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ESTIMATES FOR BERNSTEIN TYPE OPERATORS

ZOLTAN FINTA

(Communicated by T. Erdélyi)

Abstract. We prove the existence of a sequence of linear positive bounded polynomial operators
on C[0,1] which preserve the functions ep(x) = 1 and ey(x) = x>. An extremal property and
quantitative estimates are given.

1. Introduction
Let n be a positive integer and I, be the space of all algebraic polynomials of

degree not greater than n. Let us consider the following Bernstein type operators L, :
C[0,1] — I, defined by

L)) =Y, 2P pule) = 3, ) (’,Z)x"u—x)"—k, (1.1)

k=0 k=0
where A, : C[0,1] — R are some linear functionals, k = 0,1,...,n. For Au(f) =
(%), k=0,1,...,n, we recover the well-known Bernstein operators B, : C[0,1] —

m wnw=37(3) () 200

Operators of type (1.1) were introduced in [5, p. 115] with A, : C[0,1] — R posi-
tive linear functionals and A,x(eo) =1, k=0,1,...,n. For j=0,1,2,..., we denote by
e; the power function e;(x) =x/, x € [0,1]. The main results of [5] are a direct and an
equivalence approximation theorem, formulated with the aid of the second order mod-
ulus of smoothness. For (1.1) with A4, € C[0, 1]* bounded positive linear functionals
and Ay (eg) =1 (k=0,1,...,n), Felten established direct and equivalence approxi-
mation theorems via second order Ditzian-Totik modulus of smoothness (see [4, p. 403
and p. 417]). Recently, Bustamante and Quesada [2] proved a characterization theorem
for Bernstein operators using (1.1), where A, (f) = fol fdvuy, f€C[0,1] and v, are
positive measures (k=0,1,...,n). Their result is the following. If n > 1 and x € [0, 1]
is arbitrary, then

x* < (Bpea)(x) < (Lpea)(x). (1.2)
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Moreover, (Byez)(x) = (Lpez)(x) for some x € (0,1) if and only if B, = L,. This result
improves the similar one given in [1, p. 214].

On the other hand, King introduced in [7, p. 204] a new sequence of Bernstein
type operators {V,}, V, : C[0,1] — C[0,1] such that V,eq = e¢p and Vyes = €. In [7]
quantitative estimates and connections with summability are discussed. The operators
V, are different from L, given by (1.1) and they are not polynomial operators, i.e.
Vuf €11, forall f € C[0,1] (see [6, p. 649]). Regarding the operators V,, in [6, p.
649] is formulated the following open question: can we find another type of linear and
positive polynomial operators L for which Le; = e3?

The goal of the paper is to construct a sequence {L,} of bounded positive linear
operators which approximate each continuous function on [0,1] such that L,eq = ey,
Ly,ep = e; and L, are polynomial operators for all n > 1. The operators L, will
be of type (1.1), where A, € C[0,1]* are bounded positive linear functionals (k =
0,1,...,n). In this way we solve positively the open question formulated above. Fur-
thermore, similar to (1.2), we establish an extremal property for B,e; via L,e;. The
rate of convergence of {L,f} will be estimated by the modulus of continuity, obtaining
quantitative estimates.

2. The construction of L,

Before starting our theorem we recall some definitions and an auxiliary result con-
cerning ordered normed spaces.

A real linear space X is said to be ordered linear space if X is equipped with
an order relation < satisfying the conditions: x,y,z € X, x<y=x+2z<y+2z X,y €
X,x<y,a >0(a € R)= ax < ay. For any given ordered linear space X we define
X4 to be the set of all positive elements of X, i.e. X1 = {x € X : 0x <x}. An ordered
linear space X is said to be ordered normed space if there exists a norm || -||x on X
such that Oy <x <y = ||x]|x < |lylx-

Finally, we have

LEMMA 2.1. [8, p. 82] Let X be an ordered normed space with int X, # 0 and
Y a normed subspace of X such that Y NintX, #0. If A €Y* isa bounded positive
linear functional then there exists a bounded positive linear functional A € X* such
that A(x) = A(x) forall x €Y.

Our main result is

THEOREM 2.2. There exist bounded positive linear operators L, : C[0,1] — IT,
of type (1.1) such that L, preserves the functions eq and e; : Lyeq = ey and Lyer = e3,
where n > 1.

Proof. The real linear space C[0,1] is an ordered Banach space with the norm
| f1l = sup{|f(x)| : x € ]0,1]} and the natural order relation: f < g if and only if f(x) <
g(x), x € [0,1]. Moreover, for C[0,1]+ = {f € C[0,1] : Ocpo ;] < f} we have {f €
C[0,1] : ||f — eol] < 1} C C[0,1]+, and thus intC][0, 1]+ # @. Furthermore, let ¥ =
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{oeg+ Ber +yes : o, B,y € R}. Then Y is a normed subspace of C[0,1] and ¢y €
Y NintC[0,1];. Therefore, by Lemma 2.1, every bounded positive linear functional
A € Y* has a bounded positive linear extension A € C[0,1]*.

Now we construct the bounded positive linear functionals A, €Y*, k=0,1,...,n,
as follows. We set

- N 1/2
Ani(eo) =1, Ank(e1) € |:];E];11))’ <1;EJ;J))> ]’

.1)
)Lnk(€2) = %7

k=0,1,....,nand n> 1. For P=aeg+ Pe;+7ye; €Y and k=0,1,...,n, we define

Ak (P) = Otlnk(eo) + BAuk(er) + YAk (e2).
Obviously A,y are linear. Moreover, A, are positive: if P(x) > 0 for x € [0, 1],
then we distinguish the following two cases:

a) y>=0. Then, by (2.1),

Ank(P) = 00+ Buk(e1) + Y (2k(€1))* = P(Aui(e1)) = 0;
b) y < 0. Then, in view of (2.1),

Ak(P) = a4 BAu(er) + YA (er)
= o (1 —Auler)) + (a+B+v)Au(er)
= P(0) (1 —Aw(e1)) +P(1)Au(er)
> 0.

Further, A,;; are boundedon Y (k=0,1,...,n). Indeed, the positivity of A,; and
(2.1) imply for all P €Y that

Ak (P)| < Aui(|P[) < Ani([|Pll€o) = (1P| Anx(eo) = [|P]|-

In conclusion we can define the positive linear operators L, on C[0,1] by
2 F)pni(x x€[0,1],

where A, € C[0,1]* are bounded positive linear functionals such that A, (P) = A (P)
for all P € Y. Obviously L,f € II, for all f € C[0,1] and L, are bounded, because
Jk €C [0,1]* bounded positive linear functionals and /lnk(eo) Aleo) =1, k=
0.1,...,m, imply [ Lof]| < [If]l, £ € Cl0,1]. )

Further, by simple computation, A (eo) = Ax(eo) and Ay (e2) = Ay (ez) imply

L 6() 2 pnk
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and

(Lner)(x 2

which completes the proof. [

Pnk prn 2k2

In the next theorem we establish estimates for Lye;, j=1,2,...

THEOREM 2.3. Let n > 1. If the operator L,, verifies the conditions of Theorem

2.2, then 5
Aile;
% Cleji1) < Amle;) < Toler) 2.2)
forall k=0,1,....nand j=1,2,...;
Lye; 2
WD (1)) < (Lne)) () < (Lner) () 23)

(Lnej—1)(x)
forall x€[0,1] and j=1,2,...

Proof. Because A, € C[0, 1]* are bounded positive linear functionals and A, (eg) =
1, we have the representations

1
= /0 FOdun(),  fecio,1], 2.4)

where the functions U, are increasing on [0,1] and fol duy(t) =1, k=0,1,....n
Then, by Holder’s inequality,

1 L. .
lnk(ej) :/O tjd.unk(t):/(; t(JJrl)/z'Z(Jil)pd.u-nk(t)

1 1 1/2
< ([ ) ([ o o)
= (Aulese)) " (Aueles—))
for j=1,2,... Hence
(Auk(e) ,
m < )Lnk(ej+l) (2.5)

for j=1,2,... Further, because P(x) = x/ —x/*1 >0, x € [0,1], we get, by positivity
of A, that A,nk(P) = /lnk(ej) — Ank(ej‘Jrl) >0, i.e.

A (€j+1) < Auk(e;) (2.6)
for j=1,2,... Hence follows that

Ank(ej) < Ank(el)a (27)
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where j=1,2,... By combining (2.5), (2.6) and (2.7), we obtain (2.2).
In view of (2.5) and Cauchy-Schwarz inequality, we find

n n 2
(L)) = 3 2uer) pul) > 3, Aﬂ’;"jj’ 5 k()
_ i ()‘nk(ej)pnk(x))z
k=0 Ank(€j—1) Pk (x)
2
Ank(€j) P (x)>
&MY ) e 08)
= n - Ln . k) .
Z)Lnk(ej—l)pnk(x> (Ene ;1))
k=0
where x € [0,1] and j = 1,2,... Further, by (2.6) and (2.7), we get
(Lue) (%) < (Lne))(5) < (Lner) (3 2.9)

for x € [0,1] and j = 1,2,... Then, (2.8) and (2.9) imply (2.3), which was to be
proved. [

3. Main results

For n > 1 let .£(n) be the class of all polynomial bounded positive linear oper-
ators L : C[0,1] — I, defined by (1.1) such that L preserves the functions ey and e;.
We have the following extremal property.

THEOREM 3.1. Let n> 1 and L € £ (n). Then

(Le1)(x) < x = (Bner)(x) (3.1

for all x € [0,1]. Moreover, for every L € £ (n) there exists xp € [0,1] such that
(Ley)(x1) < x1, and there exists L € £ (n) such that (Le)(x) < (Ley)(x) < x for all
xe0,1].

Proof. Let L € Z(n) : Z Ak (f) pur(x), x € [0,1], with Ley = eq

and Le, = e5. Hence, because {pnk}k gisa bas1s on IT,, we find that A,;(eg) = 1 and
Ti(€2) = M= ke =0,1,...,n. But (Au(e1))? < (Ak(e0)) (Ane(e2)) in view of (2.2),

Thus
kk—D\Y2
Auic(er) < (n(n—l)) ., k=0,1,...,n.
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Then, by Cauchy-Schwarz inequality,

n n _ 1/2
e = 3 Aulenputi) < 3 (SEZ1) T puto)

k=0 k=0
1/2 1/2
n k k n
(2 pnk )) (2 pnk(x)>
= nn k=0
= x,
which is (3.1).
Xk
If (Ley)(x) = x forall x € [0,1], then 2 Ani(e1) Pur(x 2 —puk(x), x€[0,1].
k=0 n

/
Hence A(e1) =%, k=0,1,...,n. As above, A (e1) < <ﬁ((]; 11))> , k=0,1,....n
Then 1 =2,(e ) < 0, contradiction. Thus there exists xz, € [0, 1] such that (Le;)(xz) <

XL.
Now let L € £ (n) with (Ley)(x 2 Ank(€1)pur(x), x €[0,1] and A,x(eo) =1,
k=0
Anik(e2) = E )) for k=0,1,...,n. We have
k(k—1) k(k—1)\ /2
< <
l’l(l’l—l) \Afnk(el)\ (l’l(l’l—l) y

for k=0,1,...,n (see (2.2)). We set Ay (eo) =1,

_ _ 1/2
Anic(e1) = % (Ank(el) + (ﬁéi_ i;) )

and ink(ez) ];Ek U) k=0,1,...,n. Following the proof of Theorem 2.2, we find

that Lisa polynonnal bounded positive linear operator on C[0, 1], where (Lf)(x) =

2 Do (f) Pk (x). Then

12
2 Ani(e1) k i;) )pnk(x)

k=0
1/2

NIH

M=

k

O

x €10, l] and obviously (Le )(x) < (Ley)(x) < x, x € [0, 1], if we suppose for example
that 2y < Aw(er) < (pe)'/? O

The next theorem contains quantitative estimates.
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THEOREM 3.2. Let n > 1 and {L,} be a sequence of polynomial bounded pos-
itive linear operators L, : C[0,1] — I, defined by (1.1) such that Ln,eq = ey and
Ln62 =ée).

(i) If An = max{& —Au(e1) :k=0,1,....,n} — 0 as n — oo, then for each f €
C[0,1], the sequence {(L,f)(x)} ¢ onverges to f(x) uniformly in x € [0,1], as
n — oo

(1) An#0(n™2);
(iii) foralln>1, f€C[0,1] and x € [0,1], we have
(L)@ = @] < 1+ VDo (f.6= Le))' ) (32)

and

ILof — fIl < (L+V2) 0(f, v/ 2), (3.3)

where o(f,8) := sup{|f(x) —f(¥)| : x,y € [0,1],]x —y| < 8}, § >0, is the
modulus of continuity of f € C[0,1].

Proof. (i) Using the properties of L,, we have

)

k(k—1) k(k—D\'? &
nn—1) S Aneler) < (n(n— l)) S n

k=0,1,...,n. Hence, by (3.1),

0 <x—(Lper)(x) =Y, (S _)Lnk(el)> Prk(x)

k=0

< An Y puk(x) = Ay (3.4
=0

for x € [0,1]. Because A, — 0 as n — oo, we obtain that {(L,e;)(x)} converges to
e1(x) uniformly in x € [0,1], n — e. Then L,eq = ep, L,e; = e> and the well-known
Korovkin theorem (see e.g. [3, p. 8]) imply the sequence {(L,f)(x)} converges uni-
formly to f(x) on [0, 1], as n — oo, where f € C[0, 1] is arbitrary.

(ii) We have L,eg = e and L,e; = ep. Using Theorem 4.1 of [3, p. 278] translated
from [—1,1] to [0,1], we obtain A, # o(n~?).

(iii) Let f € C[0,1] and & > 0. The modulus of continuity of f has the property
o(f,od) < (1+a)w(f,5), a > 0. Then, in view of L,eq = eg, the representation
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(2.4) and Cauchy-Schwarz inequality, we obtain

(L f)(x) = f ()]

n

<Y P (f) = ) pr()

k=0

< 3 [ 10~ £l o)

N

%Ammhmmwmm>

N

amﬁ6>ﬁ)@%l+6*v—xumhmﬂpww>

< o(f,8) {1+5 12/ |t — x| d i (t) puk (x )}
1 1/2
< 14571 26/0 (t_x)zd.unk(t)pnk(x)>
_ p (Enea)(x) ~ 2x(Lner) (x) + 2 (Lneo) ()}
- {1+5 (232 — 2x(Lyer ) (x ))1/2}
< o(f,8 {HT(X—(L er)(x ))1/2}- 3.5)

If § = (x— (Lyer)(x))'/2, x €[0,1], then (3.5) imply (3.2). Taking into account
(3.4) and (3.5), we obtain (3.3) for § = v/A,. In both cases we find the uniform conver-
gence of {(L,f)(x)} to f(x) on [0,1], whenever A, — 0 as n —oo. [
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