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ESTIMATE FOR THE DISCRETE TIME HEDGING ERROR OF
THE AMERICAN OPTION ON A DIVIDEND-PAYING STOCK

SULTAN HUSSAIN AND NASIR REHMAN

(Communicated by Josip Pecaric)

Abstract. This work is devoted to the discrete time hedging of the American option on a dividend-
paying stock with a convex payoff, the particular case of which is American call option. Perfect
hedging requires continuous trading in time and knowledge of the partial derivative of the value
function of the American option in the underlying asset. Neither one can trade continuously in
time nor the closed-form expression of the value function of the American option is known.

Several approximation methods have been developed for the calculation of this unknown
value function. We justify in this work that having at hand any such nonnegative uniform approx-
imation, it is possible to construct a discrete time hedging strategy the value process of which
uniformly approximates the value process of the corresponding continuous time perfect hedging
portfolio.

1. Introduction

Let (Q,.7, PR) be a probability space and B = (B,)o<;<r a standard Wiener pro-
cess on it, where PR stands for actual (i.e. real world) probability measure. We will
assume that the time horizon T is finite and denote by F8 = (#P)o,<r the PR-
completion of the natural filtration of (B;)o</<7 -

On the filtered probability space (Q,.7,.78, PR),0 <t < T, we consider a finan-
cial market with two assets m,, 0 <t < T, the price of a unit of a money market account
at time ¢, and S;, 0 <t < T, the value at time ¢ of the share of a stock modeled as a
generalized geometric Brownian motion that pays dividends continuously over time at
arate 6(r), 0 <r < T per unit time. The evolution of these assets obeys the following
ordinary and stochastic differential equations

dm, = r(tymdt, my=1, 0<t <T, (1.1)

dS; =b(t)Sidt + o (t)S;dB; — 8 (t)Sedt, So>0, 0<r<T. (1.2)

We assume that (b(t),-Z2)o<;<r is certain progressively measurable process, the deter-
ministic time-varying interest rate r(¢), the volatility o(z) and the dividend rate &(r)
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are continuously differentiable functions of time and the following requirements are
satisfy

0<r(t)<F, b(t)|<F, 0<o<o(t)<o, 0<8(1) <3, (1.3)
[r(t) —r(s)| +[o(t) — o (s)[+8(r) — 8(s)| < K|t — ], (1.4)

where s,t € [0,T] and 7, o, 6, & and K are some positive constants.

In this work we investigate the discrete time hedging problem for the American op-
tion on a divided-paying stock written on the underlying asset (S;)o<;<7 With arbitrary
nonnegative finite convex payoff function g(x) which satisfies the condition

lg'(x—)|<C, x>0, (1.5)

where C is certain positive constant.

The typical examples are American put and call options with payoffs g(x) = (L —
x)* and g(x) = (x— L)™ respectively, where L is the exercise price.

In previous paper [4] the case of put (but not a call) option on a non-dividend
paying stock has been considered. In recent work we essentially include the important
case of unbounded payoff functions the typical example of which is American call
option.

If D(r) denotes the number of shares held at time ¢ by the writer of the option
for the perfect hedging in contlnuous time of the underlying stock then by the delta-
hedging rule we have D(r) = ax Y(t,8;) (see, for example, Karatzas and Shreve 1998

[9]), where v(z,x) denotes the value function of the American option and % its
partial derivative with respect to x. Here we observe that for the perfect hedging the
writer of the option must trade continuously in time and also requires the knowledge
of the partial derivative of the value function v(¢,x), but the explicit form neither of
the function v(z,x) nor of its partial derivative is known in most cases of practical
importance for American option valuation problem.

As we know several approximation techniques are developed for the calculation
of this unknown value function (for example, finite difference methods developed in
Glowinski, Lions and Trémolieres 1981 [2]; Wilmott, Dewynne and Howison 1993
[13]; Jaillet, Lamberton and Lapeyre 1990 [6]). The rate of convergence of the uniform
schemes to the value function of the optimal stopping problem which gives at the same
time the rate of convergence of the uniform approximation to the American option value
function is established in Jakobsen 2003 [7].

Take any nonnegative continuous in x uniform approximation vy (¢,x) to the un-
known value function v(¢,x) of the American option at the equidistant rebalancing
times 1, = k-A, A= %7 k=0,1,2,...,n (for example, the Bermudan approximation),
where £ is certain small parameter indicating the error of approximation. In particular,
we assume that the following bound is valid uniformly in k, k =0,1,2,...;n,

sup vy (t,x) — v(te, x)| < Cih. (1.6)

x=0

Here C; is some nonnegative constant depending on parameters of our model r, O,
0, 8, K, T and the payoff function g(x). We naturally assume that v, (T,x) = g(x).
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Our discrete time hedging strategy consists in the following. For each function
vp(ti—1,x), x =0, k=1,2,...,n, consider first its lower convex envelope Vj(f;_1,x),
x>0, k=1,2,...,n, that is, the maximal convex function dominated by the given
function vy (f;_1,x) and then its left-hand derivative

oV (ty—1,x—
<ph(zk,1,x)=%,x>o, k=1,2,...n. (1.7)

Now the discrete time hedge Dj 5, (¢), 0 <t < T can be defined in the following manner

0, if 0<t<n,
Dynlt) = {(ph(tkl,S,kl), if (o1 <t<ty, k=2,3,...,n, (1.8)
where A is related to the time discretization, A =#;,| —t, k=0,1,....n— 1.

We claim that this is the required discrete time hedging strategy the value process
of which uniformly approximates the corresponding continuous time portfolio value
process.

Recall the relation between our constructed discrete time hedge Da (f) and its
self-financing portfolio’s value process Ila;(7). Suppose the writer starts with ini-
tial capital T1(0) = v(0,Sp) and rebalances his portfolio at each time instant #, k =
1,2,...,n—1, and holds Dy ;(#x) number of shares in stock and invests the remainder
of the portfolio’s value (ITa 5 (tx) — Dan(t) - S, ) in a money market account.

During the time interval (#,f1) the investor is inactive, though his portfolio’s
value changes at arbitrary time ¢, #; <t < ;4. As the investor holding the stock rein-
vests the dividends it is easy to show that the following equality does hold

t t f
o 5(f) = exp [ / r(u)du] (H(O) + / D ()8 ()Sudu + / DAJ,(u)dSM) 0<t<T,
0 0 0
) t (1.9)
where S; = e~ Jor(u)du -S;, 0 <1 < T is the discounted stock price per share at time ¢ .
Let us denote by

b(t) —r(t)

% =50

the market price of risk. For arbitrary A € .72, define
P(A) = / Zradpk,
A

where
1 1 t
z,zexp<—/ GudBu——/ 63du>7 0<t<T.
0 2 Jo

Define the process

r
W,:B,—l—/ Oudu, 0 <1 < T,
0
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by Girsanov’s theorem of change of probability measure the new process W = (W, )o<;<7
will be a Brownian motion with respect to new risk neutral probability measure P(A).
So we may rewrite (1.2) in the following manner

dS; = u(t)Sdt + o (£)S:dWs, So >0, 0< ¢ < T, (1.10)

where

u@)=r(t)—90(@),0<r<T.
The discounted stock price S; satisfies
dS; = o(t)S;dW, — 5(¢)S,dt, Sop=So, 0<t<T. (1.11)
Itis easy to show that, under the risk-neutral measure P, the discounted continuous time

delta-hedging portfolio’s value process e~ Jor(uydu -I1(r), 0 <t < T, is a martingale and
the following equality is valid

() = exp [ /0 t r(u)du] (n(o>+ /0 D ()3 (1) S+ /0 tD(u)d§M) L0<i<T.
(1.12)

The error due to the discrete time hedging of the American option is given by the
expectation

ER sup [TIpp(r) —TI(2)]. (1.13)

0<t<T

By Girsanov’s theorem the two expectations are related by the formula
E*Y =E(z;'Y),

where Y be an .#£ -measurable random variable.
This formula implies

L L
ERY < (EZ;%)? (EY?)?
-2 1
r 2N\ 3
< exp<6 o T) (EY?)?.
The application of the above inequality to the discrete time hedging error (1.13) implies

) 1
r 2?2
E® sup |[ap(r) —T1()| < exp (6 ) T) [E sup [[an(t) —T1(1)|"|

0<t<T 0<t<T

which, taking into account (1.9) and (1.12), yields
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R sup [MIpu(r) —TI(2)]

0<t<T

< . 6F°T [E

ex su
=P o? ogth
2]
Successive application of (1.11) and the classical Doob’s maximal inequality yields an
initial estimate for the discrete time hedging error of the American option

R sup [[p () —T1(1)|

0<e<T

2 T 3
<26 exp <rT+ 6;2T> [E/ (Dan(u) = D(w))’ S2du| . (1.14)
O 0

/O (D) — D(u)) 8 (u)S,du

Nl—

+/ D p(u) —D(u)) dS,

To justify our result we have to estimate the last square integral with respect to the risk-
neutral measure P. We will apply weighted square integral inequality for the difference
of derivatives of two convex functions from [5] and for this purpose the assumption of
the convexity of the payoff function g(x) turn out to be crucial. It is well-known that
(see, for example, El Karoui, Jeanblanc-Picqué, and Shreve [1] or Hobson [3]) for
both European and American contingent claims with convex payoffs the price of the
contingent claims v(#,x) is a convex function of the price of the stocks. This fact leads
us to apply the above mentioned integral inequality.

We are ready now to introduce our main results the proofs of which are given in
Section 3.

Let us introduce the discrete time hedge Da(¢), 0 < ¢ < T by means of the con-
tinuous time delta-hedge D(¢) in a natural manner

DA(Z) :D(l‘k_l) ifty 1 <t<t, k=1,2,....,n. (1.15)

For continuous time delta-hedge D(r) and discrete time hedge Da(f), we have the
following result:

PROPOSITION 1. The following estimate does hold
T
E/ ()7S3dr < c-lng A, (1.16)
. T . . . .
if A= <1, n=2,3,... where c is non-negative constant depending on the parame-

ters 7, 8, o,0,C, T, K, g(l)andSy.

The key result states that the value process (1.9) of our constructed discrete time
hedging strategy (1.8) uniformly approximates the corresponding continuous time port-
folio value process (1.12).
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PROPOSITION 2. Let v(t,x) denotes the unknown value function of the American
option where the payoff be any arbitrary finite convex function satisfying the require-
ment (1.5). Suppose we have at hand some continuous in x nonnegative uniform ap-

proximation vy(t,x) to v(t,x) at the equidistant rebalancing times ty =k-A, A=L,
n=2,3,...; k=0,1,....n, such that the bound (1.6) holds.
Then for the discrete time hedging error the following estimate is valid
1
X T\? 1
E" sup |TIan(s) —TI(¢)| <b|In— ) (h+A)Z, (1.17)
0<r<T ' A

if A= % < 1, h < 1, where b is positive constant depending on parameters T, S, o,
o,C, T, g(l), K, CandSo.

REMARK 1. The error of approximation & and the parameter A should be depen-
dent, for example h = A", u >0 or A=hY, v > 0, then we see that the right-hand
side of the estimate (1.17) tends to zero as lng -A and In % -h converge to zero.

In the next result we apply weighted square integral inequality stated in Hussain,
Pecari¢ and Shashiashvili [5] for the difference of derivatives of two finite convex func-
tions in order to obtain the weighted energy inequality for an arbitrary unknown finite
convex function. This kind of inequalities can be used in order to obtain discrete time
hedging error estimates.

Let F(x) be arbitrary unknown finite convex function on an infinite interval [0, o)
satisfying the requirement (1.5). Suppose we are given some continuous uniform ap-
proximation Fj,(x), x > 0 of the unknown function F(x) then we will have

sup |[Fy(x) — F(x)| — 0 as h— 0. (1.18)

x=0

We will introduce the family of nonnegative twice continuously differentiable weight
functions H(x), 0 < x < oo, which satisfy the conditions

lim H(x) =0, lim H(x) =0, lim H'(x) =0, limxH'(x) =0, (1.19)
x—0+ X—00 x—0+ X—r0
and
/ (x4 1) [H" (x) | dx < oo, (1.20)
0

and we come to the following result:

PROPOSITION 3. Let F(x) be arbitrary unknown continuous finite convex func-
tion defined on an infinite interval [0,0) satisfying the requirement (1.5) and suppose
we have at hand its some continuous uniform approximation F(x), x > 0. Consider
the lower convex envelope Fy(x) (that is, the maximal convex function dominated by
the given function Fy(x)). Then for the unknown left-hand derivative F'(x—), x > 0,
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the following energy estimate through If‘h’ (x—), x>0 does hold
/ (Fl(x—) — F'(x—))* H (x)dx
0

3
\Esup|Fh |/ (IFa(x)|+|F (x)]) [H" (x)] dx, (1.21)

x>0
where H(x), 0 < x < oo, is any nonnegative twice continuously differentiable weight

function satisfying the conditions (1.19) and (1.20).

2. Refinement of some regularity properties of pricing functions
for American options

This section is devoted to the refinement of the well-known results concerning
the regularity of the American option value function given in Jaillet, Lamberton, and
Lapeyre [6]. We make more precise these properties where the payoff g(x) is arbitrary
finite convex function and satisfies the requirement (1.5). These results will be used in
order to obtain the discrete time hedging error estimate (1.17).

It is well-known that the American option valuation problem is related to the cor-
responding optimal stopping problem (see, for example, Karatzas and Shreve, Chapter
2 [9]) of the diffusion process in the following manner

v(t,x)= sup E [exp (— /T r(v)dv) g(ST(t,x))} ,x20,0<r<T, (2.1)
t

€q T

where J; r denotes the set of all stopping times 7 such that # < 7 < T, and the stochas-
tic process S, (f,x),t <u < T, satisfies the same stochastic differential equation

with the initial condition S;(z,x) = x, x > 0, where
wu)=r(u)—8(u), t <u<T.

The unique solution (S,(¢,x), %, )i<u<r of this equation is given by the exponential

Sult,x) = x exp [/{ (u( )— )d +/ dWV]7 <u<T. (23

Introduce the new stochastic process (X (#,x), %y )i<u

Xy =v+ [ (u(V) _ZW )dv+ [ ot 2.4

t<u<T, —oo<y<oo Itiseasy to show that

Su(t,x) =exp[Xy(t,Inx)], t <u<T, x>0, (2.5)
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and for arbitrary stopping time 7 such that r < 7 < T we have

8(82(1,x)) = w(X:(z,Inx)),

where y(y) = g(e”), —eo <y < oo, is the new payoff function.
Let us define the corresponding optimal stopping problem

utt) = sup £ |exp (= [Tras ) wixet)|. 2.6)

€T
with 0 <7 < T and —oo <y < oo, then we find
v(t,x) =u(t,Inx), x>0,0<r < T. 2.7
We introduce the following lemma:

LEMMA 1. Let g(x), x = 0 be a nonnegative arbitrary finite convex function sat-
isfying the requirement (1.5). Then the new payoff function defined by y(y) = g(e”),
—oo <y < oo is locally Lipschitz continuous, that is,

lw(y2) —w(y1)| <Ce? (y2—y1), =0 <y1 <yz <o (2.8)

Proof. Tt is well-known that any convex function is locally absolutely continuous
(see, for example, Royden, Page 114 [11]), hence

29)
glxn)—glx) = / g (u=)du, 0 < x; <x3 < oo, (2.9
x|

where g’(u—) denotes the left-hand derivative at point u of the convex function g(x).
Now consider the difference w(y,) — w(y;), using the expression (2.9) and con-
dition (1.5), we can write

[w(2) —w )| = lg(e”) —gle™)]
/:1 g (u—)du

Y

<C (eyz _eyl) ,
and Lemma 1 follows from the latter estimate by using the mean value theorem. [

By the scaling property of the Brownian motion we can express the value function
u(t,y) of the optimal stopping problem (2.6) as follows (see Jaillet, Lamberton and
Lapeyre [6])

ult,y) = TZI;Q)JE lexp (_ /t”rf(Tt) r(VW) y <y+ /tm(rr) (u(V) - @ ) "

T
+/ \/T—ta(t+v(T—t))dWV>] , 0Kt T, —o0 <y < oo, (2.10)
0



DISCRETE TIME HEDGING ERROR OF THE AMERICAN OPTION 145

where 7 1 denotes the set of all stopping times 7 with respect to the filtration (%, )o<u<i
taking values in [0, 1].
Let us come to the following result:

PROPOSITION 4. The value function u(t,y), 0 <t < T, —eo <y < oo of the opti-
mal stopping problem (2.6) is Locally Lipschitz continuous in the argument y i.e.

jut,y) —u(t,2)| <D M |y —z| yze R, 0<1<T, (2.11)

where D is some nonnegative constant depending on parameters r, G, 5, CandT.
Proof. Fix any 7 in 1 and y,z € R, we can write

'E exp <— /jr(v)dv) y(X.(t,y)) — E exp (— /[Tr(v)dv) 1[/(Xr(t7z))'
< CE[exp(|X(1,y)| + [Xe(t,2)]) X (t,y) = Xe(t,2)]]

—Cly—2 E exp('y+/tr (u(v)— G2(V)>dv+ ITG(v)de

+ z—l—/tr (u(v)—@) dv+/trc7(v)de )

-2
_ 0 T
< Cly—1z| exp <|y| +|z|+2T (u + 7) ) Eexp (2 / o(v)dW, ) . (2.12)
t
where we have used Lemma 1 and & +38.
Using the inequality
M < e te ™, —oo<x < oo, (2.13)

we can write

exp <2n /IT o(v)dw, ) < exp <2n /T o(v)dWV) +exp (—Zn /T 0(v)dW,,>
— exp <2n/[16(v)dW,,— %[T(zn o(v 2dv) (/ 2 )
+exp (—Zn /t " o (v)aw, % /t = o(v))2dv> exp ( /t 2n262(v)dv> 7

for any positive integer n.
Using the values

Eexp <2n/tT0'(v)de - %[T(Zn O'(V))zdv> =1

and

Eexp (—Zn /ITO'(V)dWV — %[T(—Zn o-(v))2dv> =1
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we obtain explicitly

/t " o (v)dW,

) < 2exp (2112 /t ' 2(v)dv>

E exp (211 o
2T> . (2.14)

< 2 exp (2n26'

Using (2.14), with n = 1, inequality (2.12) yields

|E exp ([0 ) wixe(r)) < B exp (= [ 1) wixe.0)

< Dly—z| exp(|y[+z) , »z€R, 0<r<T,

where D is nonnegative constant depending on the parameters r, o, 5,Cand T only.

As the difference between the supremums is less or equal than the supremum of
differences, we arrive to our required result. [J

Denote
t+7(T—t) 2(y T
Yr(t7y)zy+/t+ T (H(V)_GT()> dv—i—/o VT —t o(t+v(T —1))dW,,

where 7€ %1, 0 <t < T, —oo <y < oo, then expression (2.10) can be written as

u(t,y) = sup E [exp (— / e r(v)dv) w(YT(r,y»] ENCRE)

‘L'€¢,’7()>1

Before proving the next result, we estimate several expressions.

Using equality (2.9) and condition (1.5) on the convex function g(x), we can write

w(x) =g(e)—g (") +g ()
&
2/80 g (u—)du+g(1)
<C|ex—eol+g
<C (¢ +1)+g(1). (2.16)
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Therefore, forany ye R, 0< <1, 0<7 < T, we have

EW(YT(IL)}))

<C|1+E exp<y+< +%> —l)—|—/0T\/T—l‘G(t-i-v(T—t))de) +g(1)
C[1+exp<y+ (H—i—%) Eex (/ VT —t o(t+v(T —t))dW,
_% OT(T t) o2t +v(T — t))dv—f—%/ o?(t+v(T — ))dv)} +g(1)

< C{l +exp (y—i— ( ) T | Eex ( o(t+v(T —1))dw,

1 T

—EO(T 1) 6% (t+v(T — ))dv) (/O(T—t)c2(t+v(T—t))dvﬂ+g(1)7

N —

from here we can write

Ey(Y:(1,y))
C|l+exp <y+ (ﬂ G—) )02(t+v(T—t))dv> +g(1)
c[1+exp v+ (u g(1). 2.17)

Next, forany ye R, 0< <1, 0<s,7 < T, we have

exp (201 + | T (w- "22(”) o+ [T (w0 "22(”) v

2 2
< exp <2y + <u+ %) o(T—1)+ <u+ %) ’L'(T—s))
62
< exp <2y+2T <u+ 7)) . (2.18)

Moreover, using inequality (2.13) and that

+

Eexp( / VT —t ot +v(T —t))dW, — /4 —t)o t—|—v(T—t))d) I,
we obtain

Eexp (2 ‘/OT\/H o(t+v(T —1t))dw,

) < 2exp(26°T), (2.19)

where 7 € [0,1].
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To obtain the next estimate, we denote R(u) = [ (u(v) - 022(")) dv,0<u<T.

By mean value theorem

t+7(T—1) 2(y s+7(T—s) 2(v
/t+ T (H(V)—Gz( ))dv_/s+ T (M(")_Gz( )>dv
= (Rt +7(T —1)) =R()) = (R(s+7(T —s)) = R(s))|

—2
<2 <u+ %) It —s|, (2.20)

where 7€ % 1.
Moreover, using the Lipschitz condition (1.4), for any 7, 0 < 7 < 1, we can write

2
E

| (VT 04u(T=0) VT =5 0(s-+(T ~ ) d,
:E/Or(mc(t—i—v(T—t))— T—so(s+v(T—s))) dv
< [ (Tt 0T 1) VT 5 ol +o(T )
<2 [T 0@+ v(T 1))~ ols+u(T —5)) P

—|—2/O1 (\/T—t—\/T—s)20'2(s+v(T—s))dv

272, =2
<2KT+0

o (t—s), (2.21)

where 0 <s<tr<T.
Now we are ready to prove the following regularity result:

PROPOSITION 5. The value function u(t,y), 0 <t < T, —oo <y < oo, of the
optimal stopping problem (2.15) is Locally Lipschitz continuous in time argument t,
ie.,

B 2b
T—t

|u(l‘,y)—u(5,y)|< (I—S),O<S<[<T, —oo Yy <o, (2.22)

where the nonnegative constant B depends only on the parameters r, §, o, K, C, T
and g(1).

Proof. Fix s,t, 0<s<t<T, and 7 in % . Application of the estimate (2.20)
and Lemma 1 gives

poo (< [ ) winon-e (- [ o) o)
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exp <_ /t e r(v)dv) ~exp (- / A )dv)

s+1(T—s)
Fexp (— [ r(v)dv)|w(n<t,y>>—w<n<s,y>>|]

<27t —s| Ew(Y:(t,y))

oxp <2|y|+‘/z+r(Tt) (H( . 022(‘) )dv
[ - #82) e
y { /tr+r<r—t> (u(V) 022( )) v [+T<T—s> (u ) - 022(V)> "

/OT(\/T—IO'(I—H/(T—t))—\/T so(s+v(T— dW’H

<E

w(Yz(1,5))

+CE

/ VT —t o(t+v(T—t))dW, ‘

/ VT —s o(s+v(T — ))dWVD

+

Next, we use estimates (2.17) and (2.20) and find

pop (= [ i) wirteon-sew (- [ o) i)

oy {C{HGXP(HM )} (>}t_s|+c@xp<z|y|+z(g+ﬁ_2>T>

xE[ex (

)l
{

{C 1+exp(y+ ,li—|—0' )} g(1 )} |t —s]

120 (,H ) xp <2y+2<u+ >T>

><Eexp< /OT \/T——Z‘O'(I-FV(T—I))dWV‘ + ’/OT T—so(s+v(T—s))dW,

)
_ &
+Cexp <2|y| +2 (M—f— —) T)

xE[exp(/\/— (t+w(T dW’ ’/\/ﬁ (s+v(T — ))dWD

/OT(\/T—IO'(I—H/(T—t))—\/T so(s+v(T— dW’

T—so(s+v(T— ))deD

X

\/ —t0(t+v(T—1)) =T =50 (s+v(T —s))) dWV‘}]

)i

X
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Application of Schwartz inequality implies

oo (= [ ) wiron-se (< [ o) i)

< 2?{C{1+exp(y+(ﬁ+5‘2)T>}+g(1)} It — |

2 =2
_ O _ O

x\/Eexp (2 /()T\/HG(I—FV(T—t))de)

x\/Eexp (2 >|t—s|

+C exp <2y +2 (,L_t+ %2> T) [Eexp (4‘/(:@ o(t+v(T —1))dW,

1
1
X [Eexp (4 )]
T
x\|E / (VT 1 6(t+v(T —1) — VT —s o(s +W(T —5))) dW,
0
Finally, we use estimates (2.19) and (2.21) and get

poo (= [ ) winton-ew (< [ o) o)

< 2?{C{l—l—exp(y—i—(ﬁ—i—&z)T)}+g(l)] (r—s)

/OT VT —so(s+v(T —s))dW,

)

/OT VT =5 6(s+ (T — )W,

2

2
+4C <u+ %) exp (2\y\ + 2+ 36‘2)T> (r—s)

o 2T2K? + 67
+V2C exp <2\y\ + (2u+502)T> \/Ti—tc (t—s)?
Be2h!
X r— )
7= (%)

where the constant B depends on parameters 7, 5 ,0,K,C,g(l)and T.
Again using the fact that the difference between supremums is less or equal to the
supremum of the differences, we complete the proof. [l

Theorem 3.6 and its Corollary 3.7 from Jaillet, Lamberton and Lapeyre [6] state
that the value function u(z,y) of the optimal stopping problem (2.15) admits partial

derivatives a"gt’y ) , a”{g”y ) and 82”(’2” ) which are locally bounded on [0,7) x R, the
y d

y
Ju(t,y)
dy

partial derivative is continuous on [0,7T) x R.
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Furthermore, in the sense of measure, the following inequalities hold

du(ry) | 0(1) Pulr.) 02(1) du(t.y)
a2 oy +<“(’>‘T>Ty

—r(t)u(t,y) <0,

(2.23)
Q%u(t,y)  u(t,y)
0y? dy

>0

almost everywhere in [0,7) x R.
The above system of inequalities implies the two-sided bound

Ju(t,y) O%ulty) 2 [_ ult,y) (u(t)— Gz(t)) augy,y) —|—r(t)u(t,)’)}

dy dyr T o2 ot 2
(2.24)
a.e. in [0,T) x R.
2
PROPOSITION 6. For the second ordered weak partial derivative J gﬁtzy ) ,0<1<
T, —oo <y < oo, of the value function u(t,y), the following estimate does hold
2ult A &2l
”(2’” ‘ <8 (2.25)
dy T—1t

a.e. in [0,T) x R (with respect to the product measure dt x dy ), where the constant A
depends only on the parameters 1, 8, o, 6, K, C, g(1) and T.

Proof. From Propositions 4 and 5, we observe that

M‘ <D (2.26)

dy

for arbitrary (z,y), 0 <t < T, —e0 <y < o and

2|y]
‘Huétt,y)’gji__t ae.in [0,T), y€R. (2.27)
Moreover, the two-sided inequality (2.24) implies
Pu(r,y)| _|du(ty)| 2 ||du(ty)| (. & \|outy)|, .
< = || — | | =2 Q.
92 ’\‘ Iy ‘—ng T ’+ r+2 ‘ e ’+ru(t7y) (2.28)

From the expression (2.6) of the value function u(z,y) we can write
u(tay) g sup EW(XT(tay))
TE:Z)T

< C sup Elexp(X:(,y))+1]+g(1)

TG*Z‘T
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<C (ey+<ﬁ+%2>T sup Eexp (/trc(v)de) + l) +g(1)

TE:Z)T
)
7.0 T T

< (eY+<H+T> sup Eexp (/ o(v)dW,— / v)dv+ = / ) )

TE:Z)T !

+g(1)

< (eY+(#+0'2) sup Eexp </ dW - —/ ) ) +g(l)

€T
—C (ey+(ﬁ+5 )7 1) +g(1), (2.29)

where we have used (2.16).
Required result follows by using the bounds (2.26), (2.27) and the latter estimate
in the inequality (2.28). [

Here is the application of Propositions 5 and 6.

PROPOSITION 7. The partial derivative y(t,y) = a"(t Y 0<t<T, —o<y<oo

of the value function u(t,y) of the optimal stopping problem ( 2 6) satisfies, with respect
to time argument, the following local Holder estimate with exponent %

F 2l

15 —y(f <
W( 27y) Y(l7y)| \/TTI2

where 0 <t <th < T, —o<y<oo and F is a positive constant depending on the

12— 112, (2.30)

parameters ¥, 6, 0, 0, K, g(1) and T.

Proof. According to Proposition 6

A el
"}/(Zh ) (l17Z)| X \/Tt |y_Z‘
(2.31)
A elItlz]
Hh,y) —vY(2,2
7(t2,y) = ¥(12,2)| < T ly
valid for arbitrary #1,t,, 0 <t} <, < T and y,z € R, by the continuity of the function

Y(t,y).
Lemma 2.4 in Hussain and Shashiashvili [4] states that for arbitrary pairs (¢1,7,),

0<y <t<Tand (y,y+h), —o<y<eo, h >0, the following bound does hold

—Z‘

[V(t2,y) = v(11,y)]
y+h y+h
<[ e vz [ roa - vinla:

+lu(ty,y+h) —u(ty,y+h)| =+ |u(tz,y) — u(tl,y)] :
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The use of inequalities (2.31) and Proposition 5 in the latter estimate implies

- 1 y+h A e\vHIz\ V+h A eMHZ\ i
15 — vt N
) =vinl <y | 7= Gy z+/ N TR
B 2lv+hl B 21l
e[~ 1)+ —— (1
2 1A eZ\yH—h h2 B€2|y|+2h
- —+ (—1)|, (2.32)
VT —1 2 VT —t

where 0 <t <t <T, —o<y<oo, and h > 0.
Choosing h = C*(t — tl)% , where C* is an arbitrary positive constant, then the
last inequality (2.32) takes the form

220 TAC* o — f
IY(t2,3) — ¥(11,3)] < [—ec vy B porvme ] (12— 1)}

SVT—n| 2 C*
2820 TACH B e 1
<7
the minimum of the above bound is attained at the point C* = 273 . Thus we arrive to

2BT
our required bound with constant F = 2v/2AB- SVaA L O

3. Proof of the main results

This section deals with the proof of our main results stated in Section 1.
From the relation (2.7) between the value functions v(z,x) and u(¢,y) we can write

dv(t,x) _ 17du(t,Inx)
ox x dy *

>0,0<t<T. 3.1)

As the partial derivative a"gy’y ) ,0<t < T, —e <y < o is continuous with respect to

the pair of arguments (z,y), the relation (3.1) implies that the partial derivative ¢(7,x) =

(1) is also continuous with respect to the pair of arguments (¢,x), 0<7 < T, x > 0.

Moreover, using the bound (2.26), equality (3.1) yields
xo(t,x)| <D™ 0<t<T, x>0. (3.2)
Proof of Proposition 1. Using the relation (3.1) we can express
E / (1))2S2dr (3.3)

Tk
—E Z/ 0(t,S) — o(ti1,S,_,))> S2dr

k-1
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2
:Ei/tk (lau(t,lnS,)_ 1 8u(tk1,1nS,k1)> S?dt
k-1

k=1 Si dy St dy
=E Z/ y(t,InS;) —y(t_1,InS;,_ ) —— | dt. (3.4)
k=171 Sty

Square of the difference in the last integral can be bounded as

S 2
(Y(l‘,lnS,) - Y(tkflalnstk,l) —t>

Stk—l
<3 (y(t71nSt) — y(tk_hlnSt))z +3 (y(tk_hlnSt) — y(tk_l,lnStkfl))z
2
S S
+3Y2(l‘k,1,1nS,k71) (tksgit)

k-1

Thus the expectation on the left-hand side of equality (3.3) is bounded above as
E / (1))282dr (3.5)

3E2/ V(t,008)) — Y(11,1nS)) 2 di

k-1

2
+3EZ/ ¥ (ty 171HSt)—}/(tk_1,lnStk71)) dt

k-1
2

+3E2 " P 1,InS, 1)M

2
k-1 StA 1

dt. (3.6)

To bound the first expectation on the right-hand side of the above inequality we apply
Proposition 7 and use the bounds (2.13), (2.26) and obtain

n 1)

k
EY [ (v(t.nS) —y(t_1,InS)) dr
k=111

n—1 1 F2 4[1n S| T
<E 2/ — (1 —t_)dt +4D%E | AI"Silar
k=1"7%-1 T—1 Ih—1

< FZAnl/tk E(S/+5)

T
L dt+4D2/ E(S24S72)dt

k=1"%—1 -1

w1 E (SH4 5,74 T
< F2A /0 %dt—i%Dz /t E($2+57?)dr. (3.7)
n—1

Using the solution of stochastic differential equation (1.10) we obtain

n e
EY [ (v(t,nS) —y(tx_1,InS,))* dr
k=1"Tk—1

Th—1

1 o
i 4D 2T (534 572)

< F2A 2CH+567)T (83—1—854)/
0
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< (F2(S4+S5) +4D2 (S3+552)) 2255 T A 1n %,

where we have used the obvious inequality 1 <2In2 < 21n %

155

(3.8)

To estimate the second expectation on the right-hand side of inequality (3.5) we

use the bound (2.31) and get

n I
E 2/ ((t,_nS,) — y(t_1,InS,, ) d

k=1"T%k-1
2 X 1 2 InS;|+2/InS;, | 2
<AEY e %1 (InS, —InS, ) dt
k=111 T -t
1 1

=A’E i
k=1

X(/,:1<“() )d +/ dW) dt
< 44%A <ﬁ+%2>2+02 e< ];1/:16

Let us estimate explicitly the expectation in the above inequality

2 -2 2
e s )

2/, oaw,

T —1

2111 o (v)dWy

ke e M k-1

ES [N (s sy )
kzl/’k . T—tk,l Ir—1 fk 1

En: (Sj‘ S )Eez)’u |
f lT_l»k_ k—1 k—1

v)dWw,

dt

o n=l o 1
< 2020 E (S“ s )dl
kgl e T — 1 Tk—1 Tk—1
poes [T (S;‘ +5 ) dt
a1 T _ tn 1 n—1 n—1
—2 -1 ] = =2
=204 / —E (SF48;74) dr + 4O 20T (584554
0 _
< 852N (541 504) In g

this bound leads to
n 1

k 2
E 2 \ (y(ttk—l ,InS;) — ’}/(tk—lalnstk,l)) dt
=111

o\ 2
_ I T
< 32A%(S4+ 574 (u + %) +G7 | SR A I

(st +s3"

41) dr.

(3.9)
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To complete the proof it remains to bound the third expectation in (3.5). For this pur-
pose we use the bound (2.26) on y(¢,y) and write

2

EZ Y fk 171HStk 1)M

2
-1 Stk 1

L Si_, =S
<D2E2/ e4“nstk,1‘(tk’127[)dt

k=171 k-1

, fiy ()= 2 vy oiam,
<D 2/1“ St St )E(1-e dt

't o’z(v) 't
< 2D2 (Sh+ Sy %) Wi 10807 En', / “E (ez"‘kl <“ (V)_T>dv+2"’k4 o)amy

k=1"%k—1

o2 v)
_ 2effk, . (u(v% T()dwr I o)dw, N 1) o

— o2 (Sﬁ—i—SO_“) e(4ﬁ+1062)r

dt

~
I

-
|

— o2 (SS+S54) e(4ﬁ+1052)r

M=
;\N
o~
/\/N\
—
o2
| I
—
o
=
=
+
Q
]
=
S~—
Y
<
[\
Q
=
==
I
=
=
Y
<
+
—_
~_
QL
-~

»
M=
L
Tﬁ\“
2

Mean value theorem leads us

2
Sy, —S
EZ ’}/ Zk 1,lnS,k 1) (n‘lzit)dl
Tr—1 Slk 1
_ _2 n 17 t
< 2D? (SS+S64) HLH1067)T 2/ (/ (Zy(v)+0'2(v))dv
k=1"t%-1 Ik—1

2 t
><e<2ﬂ+(F >A +2 5(v)dv)dt

k-1

1,
< 2D? (§4+ 554) el4i+100” Tz/k (2+) eCrt oI 125 (r— 1y

T—1
< 2DT <4a+ & ) (S3+55%) e OBT1T 7 (3.10)
Proposition 1 follows by inserting the bounds (3.8), (3.9) and (3.10) in the inequality

3.5). O
Let us explicitly calculate the conditional expectation

ka1‘|

=5 lE[exp(Z/t:l (u()

S7
S2

k-1

E[S7[Sy ] = S

tkl

v)dv—I—Z/ )

Stk 1]
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_ E[exp (2 /t ’ a(v)de—% / ’ (20(v))2dv)

k-1

<exp( [ ut)+ o)) ]

k-1

=5, exp (/t (2,u(v)+0'2(v))dv)7 (3.11)

k-1
where t;,_1 <t <1,k=1,2,...,n.
Proof of Proposition 2. From the obvious identity
Dp (1) —D(u) = Dp p(u) — Da(u) + Da(u) —D(u), 0 < u < T,

we can write

E OT(DA,h(u) —D(u))*S%du

u

T T
<2E | (Daj(u) — Da(u))>S2du+2E / (Da(u) —D(u))* S2du, 0 <u < T.
0 0

We have to bound the first expectation on the right-hand side of the above inequality.
Let us express

E [ (Das) ~ Da(w)

—EY / " (Da(u) — Dau))2S2du
k=1

k-1

" 22
— E [0 0(0,50)S3du
0

n 1,
+ 2 /k E I:((ph(tkflaslk,l) - (p(tkfhstk,l))zE {S3|Stk,l }:| du
k=2

k-1

2
' 2 fu — 2O gy42 [ 5 (v)aw,
_ q)2(07S0)/1E (S(z)e I <#(V) 2 ) +2 Jo' o (v) )du
0

n 1
+2/t E I:((ph(tkflaslk,l)_(p(tkfhslk,l))zE{S5|Slk,1 }:| du
k=2""tk—1

_
4|In S 2 A
<D2e|n0‘+( /“t+0-> 'A

3 [ e ([ eutr+oonar)

2
xE [((ph(tk—lastk—l) —0(e-1,5;,_,)) S,%H} du,

where we have used the bound (3.2) and expression (3.11).
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Note that explicit form of the density of probability distribution of the random
variable S; can be expressed as

—1 x 't o2 v) 2
F(Sortix) ! ([ (k0= o
0,0, = 1 :

V2m [y o2(v)dv)? x

where Sp >0, 0<x <o, 0<t<T.
Thus we can write

)

E /0 " (Dan() — Da(u))?S2du

< D2 e4|1n50\+<2ﬁ+6'2)A.A
)
28 )AL e [
+e< ) 2‘/t /() ((ph(tk,l,x)—(p(tk,l,x))zH(So,tk,l;x)dxdt, (3.12)
k=2 tk-1

where explicit form of the weight function H(So,#;x) is given as

x et [ (60 - T )]
H(So,t;x) = = e2looT v 20 ,S0>0,0<x< 00,
V27 ([ 02 (v)dv)?
Its first and second derivatives are given by
0H (So,1; 1 1 ! 2
(So,t13) _ 1{1_ — [mi—/ (u(v)_a(v))dv”
ox V27 (fE 62(v)dv)? Joo?(w)dv | So Jo 2

_1 x _0'2(v)> :|2
x @25 o2 ()dv [ln S5l <,u(v) 7 )dv

)

and

O%H(So,13x) 1 {_
ox? VAT (02 (v)dv) E x

Here we note that

lim H(Sy,t;x) =0, lim H(Sy,t;x) =0,
x—0+ X—o0

(3.13)

0H(Sy,t; . 0H(Sy,1;
lim MZO, hme:Q
x—0+ ox X—00 ox
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for So >0,0<r<T. And

d2H (S, 1;
7( 02’ Y) dx

/Ow(|v(t7x)|+|\7h(t,x))‘ =
B VAE, X X 1 2 v
<2 \/_((tf ;;E(;lhf {‘lnS_o_/o (H(v)—az( ))dv

+m lnsio_/o[ (.u(v)_o-zz(‘)))dv

— X ‘t o'z(v) 2
T
mc xe “+°)+1>+g(1)+C1h

o !
V2m (f5 o2 (v)dv)? x

WO lnSio _/ot (“(V> - @) dv

) 2
balicAl- 2
Xezf(th(v)dv[nSo Jo\ ) == )av dx,

where we have used relation (2.7) and the bound (2.29).

By the change of variable y = m [ln = I <u(v) - 022(V)> dv} , we ob-

8 o2(v)dy

tain
o2 . 0%H So,1;x
[ sl e | =
) 1
< 4Cs, o770 )T{1+7}
" Jyo>()av
1 2

+2(C+g(1)+Ch) T+ — , (3.14)

(fé 0'2(\’)61'\))j Joo?(v)dv

for So>0,0<r<T.
Fix (t,x) € [0,T] x [0,0) and let S¢(¢,x) be given by (2.3). We have

v(t,%) =v(t,y)| < sup E[|g(Sz(1,x) —&(Sz(1,y))]]

TG*Z‘T

2

) )dv+ 7 o(v)aw,

< Clx—y| sup Eeft <#(V)7

TG*Z‘T
<C ‘x_y‘ e'aTa

which shows that the left-hand derivative av({;’)’:_) is finite.
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The function @y (¢,x) is nondecreasing with respect to x, hence
on(t, 1) — @p(t,x)if x>1

Denote &= e"T | then
av(t,x—) a
— | <é.
ox
From here we have
v(t,x) —v(t,1) <é(x—1), x> L.
Since Vj(z,x) is the lower convex envelope of v, (¢,x), from the last inequality we get
the estimate
Vp(t,x) < éx+d, if x> 1.
Fix xo, xo > 1. The tangent line v (¢,x0) + @5, (¢,%0)(x — Xo) is below the convex func-
tion V,(7,x) and hence below the straight line & +d, if x > xo. But this is possible
only if
on(t,x0) < C.
Hence we have
(ph(tv 1) < (ph(trx) < 67 if x 2 1

Thus applying the weighted square integral inequality Proposition 3, we write
| @10 = 91,20 H(So.ti-1:x)dn

45 28 E)T {1 + ;}

< 3
< E sup|vh(tk_17x) —v(tk_17x)| f(';k—l o'z(v)dv

x>0

Nl—

1 2
+2(C+g(1)+Cih + =
Creten (j o2 yay)” o oMY ]

<%Clh{4CSoe(2“+62>T{l+ ! }+2(C+g(1)+c1h){#+i}].

o 7o o\li-1 O

Thus inequality (3.12) takes the form
T
E / (Dap(u) — Da(u))?S2du
0

_ 2
<De 4lInSo|+(2+67) A+§C1he<2#+5>
2

4csq 2R {1 + %}

VA 2 noort (2a+6%)7 1
+2(C+g(1)+clh){ + }+kz’/ {4CS <1+Q2tkl>
2

3/ Ik—2

+2(C+g(l)+C1h)<G\/tk_ i 1)}161:.



DISCRETE TIME HEDGING ERROR OF THE AMERICAN OPTION 161

It is easy to find

2/:21{4CS (28+%)7 <1+g2tlk1>+2(c+g(1)+cl )<0W G2t2k 1)}dr

g[lT{4CS0e(2“+G> (1+é)+2(€+g(1)+€1h) (ﬁ#—é)}dt

o 2 \/T—\/K
_ 20+6° )T 1T ( ) 2. T
= 4CSoe( ) <I+Elng>+2(C+g(l)+C1h) erEan

Thus we get

E [ (Dya(u) ~ Datu) S

<De 4\1n50|+(2u+cr)

+% Cih e<2ﬂ+32>

-A

1r6? 1/ T
4csy L) {2+ — (m— + 1) }
o A

-nw+gu+qm{éiﬂﬁg<m£+0}]

gwm§@+m, (3.15)

where d is some positive constant depending on parameters 7, 5 ,0,0,C,T,g(1),
K, C and S).

Use of Proposition 1 and the bound (3.15) in the estimate (1.14) completes the
proof. [

Proof of Proposition 3. Introduce the notation

sup |Fj (x) = F(x)| = o,

x>0

it follows that
F(x)— oy < Fy(x), Fp(x) — oy < F(x), if x > 0.

Since F,(x) is the lower convex envelope of F,(x), this implies

On the other side

therefore we can write
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Thus we find
sup [Fy(x) — F (x)[ < sup [F, (x) — F (x)].

x=0 x=0

We have from condition (1.5)
IF'(x—)| <C,

that is
~-C<F'(x-)<C.

After integraton we get
F(0)—Cx< F(x) <F(0)+Cx, x>0,
hence
[F(x)| < [FO)[+C.

On the other hand
F(x) — oy < Fy(x) < F(x) + oy,

therefore, we obtain

F(0)— oy, — Cx < F(x) < F(0) + ay, + Cx.

Similarly

F(0) — o, — Cx < Fy(x) < F(0) + 0y, + Cx.

Thus
|Fy()] < F(0)|+ o +Cx.

From the condition (1.20) we get
| 0BG+ PGl () < o

The left-derivative Fh’ (x—) is nondecreasing, hence

Fl(1-) < Fl(x—) if x> 1.

(3.16)

Fix xg, X0 > 1. The tangent line F}(xo) + F}/ (xo— ) (x—Xo) is below the convex function

Fy,(x), x > xo and hence below the line
F(0)+ oy, 4 Cx, x = xp.

But this is possible only if
F}: (XO—) S C.
Hence we have
F(1-) < Fl(xo—) ifx > 1.

Taking now Fj,(x) instead of the convex function f(x) in Theorem 3.1 in Hussain,

Pecari¢ and Shashiashvili [5] and using the bound (3.16), we obtain

2

/0 T () - F(v—)  H(x)dx

< S suplFi) — )| [ ()| + 1F ) 1700

2 x=0
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