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ESTIMATES FOR BERNSTEIN TYPE OPERATORS

ZOLTÁN FINTA

(Communicated by T. Erdélyi)

Abstract. We prove the existence of a sequence of linear positive bounded polynomial operators
on C[0,1] which preserve the functions e0(x) = 1 and e2(x) = x2. An extremal property and
quantitative estimates are given.

1. Introduction

Let n be a positive integer and Πn be the space of all algebraic polynomials of
degree not greater than n. Let us consider the following Bernstein type operators Ln :
C[0,1] →Πn defined by

(Ln f )(x) =
n

∑
k=0

λnk( f ) pnk(x) ≡
n

∑
k=0

λnk( f )
(

n
k

)
xk(1− x)n−k, (1.1)

where λnk : C[0,1] → R are some linear functionals, k = 0,1, . . . ,n. For λnk( f ) =
f
(

k
n

)
, k = 0,1, . . . ,n, we recover the well-known Bernstein operators Bn : C[0,1] →

Πn,

(Bn f )(x) =
n

∑
k=0

f

(
k
n

)(
n
k

)
xk(1− x)n−k.

Operators of type (1.1) were introduced in [5, p. 115] with λnk :C[0,1]→ R posi-
tive linear functionals and λnk(e0) = 1, k = 0,1, . . . ,n. For j = 0,1,2, . . . , we denote by
e j the power function e j(x) = x j, x ∈ [0,1]. The main results of [5] are a direct and an
equivalence approximation theorem, formulated with the aid of the second order mod-
ulus of smoothness. For (1.1) with λnk ∈ C[0,1]∗ bounded positive linear functionals
and λnk(e0) = 1 (k = 0,1, . . . ,n), Felten established direct and equivalence approxi-
mation theorems via second order Ditzian-Totik modulus of smoothness (see [4, p. 403
and p. 417]). Recently, Bustamante and Quesada [2] proved a characterization theorem
for Bernstein operators using (1.1), where λnk( f ) =

∫ 1
0 f dνnk, f ∈C[0,1] and νnk are

positive measures (k = 0,1, . . . ,n). Their result is the following. If n > 1 and x ∈ [0,1]
is arbitrary, then

x2 � (Bne2)(x) � (Lne2)(x). (1.2)
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Moreover, (Bne2)(x) = (Lne2)(x) for some x∈ (0,1) if and only if Bn = Ln. This result
improves the similar one given in [1, p. 214].

On the other hand, King introduced in [7, p. 204] a new sequence of Bernstein
type operators {Vn}, Vn : C[0,1] → C[0,1] such that Vne0 = e0 and Vne2 = e2. In [7]
quantitative estimates and connections with summability are discussed. The operators
Vn are different from Ln given by (1.1) and they are not polynomial operators, i.e.
Vn f �∈ Πn for all f ∈ C[0,1] (see [6, p. 649]). Regarding the operators Vn, in [6, p.
649] is formulated the following open question: can we find another type of linear and
positive polynomial operators L for which Le2 = e2?

The goal of the paper is to construct a sequence {Ln} of bounded positive linear
operators which approximate each continuous function on [0,1] such that Lne0 = e0,
Lne2 = e2 and Ln are polynomial operators for all n > 1. The operators Ln will
be of type (1.1), where λnk ∈ C[0,1]∗ are bounded positive linear functionals (k =
0,1, . . . ,n). In this way we solve positively the open question formulated above. Fur-
thermore, similar to (1.2), we establish an extremal property for Bne1 via Lne1. The
rate of convergence of {Ln f} will be estimated by the modulus of continuity, obtaining
quantitative estimates.

2. The construction of Ln

Before starting our theorem we recall some definitions and an auxiliary result con-
cerning ordered normed spaces.

A real linear space X is said to be ordered linear space if X is equipped with
an order relation � satisfying the conditions: x,y,z ∈ X ,x � y ⇒ x+ z � y+ z; x,y ∈
X ,x � y,α � 0(α ∈ R) ⇒ αx � αy. For any given ordered linear space X we define
X+ to be the set of all positive elements of X , i.e. X+ = {x ∈ X : 0X � x}. An ordered
linear space X is said to be ordered normed space if there exists a norm ‖ · ‖X on X
such that 0X � x � y ⇒‖x‖X � ‖y‖X .

Finally, we have

LEMMA 2.1. [8, p. 82] Let X be an ordered normed space with int X+ �= /0 and
Y a normed subspace of X such that Y ∩ int X+ �= /0. If λ ∈ Y ∗ is a bounded positive
linear functional then there exists a bounded positive linear functional λ̃ ∈ X∗ such
that λ̃ (x) = λ (x) for all x ∈ Y.

Our main result is

THEOREM 2.2. There exist bounded positive linear operators Ln : C[0,1] → Πn

of type (1.1) such that Ln preserves the functions e0 and e2 : Lne0 = e0 and Lne2 = e2,
where n > 1.

Proof. The real linear space C[0,1] is an ordered Banach space with the norm
‖ f‖= sup{| f (x)| : x∈ [0,1]} and the natural order relation: f � g if and only if f (x) �
g(x), x ∈ [0,1]. Moreover, for C[0,1]+ = { f ∈ C[0,1] : 0C[0,1] � f} we have { f ∈
C[0,1] : ‖ f − e0‖ < 1} ⊂ C[0,1]+, and thus intC[0,1]+ �= /0. Furthermore, let Y =
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{αe0 + βe1 + γe2 : α,β ,γ ∈ R}. Then Y is a normed subspace of C[0,1] and e0 ∈
Y ∩ intC[0,1]+. Therefore, by Lemma 2.1, every bounded positive linear functional
λ ∈ Y ∗ has a bounded positive linear extension λ̃ ∈C[0,1]∗.

Now we construct the bounded positive linear functionals λnk ∈Y ∗, k = 0,1, . . . ,n,
as follows. We set

λnk(e0) = 1, λnk(e1) ∈
[

k(k−1)
n(n−1) ,

(
k(k−1)
n(n−1)

)1/2
]
,

λnk(e2) = k(k−1)
n(n−1) ,

(2.1)

k = 0,1, . . . ,n and n > 1. For P = αe0 +βe1 + γe2 ∈ Y and k = 0,1, . . . ,n, we define
λnk(P) = αλnk(e0)+βλnk(e1)+ γλnk(e2).

Obviously λnk are linear. Moreover, λnk are positive: if P(x) � 0 for x ∈ [0,1],
then we distinguish the following two cases:

a) γ � 0. Then, by (2.1),

λnk(P) � α +βλnk(e1)+ γ(λnk(e1))2 = P(λnk(e1)) � 0;

b) γ < 0. Then, in view of (2.1),

λnk(P) � α +βλnk(e1)+ γλnk(e1)
= α (1−λnk(e1))+ (α+β + γ)λnk(e1)
= P(0)(1−λnk(e1))+P(1)λnk(e1)
� 0.

Further, λnk are bounded on Y (k = 0,1, . . . ,n). Indeed, the positivity of λnk and
(2.1) imply for all P ∈ Y that

|λnk(P)| � λnk(|P|) � λnk(‖P‖e0) = ‖P‖λnk(e0) = ‖P‖.

In conclusion we can define the positive linear operators Ln on C[0,1] by

(Ln f )(x) =
n

∑
k=0

λ̃nk( f )pnk(x), x ∈ [0,1],

where λ̃nk ∈C[0,1]∗ are bounded positive linear functionals such that λ̃nk(P) = λnk(P)
for all P ∈ Y. Obviously Ln f ∈ Πn for all f ∈ C[0,1] and Ln are bounded, because
λ̃nk ∈ C[0,1]∗ bounded positive linear functionals and λ̃nk(e0) = λnk(e0) = 1, k =
0,1, . . . ,n, imply ‖Ln f‖ � ‖ f‖, f ∈C[0,1].

Further, by simple computation, λ̃nk(e0) = λnk(e0) and λ̃nk(e2) = λnk(e2) imply

(Lne0)(x) =
n

∑
k=0

pnk(x) = 1



130 Z. FINTA

and

(Lne2)(x) =
n

∑
k=0

k(k−1)
n(n−1)

pnk(x) =
n

∑
k=0

x2pn−2,k−2(x) = x2,

which completes the proof. �

In the next theorem we establish estimates for Lne j, j = 1,2, . . .

THEOREM 2.3. Let n > 1. If the operator Ln verifies the conditions of Theorem
2.2, then

(λnk(e j))2

λnk(e j−1)
� λnk(e j+1) � λnk(e j) � λnk(e1) (2.2)

for all k = 0,1, . . . ,n and j = 1,2, . . . ;

((Lne j)(x))2

(Lne j−1)(x)
� (Lne j+1)(x) � (Lne j)(x) � (Lne1)(x) (2.3)

for all x ∈ [0,1] and j = 1,2, . . .

Proof. Because λnk ∈C[0,1]∗ are bounded positive linear functionals and λnk(e0)=
1, we have the representations

λnk( f ) =
∫ 1

0
f (t)dμnk(t), f ∈C[0,1], (2.4)

where the functions μnk are increasing on [0,1] and
∫ 1
0 dμnk(t) = 1, k = 0,1, . . . ,n.

Then, by Hölder’s inequality,

λnk(e j) =
∫ 1

0
t j dμnk(t) =

∫ 1

0
t( j+1)/2 · t( j−1)/2dμnk(t)

�
(∫ 1

0
t j+1 dμnk(t)

)1/2(∫ 1

0
t j−1 dμnk(t)

)1/2

=
(
λnk(e j+1)

)1/2 (λnk(e j−1)
)1/2

for j = 1,2, . . . Hence
(λnk(e j))2

λnk(e j−1)
� λnk(e j+1) (2.5)

for j = 1,2, . . . Further, because P(x) = x j − x j+1 � 0, x ∈ [0,1], we get, by positivity
of λnk that λnk(P) = λnk(e j)−λnk(e j+1) � 0, i.e.

λnk(e j+1) � λnk(e j) (2.6)

for j = 1,2, . . . Hence follows that

λnk(e j) � λnk(e1), (2.7)
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where j = 1,2, . . . By combining (2.5), (2.6) and (2.7), we obtain (2.2).
In view of (2.5) and Cauchy-Schwarz inequality, we find

(Lne j+1)(x) =
n

∑
k=0

λnk(e j+1) pnk(x) �
n

∑
k=0

(λnk(e j))2

λnk(e j−1)
pnk(x)

=
n

∑
k=0

(λnk(e j)pnk(x))2

λnk(e j−1)pnk(x)

�

(
n

∑
k=0

λnk(e j)pnk(x)

)2

n

∑
k=0

λnk(e j−1)pnk(x)
=

((Lne j)(x))2

(Lne j−1)(x)
, (2.8)

where x ∈ [0,1] and j = 1,2, . . . Further, by (2.6) and (2.7), we get

(Lne j+1)(x) � (Lne j)(x) � (Lne1)(x) (2.9)

for x ∈ [0,1] and j = 1,2, . . . Then, (2.8) and (2.9) imply (2.3), which was to be
proved. �

3. Main results

For n > 1 let L (n) be the class of all polynomial bounded positive linear oper-
ators L : C[0,1] →Πn defined by (1.1) such that L preserves the functions e0 and e2.
We have the following extremal property.

THEOREM 3.1. Let n > 1 and L ∈ L (n). Then

(Le1)(x) � x = (Bne1)(x) (3.1)

for all x ∈ [0,1]. Moreover, for every L ∈ L (n) there exists xL ∈ [0,1] such that
(Le1)(xL) < xL and there exists L̃ ∈ L (n) such that (Le1)(x) < (L̃e1)(x) � x for all
x ∈ [0,1].

Proof. Let L ∈ L (n) : (L f )(x) =
n

∑
k=0

λnk( f ) pnk(x), x ∈ [0,1], with Le0 = e0

and Le2 = e2. Hence, because {pnk}n
k=0 is a basis on Πn, we find that λnk(e0) = 1 and

λnk(e2) = k(k−1)
n(n−1) , k = 0,1, . . . ,n. But (λnk(e1))2 � (λnk(e0))(λnk(e2)) in view of (2.2).

Thus

λnk(e1) �
(

k(k−1)
n(n−1)

)1/2

, k = 0,1, . . . ,n.
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Then, by Cauchy-Schwarz inequality,

(Le1)(x) =
n

∑
k=0

λnk(e1)pnk(x) �
n

∑
k=0

(
k(k−1)
n(n−1)

)1/2

pnk(x)

�
(

n

∑
k=0

k(k−1)
n(n−1)

pnk(x)

)1/2( n

∑
k=0

pnk(x)

)1/2

= x,

which is (3.1).

If (Le1)(x) = x for all x ∈ [0,1], then
n

∑
k=0

λnk(e1)pnk(x) =
n

∑
k=0

k
n

pnk(x), x ∈ [0,1].

Hence λnk(e1) = k
n , k = 0,1, . . . ,n. As above, λnk(e1) �

(
k(k−1)
n(n−1)

)1/2
, k = 0,1, . . . ,n.

Then 1
n = λn1(e1)� 0, contradiction. Thus there exists xL ∈ [0,1] such that (Le1)(xL)<

xL.

Now let L ∈ L (n) with (Le1)(x) =
n

∑
k=0

λnk(e1)pnk(x), x ∈ [0,1] and λnk(e0) = 1,

λnk(e2) = k(k−1)
n(n−1) for k = 0,1, . . . ,n. We have

k(k−1)
n(n−1)

� λnk(e1) �
(

k(k−1)
n(n−1)

)1/2

,

for k = 0,1, . . . ,n (see (2.2)). We set λ̃nk(e0) = 1,

λ̃nk(e1) =
1
2

(
λnk(e1)+

(
k(k−1)
n(n−1)

)1/2
)

and λ̃nk(e2) = k(k−1)
n(n−1) , k = 0,1, . . . ,n. Following the proof of Theorem 2.2, we find

that L̃ is a polynomial bounded positive linear operator on C[0,1], where (L̃ f )(x) =
n

∑
k=0

λ̃nk( f ) pnk(x). Then

(L̃e1)(x) =
1
2

n

∑
k=0

(
λnk(e1)+

(
k(k−1)
n(n−1)

)1/2
)

pnk(x)

�
n

∑
k=0

(
k(k−1)
n(n−1)

)1/2

pnk(x) � x,

x ∈ [0,1] and obviously (Le1)(x) < (L̃e1)(x) � x, x ∈ [0,1], if we suppose for example
that 2

n(n−1) < λn2(e1) < ( 2
n(n−1) )

1/2. �

The next theorem contains quantitative estimates.
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THEOREM 3.2. Let n > 1 and {Ln} be a sequence of polynomial bounded pos-
itive linear operators Ln : C[0,1] → Πn defined by (1.1) such that Lne0 = e0 and
Lne2 = e2.

(i) If λn := max{ k
n − λnk(e1) : k = 0,1, . . . ,n} → 0 as n → ∞, then for each f ∈

C[0,1], the sequence {(Ln f )(x)} converges to f (x) uniformly in x ∈ [0,1], as
n → ∞;

(ii) λn �= o(n−2);

(iii) for all n > 1, f ∈C[0,1] and x ∈ [0,1], we have

|(Ln f )(x)− f (x)| � (1+
√

2)ω
(

f ,(x− (Lne1)(x))1/2
)

(3.2)

and

‖Ln f − f‖ � (1+
√

2)ω( f ,
√
λn), (3.3)

where ω( f ,δ ) := sup{| f (x)− f (y)| : x,y ∈ [0,1], |x− y| � δ}, δ > 0, is the
modulus of continuity of f ∈C[0,1].

Proof. (i) Using the properties of Ln, we have

k(k−1)
n(n−1)

� λnk(e1) �
(

k(k−1)
n(n−1)

)1/2

� k
n
,

k = 0,1, . . . ,n. Hence, by (3.1),

0 � x− (Lne1)(x) =
n

∑
k=0

(
k
n
−λnk(e1)

)
pnk(x)

� λn

n

∑
k=0

pnk(x) = λn (3.4)

for x ∈ [0,1]. Because λn → 0 as n → ∞, we obtain that {(Lne1)(x)} converges to
e1(x) uniformly in x ∈ [0,1], n → ∞. Then Lne0 = e0, Lne2 = e2 and the well-known
Korovkin theorem (see e.g. [3, p. 8]) imply the sequence {(Ln f )(x)} converges uni-
formly to f (x) on [0,1], as n → ∞, where f ∈C[0,1] is arbitrary.

(ii) We have Lne0 = e0 and Lne2 = e2. Using Theorem 4.1 of [3, p. 278] translated
from [−1,1] to [0,1], we obtain λn �= o(n−2).

(iii) Let f ∈C[0,1] and δ > 0. The modulus of continuity of f has the property
ω( f ,αδ ) � (1 +α)ω( f ,δ ), α > 0. Then, in view of Lne0 = e0, the representation
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(2.4) and Cauchy-Schwarz inequality, we obtain

|(Ln f )(x)− f (x)|
�

n

∑
k=0

|λnk( f )− f (x)|pnk(x)

�
n

∑
k=0

∫ 1

0
| f (t)− f (x)|dμnk(t) pnk(x)

�
n

∑
k=0

∫ 1

0
ω( f , |t − x|)dμnk(t) pnk(x)

� ω( f ,δ )
n

∑
k=0

∫ 1

0
(1+ δ−1|t− x|)dμnk(t) pnk(x)

� ω( f ,δ )

{
1+ δ−1

n

∑
k=0

∫ 1

0
|t− x|dμnk(t) pnk(x)

}

� ω( f ,δ )

⎧⎨
⎩1+ δ−1

(
n

∑
k=0

∫ 1

0
(t − x)2 dμnk(t) pnk(x)

)1/2
⎫⎬
⎭

= ω( f ,δ )
{

1+ δ−1((Lne2)(x)−2x(Lne1)(x)+ x2(Lne0)(x)
)1/2

}
= ω( f ,δ )

{
1+ δ−1(2x2−2x(Lne1)(x))1/2

}

� ω( f ,δ )

{
1+

√
2
δ

(x− (Lne1)(x))1/2

}
. (3.5)

If δ = (x− (Lne1)(x))1/2, x ∈ [0,1], then (3.5) imply (3.2). Taking into account
(3.4) and (3.5), we obtain (3.3) for δ =

√
λn. In both cases we find the uniform conver-

gence of {(Ln f )(x)} to f (x) on [0,1], whenever λn → 0 as n → ∞. �
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