt

1, the determinant A, satisfies the recurrence relation

1
Ydt | P, (¢)s(¢)dt
/

Tn
To

Tn—1

Yde |, (18)
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and applying the Desnanot-Jacobi identity (see [4], pp. 11), we get

HnAn-H(r;S) = Hp 1A, (r,S)

co €1 €2 - Cp o €1 -1 T
Cl C2 €3 +° Cptl i C - Cpy1 T
Cn—1 Cn Cp41 " C2n—1||Cn—1 Cn *** C2p—1 Tp—1

o ¢ P ... O Cn Cpyl *  Cop—1 Ty

Using Lemma 3 and (16), we get the result. This completes the proof. [

Now, we are able to establish a sharp lower bound involving Legendre polynomi-
als, for the CebySev functional (2), where f and g are n-convex functions.

THEOREM 1. If f,g are n-convex (n-concave) functions on the interval [a,b],
then the following inequality holds

b

ba S W / dx/g

a
ol k41 2x—a—>b 2x—a—>b
P W/Pk< h—a ) dx/Pk< )g(x)dx, (19)
k=1 2

where Py (x) are Legendre polynomials. The equality holds when at least one of the
functions f or g is a polynomial function of degree at most n—1 on |a,b]. The reverse
inequality holds when f is n-convex (n-concave) and g is n-concave (n-convex).

Proof. We translate (18) to the interval [a,b] and use (6), we get (19). O

THEOREM 2. If the functions f and g are n-convex (n-concave) functions on
[a,b], respectively one of them is n-convex and the other is n-concave. Then, we obtain
(19), respectively the reverse of (19). The equality in (19) holds when at least one of
the functions f,g is a polynomial function of degree at most n—1 on |a,b] and the
reverse inequality holds if f is n-convex (n-concave) and g is n-concave ( n-convex).
Morveover, if f,g are differentiable to the (n—1) order on |a,b], then the following
inequality holds

b

bia/ﬂx)g(x)dx—(b / dx/g

a

n=1 A2k b b
g %%/ (=)t (=0 O [ (- a)t (- ) 6 (@)

(20)
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Proof. We use (12) to obtain (20). [

COROLLARY 1. If f,g are n-convex (n-concave) functions on [a,b], for n > 2
we have

b » b
: 0 (x) g LS ') 0)
—a/f ()7 (x)dx (b—a)za/f (x)dx/g x)dx
EUnEY i | 2x—a—>b I—a—b "
(b—a)? /Pk( h—a )f dX/Pk<fa)g ()dx. (1)

Proof. We use the fact that, if f,g are n-convex functions on [a,b] for n > 2,
then the functions f(”,g(l) exist and are (n—1[)-convex, for 1 <I<n—-2. O

=

MN

k=1

REMARK 1. Afunction f is convex of order (n,n) if forevery x;,y;,i,j=1,...,n

we have
n

22 / x“yj )>07
Yj

i=1j=1 u

where u(x) = [I (x—x;), v(y) = Il (y—y;). Note that the inequality (19) can be
i=1 j=1

generalized for convex function of order (n,n), obtaining a result similar to that of

Pecari¢ [8], from where the inequality

b b b
1 1
Ea/f(X,X)dx—ma/a/f(x,y)dxdy
2%l f o (2x—a—b 2y—a—b
2]2:1(b_a)2//Pk< b—a )Pk< b_a )f(x7y)d‘Xdy7

holds for all integer numbers n > 2.
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