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Abstract. Let Ω⊂R
n , n� 2 , be a bounded domain and let α < n−1 . We prove the Concentration-

Compactness Principle for the embedding of the Orlicz-Sobolev space W 1
0 Ln logn−1 L logα logL(Ω)

into the Orlicz space corresponding to a Young function that behaves like exp(exp(t
n

n−1−α )) for
large t . We also give the result for the case of the embedding into triple and other multiple
exponential spaces.

1. Introduction

Throughout the paper Ω denotes an open bounded set in R
n, n � 2. Let ωn−1 be

the measure of the surface of the unit sphere in R
n . By ∇ f we denote the generalized

derivative of f . The space W 1,n
0 (Ω) or W0LΦ(Ω) stands for the closure of C∞

0 (Ω) in
W 1,n(Ω) or WLΦ(Ω) , respectively.

The classical Sobolev embedding theorem states that W 1,p
0 (Ω) is continuously

embedded into Lp∗(Ω) if 1 � p < n and p∗ = pn
n−p . If p > n then every function

from W 1,p
0 (Ω) is bounded (i.e. belongs to L∞(Ω)) and in the limiting case p = n , it is

known that every function from W 1,n
0 (Ω) belongs to Lq(Ω) for every 1 � q < ∞ , but

not necessarily to L∞(Ω) . A famous result by Trudinger (see [15], [22], [25] and [26])
implies that the space W 1,n

0 (Ω) is continuously embedded into the Orlicz space LΦ(Ω)
with the Young function Φ of an exponential type Φ(t) = exp(t

n
n−1 )−1,t > 0.

In [18] Moser proved that for K � nω
1

n−1
n−1 we have

sup
{∫

Ω
exp

(
K| f (x)| n

n−1
)
dx : f ∈W 1,n

0 (Ω), ||∇ f ||Ln(Ω) � 1
}

< ∞ (1)

but that for K > nω
1

n−1
n−1 the supremum in (1) is not finite.

For α < n−1 set

γ =
n

n−1−α
> 0 and B = 1− α

n−1
=

n
(n−1)γ

> 0 . (2)
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The space W0Ln logα L(Ω) of the (first order) Sobolev type, modeled on the Zyg-
mund space Ln logα L(Ω) , is continuously embedded into the Orlicz space with the
Young function that behaves like exp(tγ) for large t . These results are due to Fusco,
Lions, Sbordone [14] for α < 0 and Edmunds, Gurka, Opic [6] in general. Moreover
it is shown in [6] (see also [5] and [7]) that in the limiting case α = n−1 we have the
embedding into a double exponential space, i.e. the space W0Ln logn−1 L logα logL(Ω) ,
α < n−1, is continuously embedded into the Orlicz space with the Young function that
behaves like exp(exp(tγ)) for large t . Further in the limiting case α = n−1 we have
the embedding into triple exponential space and so on. The borderline case is always
α = n−1 and for α > n−1 we have embedding into L∞(Ω) . It is well-known that the
Zygmund space Ln logα L(Ω) coincides with the Orlicz space LΦ(Ω) , where

lim
t→∞

Φ(t)
tn logα(t)

= 1 ,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)
tn logn−1(t) logα(log(t))

= 1 ,

and so on. For other results concerning these spaces we refer the reader to [7], [8], [9],
[10], [13] and [20].

For k ∈ N , let us write

log[k](t) = log(log[k−1](t)), where log[1](t) = log(t)

and

exp[k](t) = exp(exp[k−1](t)), where exp[1](t) = exp(t) .

Let k ∈ N and α < n− 1. Then we have above mentioned embedding results for any
Young function Φ satisfying

lim
t→∞

Φ(t)

tn
(
∏k−1

j=1 logn−1
[ j] (t)

)
logα[k](t)

= 1 (3)

(for k = 1 we read (3) as limt→∞
Φ(t)

tn logα[1](t)
= 1). As Ω is bounded, all Young functions

satisfying (3) give the same Orlicz-Sobolev space. In particular, we have from [6,
Remarks 3.11(iv)]

PROPOSITION 1.1. Let n � 2 , k ∈ N , α < n−1 and let Φ be a Young function
satisfying (3). Let K ∈ R and let f ∈W0LΦ(Ω) . Then

∫
Ω

exp[k]
(
K| f (x)|γ)dx < ∞ .
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Moser-type results

Further for K ∈ R and Φ satisfying (3) let us set

S(K,Φ) = sup
{∫

Ω
exp[k]

(
K| f (x)|γ)dx : f ∈W0L

Φ(Ω) , ||Φ(|∇ f |)||L1(Ω) � 1
}

. (4)

We have the following result.

THEOREM 1.2. Let n � 2 , k ∈ N and α < n−1 . Set

Kk,n,α =

⎧⎨
⎩B

1
B nω

γ
n
n−1 for k = 1

B
1
Bω

γ
n
n−1 for k � 2 .

(5)

Let Φ be a Young function satisfying (3). Then the following statements hold.
(i) If K < Kk,n,α , then S(K,Φ) < ∞ .
(ii) If K > Kk,n,α , then S(K,Φ) = ∞ .
(iii) If K = Kk,n,α and there are t0 > exp[k](1) and a ∈ (0,min{1, 1

γ }) such that Φ
satisfies

Φ(t) � tn
(k−1

∏
j=1

logn−1
[ j] (t)

)
logα[k](t)

(
1+ log−a

[k] (t)
)

for t > t0 , (6)

then S(K,Φ) < ∞ .
(iv) If K = Kk,n,α and there are t0 > exp[k](1) , a ∈ (0,min(1,B)) and C > 0 such that

Φ(t) �
{

Ctn for t ∈ [0,t0]

tn
(
∏k−1

j=1 logn−1
[ j] (t)

)
logα[k](t)

(
1− log−a

[k] (t)
)

for t ∈ [t0,∞) .
(7)

then S(K,Φ) = ∞ .

In the case k � 2, all four assertions of Theorem 1.2 follow from [3, Theorem
1.1, Theorem 1.2, Theorem 4.2 and Theorem 4.1]. In case k = 1, assertions (i), (ii),
(iii) follow from [16, Theorem 1.1, Theorem 1.2 and Theorem 4.2]. A weaker version
of (iv) is in [16, Theorem 4.1]. Our version of (iv) is a new result which we prove in
Section 5, Example 5.1.

Let us briefly indicate why the borderline parameter Kk,n,α is the same for all
k � 2 while for k = 1 it is n times larger (see (5)). For the value of S(K,Φ) , the most

important are radial functions of the growth f (x) ∼ (B
1
Bω

γ
n
n−1)

− 1
γ log

1
γ
[k](

1
|x| ) . For such

functions and τ > 0 we have∫
B(R)

exp[k]
(
τB

1
Bω

γ
n
n−1| f (x)|γ

)
dx = C

∫ R

0
exp[k]

(
τ log[k]

(1
r

))
rn−1 dr .

We observe that the last integral in the case k � 2 converges if and only if τ � 1 while
it is τ < n for k = 1.



168 R, ČERNÝ

Notice that even though all Young functions satisfying (3) with fixed k ∈ N and
α < n− 1 give the same Orlicz-Sobolev space, they give different Moser-type results
in the critical case K = Kk,n,α .

Let us observe the borderline case K = Kk,n,α in more detail. Since there is a huge
gap between (6) and (7), we see that Theorem 1.2 is not sharp in the critical case (for
the Moser’s case k = 1, α = 0 it is shown in [4] that the borderline Young function is
Φ(t) = tn(1− log−1(t))).

Concentration-Compactness Principle

Next we are interested in the generalization of the Concentration-Compactness
Alternative by Lions [17] for our spaces W0LΦ(Ω) .

Embeddings are usually not compact in the borderline cases. For example em-

bedding of the Sobolev space W 1,p
0 (Ω) into L

pn
n−p (Ω) for 1 � p < n or into LΦ(Ω)

for p = n are not compact. However there is the Concentration-Compactness Princi-
ple (see [24] and references given there for the history and applications) telling us that
some substitute for compactness is still available for many embeddings. By this princi-
ple, each bounded sequence can be decomposed into subsequences that either converge
in the target space or have very special behavior. For example such a subsequence can
concentrate around one point and in some sense converge to the Dirac mass at this point.
This observation is often used in many problems from the Calculus of Variations (see
e.g. [11], [12], [17], [24]). In particular, this principle gives the Compactness in the
situations which do not allow the Concentration (see for example the proof a level-set
version of the Palais-Smale condition in [11] and [19], or the proof of our Theorem 1.5
bellow).

In recent paper [2], there are the techniques for obtaining the Concentration-
Compactness Principle for W 1,n

0 (Ω) (see [17]) modified for the embedding of the space
W0Ln logα L(Ω) into the corresponding single exponential space. The main problem
when adapting the proof was the fact that working with the Luxemburg norm corre-
sponding to a general Young function satisfying the Δ2 -condition is much more diffi-
cult than working with the nice Ln(Ω)-norm (in particular, homogeneity of the function
t �→ tn is usually crucial for the techniques used in [17]). Moreover, the proof in [17]
is based on (1) while the proof in [2] requires the Moser-like result for embedding of
the space W0Ln logα L(Ω) into the Orlicz space corresponding to the Young function
exp(t

n
n−1−α )−1 given in [15] (i.e. Theorem 1.2 for k = 1).
The aim of this paper is to extend the Concentration-Compactness Principle for

embeddings into multiple exponential spaces. For these spaces our main tool is a Moser-
like result from [3] (i.e. Theorem 1.2 for k � 2).

THEOREM 1.3. Let n � 2 , k ∈ N , α < n− 1 and let Φ be a Young function
satisfying (3), S(Kk,n,α ,Φ) < ∞ and suppose there are T � exp[k](1) and � > k such
that

Φ(t) � tn
(k−1

∏
j=1

logn−1
[ j] (t)

)
logα[k](t)

(
1− log−1

[�] (t)
)

for t � T . (8)
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Let {u j}∞j=1 ⊂W0LΦ(Ω) satisfy ‖Φ(|∇u j|)‖L1(Ω) � 1 and

u j ⇀ u in W0L
Φ(Ω) , u j → u a.e. in Ω and Φ(|∇u j|) ∗

⇀ μ in M (Ω) . (9)

(i) If u = 0 and μ = δx0 for some x0 ∈ Ω , then the sequence {exp[k](Kk,n,α |u j|γ )}∞j=1

is relatively compact with respect to the weak∗ convergence in M (Ω) and the limits
of convergent subsequences belong to {exp[k](0)Ln|Ω + cδx0 : c � 0} .
(ii) If u 	= 0 or μ is not a Dirac mass at one point, then there is δ > 0 such that
exp[k](Kk,n,α (1+ δ )|u j|γ) is bounded in L1(Ω) and

exp[k](Kk,n,α |u j|γ) j→∞→ exp[k](Kk,n,α |u|γ) in L1(Ω) .

Theorem 1.3 tells us that each sequence of normalized functions from W0LΦ(Ω)
can be decomposed into subsequences (notice that, since W0LΦ(Ω) is reflexive, as-
sumptions (9) are obtained just passing to a subsequence) that either concentrate around
a point in Ω , or the integrability of such a subsequence is better than Theorem 1.2(i)
says.

The version of Theorem 1.3 given in paper [2] (case k = 1) with our assumptions
S(Kk,n,α ,Φ) < ∞ and (8) replaced by assumption (6) is much weaker. Let us explain
why.

First, the assumption S(Kk,n,α ,Φ) <∞ is necessary because otherwise we can find
a sequence satisfying

exp[k](Kk,n,α |u j|γ) j→∞→ ∞> exp[k](Kk,n,α |u|γ)
(see the concentrating sequences from Example 5.1 and [3, Theorem 4.1]) and thus
neither (i) nor (ii) can hold. Second, let us compare the assumptions (8) and (6). Con-
cerning (6), in view of remarks following Theorem 1.2 we see that assumption (6) is
very restrictive. Concerning condition (8), the larger � > k is, the more permissive this
condition is. Moreover, from Theorem 1.2(iv) we see that already for � = k + 1 there
are many Young functions satisfying (8) even though S(Kk,n,α ,Φ) = ∞ . Therefore this
condition is practically harmless and always satisfied by reasonable Young functions
satisfying (3) and S(Kk,n,α ,Φ) < ∞ .

The author would like to know, if it is possible to remove condition (8).
Notice that the assertion of Theorem 1.3 cannot be valid for K > Kk,n,α because

by Theorem 1.2 the integral from exp[k](K|u|γ) can be arbitrarily large if K > Kk,n,α .
Conversely, if K < Kk,n,α then we have just the Compactness as an easy corollary of
the Moser-type result.

COROLLARY 1.4. Let n � 2 , α < n−1 , k ∈N , K < Kk,n,α and let Φ be a Young
function satisfying (3). Let {u j}∞j=1 ⊂W0LΦ(Ω) satisfy ‖Φ(|∇u j|)‖L1(Ω) � 1 . Further
suppose that

u j → u a.e. in Ω .

Then
exp[k](K|u j|γ) j→∞→ exp[k](K|u|γ) in L1(Ω) .
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Having a version of the Concentration-Compactness Alternative for embedding
into multiple exponential spaces we also have the corresponding result concerning the
maximum of a functional with the sub-critical growth.

THEOREM 1.5. Let n � 2 , α < n− 1 , k ∈ N and let Φ be a Young function
satisfying (3). Suppose that the function F : R �→ R is even and continuous. Further
suppose that either

lim
t→∞

F(t)
exp[k](K|t|γ ) = 0 for some K < Kk,n,α (10)

or Φ satisfies additional condition (8) and

lim
t→∞

F(t)
exp[k](Kk,n,α |t|γ) = 0 . (11)

Then the functional

ΛF(u) =
∫
Ω

F(u(x))dx

attains its maximum on the set {u ∈W0LΦ(Ω) : ‖Φ(|∇u|)‖L1(Ω) � 1} .

Notice that we do not need to assume S(Kk,n,α ,Φ) < ∞ in Theorem 1.5.
The paper is organized in the following way. The third section is devoted to

Lemma 3.2, which provides us with an estimate enabling us to use Hölders inequal-
ity much more effectively than in paper [2]. In fact this is the crucial point for us when
replacing assumption (6) often used in [2] by our assumptions S(Kk,n,α ,Φ) < ∞ and
(8).

In the fourth section we apply Lemma 3.2 in the proof of Theorem 1.3. We use
the techniques from [2] modified for embedding into multiple exponential spaces. We
can use some partial results concerning general Young functions satisfying the Δ2 -
condition from [2]. Therefore we sketch some of our proofs. We also prove Corol-
lary 1.4 and Theorem 1.5 in the fourth section.

In the fifth section we construct an example proving Theorem1.2(iv) in the case k =
1.

In the sixth section we give a summary concerning the Concentration phenomenon.

2. Preliminaries

The n -dimensional Lebesgue measure is denoted by Ln . Further, Ln|Ω is its
restriction to Ω , i.e. Ln|Ω(A) = Ln(A∩Ω) for every measurable set A ⊂ R

n . If u is
a measurable function on Ω , then by u = 0 (or u 	= 0) we mean that u is equal (or not
equal) to the zero function a.e. on Ω .

By M (A) we denote the set of all Radon measures on a compact set A . We write
that μ j

∗
⇀ μ in M (A) if

∫
Aψ dμ j →

∫
Aψ dμ for every ψ ∈ C(A) . It is well known
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that each sequence bounded in L1(A) contains a subsequence converging weakly* in
M (A) .

By B(x0,R) we denote an open Euclidean ball in R
n centered at x0 with the radius

R > 0. If x0 = 0 we simply write B(R) .
By C we denote a generic positive constant which may depend on k , n , α , Ln(Ω)

and Φ . This constant may vary from expression to expression as usual. Sometimes we
say that for every ε > 0 something is true. Then the constants C in such a case may
depend also on fixed ε > 0.

For given functions g,h we say that g(t) >> h(t) for t big enough if we have

limt→∞
g(t)
h(t) = ∞ . Analogously g(t) >> h(t) for t small enough if limt→0+

g(t)
h(t) = ∞ .

The following lemma from [3, Lemma 2.2] shows that the function log[k] has
similar asymptotic behavior as the function log.

LEMMA 2.1. Let t1, p,q,δ ,E,L > 0 and k∈N and let functions f ,h : R �→ (0,∞)
and g : R �→ R satisfy

g(t)+E f (t) > exp[k](0) and Ehq(t) f p(t) > exp[k](0) on (t1,∞),

lim
t→∞

f (t) = ∞,
g(t)
f (t)

∈ [−E + δ ,L] and
log(h(t))
log( f (t))

∈
[
− p

q
+ δ ,L

]
on (t1,∞) .

Then there is t0 > t1 such that if t > t0 then

1− C

log[k]
(
f (t)

) <
log[ j]

(
g(t)+E f (t)

)
log[ j]

(
f (t)

) < 1+
C

log[k]
(
f (t)

) for j ∈ {1, . . . ,k} (12)

and

1− C

log[k]
(
f (t)

) <
log[ j]

(
Ehq(t) f p(t)

)
log[ j]

(
f (t)

) < 1+
C

log[k]
(
f (t)

) for j∈{2, . . . ,k} . (13)

Young functions and Orlicz spaces

A function Φ : R
+ →R

+ is a Young function if Φ is increasing, convex, Φ(0) = 0

and limt→∞
Φ(t)

t = ∞ .
Denote by LΦ(A,dμ) the Orlicz space corresponding to a Young function Φ on

a set A with a measure μ . If μ = Ln we simply write LΦ(A) . From some technical
reasons we prefer the space LΦ(A,dμ) to be equipped with the norm

|| f ||LΦ(A,dμ) = inf
{
λ > 0 :

∫
A
Φ

( | f (x)|
λ

)
dμ(x) � Φ(1)

}
. (14)

This is different from the definition of the Luxemburg norm where we have the in-
equality

∫
AΦ

( | f (x)|
λ

)
dμ(x) � 1. We use (14) to have the Hölder’s inequality (15) with

a sharp constant.
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Given a differentiable Young function Φ we can define the generalized inverse
function to φ(u) = Φ′(u) by

ψ(s) = inf{u : φ(u) > s} for s > 0

and further we define the associated Young function Ψ by

Ψ(t) =
∫ t

0
ψ(s)ds for t � 0 .

The dual space to LΦ(A,dμ) can be identified as the Orlicz space LΨ(A,dμ) .
If we have Φ(1)+Ψ(1) = 1 then the following generalization of Hölder’s inequal-

ity is valid (see [21] page 58 for the proof)∫
A
| f (y)g(y)| dμ(y) � || f ||LΦ(A,dμ)||g||LΨ(A,dμ) . (15)

We use this inequality for a measurable subset A⊂R and the measure dμ(y)=ωn−1yn−1dy .
For an introduction to Orlicz spaces see e.g. [21].

Δ2 -condition

We say that the Young function Φ satisfies the Δ2 -condition, if there are tΔ � 0
and CΔ > 1 such that

Φ(2t) � CΔΦ(t) whenever t � tΔ.

It is easy to see that if Φ satisfies the Δ2 -condition for one fixed tΔ > 0 then it satisfies
this condition with arbitrary t̃Δ > 0 with a different constant C̃Δ > 1. From the Δ2 -
condition one easily proves that for any η > 0 we can find ε > 0 so that

Φ((1+ ε)t) � (1+η)Φ(t) , for every t � tΔ . (16)

It is not difficult to check the Δ2 -condition for our Young functions satisfying (3).
Therefore one easily proves

|| f ||LΦ(A,dμ) = 1 ⇐⇒
∫

A
Φ(| f |)dμ(x) = Φ(1) , (17)

|| f j||LΦ(A,dμ)
j→∞→ 0 ⇐⇒

∫
A
Φ(| f j|)dμ(x)

j→∞→ 0 , (18)

for every ξ ∈ (0,1) there is η ∈ (0,1) such that

|| f ||LΦ(A,dμ) � 1−η =⇒
∫

A
Φ(| f |)dμ(x) � (1− ξ )Φ(1) , (19)

and for every η ∈ (0,1) there is ξ ∈ (0,1) such that∫
A
Φ(| f |)dμ(x) � (1− ξ )Φ(1) =⇒ || f ||LΦ(A,dμ) � 1−η . (20)
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Orlicz-Sobolev spaces

Let A be a nonempty open set in R
n and let Φ be a Young function satisfying

condition (3). In this subsection we consider Orlicz spaces only with the Lebesgue
measure. We define the Orlicz-Sobolev space WLΦ(A) as the set

WLΦ(A) := {u : u, |∇u| ∈ LΦ(A)}

equipped with the norm

‖u‖WLΦ(A) := ‖u‖LΦ(A) +‖∇u‖LΦ(A) ,

where ∇u is the gradient of u and we use its Euclidean norm in R
n .

We put W0LΦ(A) for the closure of C∞
0 (A) in WLΦ(A) . For this space we prefer

to use throughout the paper the equivalent norm

‖u‖W0LΦ(A) := ‖∇u‖LΦ(A) .

The space W0LΦ(A) is a reflexive Banach space and it is compactly embedded into LΦ(A) .
We write that f j ⇀ f in W0LΦ(A) , if

∫
A

∂ f j

∂xi
gdx →

∫
A

∂ f
∂xi

gdx for every g ∈ LΨ(A) and i ∈ {1, . . . ,n} .

Non-increasing rearrangement

The non-increasing rearrangement f ∗ of a measurable function f on Ω is defined
by

f ∗(t) = inf
{
s > 0 : Ln({x ∈Ω : | f (x)| > s}) � t

}
, t > 0 .

We also define the non-increasing radially symmetric rearrangement f # by

f #(x) = f ∗
(ωn−1

n
|x|n

)
for x ∈ B(R), Ln(B(R)) = Ln(Ω) .

For an introduction to these rearrangements see e.g. [23].
We also use the Polya-Szegö principle (see e.g. Talenti [23] for the proof).

THEOREM 2.2. Let Ω be an open bounded set and let R > 0 satisfy Ln(B(R)) =
Ln(Ω) . Let Φ be a Young function. Suppose that the function f : Ω→ R is Lipschitz
continuous and supported in Ω . Then f ∗ is locally absolutely continuous and∫

Ω
Φ(|∇ f (x)|)dx �

∫
B(R)

Φ(|∇ f #(x)|)dx . (21)

Finally, let us recall the Hardy-Littlewood inequality, i.e. for f ,g measurable on Ω
we have ∫

Ω
| f (x)g(x)|dx �

∫ ∞

0
f ∗(t)g∗(t)dt . (22)
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Tools from Measure Theory

LEMMA 2.3. Let k ∈ N , let {u j}∞j=1 be a sequence of measurable functions and
let u j → u a.e. in Ω . Suppose that there are K̃,δ ,γ,C1 > 0 such that

‖exp[k](K̃(1+ δ )|u j|γ )‖L1(Ω) < C1 for all j ∈ N . (23)

Let F be an even continuous function such that

sup
t∈(t0,∞)

|F(t)|
exp[k](K̃|t|γ) < ∞ for some t0 > 0 .

Then
F(u j)

j→∞→ F(u) in the L1(Ω)-norm .

In particular

exp[k](K̃|u j|γ ) j→∞→ exp[k](K̃|u|γ) in the L1(Ω)-norm .

Proof. Fist, we observe that if s1,s2 � 2, then s1 + s2 � s1s2 . Hence we easily
obtain by induction

s1,s2 � 2,k ∈ N =⇒ exp[k](s1 + s2) � exp[k](s1)exp[k](s2) . (24)

Further, as exp[k](K̃|t|γ) � 1 on R , from the assumptions on F we obtain L > 0 such
that

|F(t)| � Lexp[k](K̃|t|γ) for every t ∈ R . (25)

By Fatou’s lemma we have exp[k](K̃|u|γ) ∈ L1(Ω) , and thus for every ε > 0 there is
ξ > 0 so that ∫

A
exp[k](K̃|u|γ) <

ε
L

provided Ln(A) < ξ . (26)

Next, since obviously u ∈ L1(Ω) , we find M1 > 0 such that

Ln({x ∈Ω : |u(x)| > M1}) < ξ . (27)

Fix M � M1 large enough so that C1
exp[k](K̃δMγ ) < ε

L , K̃Mγ � 2 and K̃δMγ � 2. We have

by (25), (26) and (27)∫
{|u|�M}

|F(u)| � L
∫
{|u|�M}

exp[k](K̃|u|γ) < L
ε
L

= ε

and similarly we use (23), (24) and (25) to obtain∫
{|u j |�M}

|F(u j)| � L
∫
{|u j |�M}

exp[k](K̃|u j|γ)

� L
∫
{|u j |�M}

exp[k](K̃(1+ δ )|u j|γ )
exp[k](K̃δ |u j|γ)

� L
C1

exp[k](K̃δMγ )
< L

ε
L

= ε .
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Finally, the assumption u j → u a.e. in Ω and the continuity of F imply

g j := F(u j)χ{|u j |<M} −F(u)χ{|u|<M}
j→∞→ 0 a.e. in Ω .

Moreover

|g j(x)| � Lexp[k](K̃|u j|γ)χ{|u j |<M} +Lexp[k](K̃|u|γ)χ{|u|<M}
� 2Lexp[k](K̃ Mγ ) ∈ L1(Ω) .

Hence the Lebesgue dominated convergence theorem gives for j ∈ N large enough∫
Ω
|F(u j)−F(u)| �

∫
{|u j |�M}

|F(u j)|+
∫
{|u|�M}

|F(u)|+
∫
Ω
|g j| < 3ε

and the result follows. �

3. Estimates concerning the associated function

In this section we follow the ideas of [16, Proof of Theorem 4.2].
Suppose that the function Φ : R

+ → R
+ satisfies (8). In a standard way we can

prove that there is a Young function Φ1 : R
+ → R

+ such that

Φ′
1 is continuous and increasing on (0,∞) ,

Φ1(t) =
1
n
tn for t ∈ [0,1] ,

there is G > T such that for every t � G we have

Φ1(t) =
1
n
tn

(k−1

∏
j=1

logn−1
[ j] (t)

)
logα[k](t)

(
1− log−1

[�] (t)
)

� 1
n
Φ(t) .

(28)

Denote by Ψ the Young function associated to the function Φ1 . Clearly Ψ(t) =
n−1
n t

n
n−1 for t ∈ [0,1] . Hence Φ1(1)+Ψ(1) = 1. Therefore (Φ1,Ψ) is a normalized

complementary Young pair and we can use inequality (15).
Let us first estimate the growth of Ψ .

LEMMA 3.1. There is E > 0 such that for every t ∈ R we have

Ψ(t) < Ψ̂(t) := Et
n

n−1
(
1+ | logt|E)

. (29)

Moreover there is T̃ > G such that for every t ∈ [T̃ ,∞) we have in the case k � 2

Ψ(t) � Ψ̃(t) :=
(n−1)2

n
t

n
n−1

(k−1

∏
j=1

log−1
[ j] (t)

)
log

− α
n−1

[k] (t)
(
1+ log

− 1
2

[�] (t)
)

(30)

and in the case k = 1

Ψ(t) � Ψ̃(t) :=
(n−1)1+ α

n−1

n
t

n
n−1 log

− α
n−1

[1] (t)
(
1+ log

− 1
2

[�] (t)
)

. (31)
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Proof. Let us start with the case k � 2. Put

Ψ̃1(t) =
(n−1)2

n
t

n
n−1

(k−1

∏
j=1

log−1
[ j] (t)

)
log

− α
n−1

[k] (t)
(
1+ log

− 3
4

[�] (t)
)

.

Denote ψ̃1 = Ψ̃′
1 , φ = Φ′

1 and ψ = φ−1 , hence Ψ(t) =
∫ t
0ψ .

By (28) there is B1 > G such that for every t > B1 we have

φ(t) = tn−1
(k−1

∏
j=1

logn−1
[ j] (t)

)
logα[k](t)

[
1− log−1

[�] (t)+
k−1

∑
j=1

n−1
n

1− log−1
[�] (t)

∏ j
i=1 log[i](t)

+
α
n

1− log−1
[�] (t)

∏k
j=1 log[ j](t)

+
1
n

log−1
[�] (t)

∏�
j=1 log[ j](t)

]

� tn−1
(k−1

∏
j=1

logn−1
[ j] (t)

)
logα[k](t)

(
1−2log−1

[�] (t)
)

= φ̃(t) .

(32)

Analogously there is B2 > B1 such that for every t > B2

ψ̃1(t) = (n−1)t
1

n−1

(k−1

∏
j=1

log−1
[ j] (t)

)
log

− α
n−1

[k] (t)

[
1+ log

− 3
4

[�] (t)

−
k−1

∑
j=1

n−1
n

1+ log
− 3

4
[�] (t)

∏ j
i=1 log[i](t)

− α
n

1+ log
− 3

4
[�] (t)

∏k
j=1 log[ j](t)

− 3(n−1)
4n

log
− 3

4
[�] (t)

∏�
j=1 log[ j](t)

]

� (n−1)t
1

n−1

(k−1

∏
j=1

log−1
[ j] (t)

)
log

− α
n−1

[k] (t)
(
1+

1
2

log
− 3

4
[�] (t)

)
= ψ̃(t) .

(33)

Using (33) and
log[2](t)
log(t) << 1

log[�](t)
we find B3 > B2 such that for t > B3 we have

log[1]
(
ψ̃(t)

)
� log[1]

(
t

1
n−1

1

log2
[1](t)

)
=

( 1
n−1

log[1](t)−2log[2](t)
)

=
1

(n−1)
log[1](t)

(
1−2

(n−1) log[2](t)
log[1](t)

)

� 1
(n−1)

log[1](t)
(
1− log−1

[�] (t)
)

.

(34)

By Lemma 2.1 there is B4 > B3 such that for t > B4 we obtain

logn−1
[ j]

(
ψ̃(t)

)
� logn−1

[ j]

(
t

1
n
)

� logn−1
[ j] (t)

(
1− log−1

[�] (t)
)

for j ∈ {2, . . . ,k−1} ,

(35)
analogously

logα[k]
(
ψ̃(t)

)
� logα[k](t)

(
1− log−1

[�] (t)
)

(36)
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and trivially
1−2log−1

[�]

(
ψ̃(t)

)
� 1−2log−1

[�] (t) . (37)

From (32), (33), (34), (35), (36) and (37) we can see that there is B5 > B4 such
that for all t > B5 we have

φ̃(ψ̃(t)) = ψ̃n−1(t)
(k−1

∏
j=1

logn−1
[ j] (ψ̃(t))

)
logα[k](ψ̃(t))

(
1−2log−1

[�] (ψ̃(t))
)

�
[
(n−1)t

1
n−1

(k−1

∏
j=1

log−1
[ j] (t)

)
log

− α
n−1

[k] (t)
(
1+

1
2

log
− 3

4
[�] (t)

)]n−1 logn−1
[1] (t)

(n−1)n−1

( k

∏
j=2

logn−1
[ j] (t)

)
logα[k](t)

(
1− log−1

[�] (t)
)n+k−2(

1−2log−1
[�] (t)

)

� t
(
1+

1
2

log
− 3

4
[�] (t)

)(
1− log−1

[k] (t)
)n+k−2(

1−2log−1
[�] (t)

)
> t .

It follows that φ(ψ̃1(t)) > t for t > B5 and thus

t > B5 ⇒ ψ̃1(t) > φ−1(t) = ψ(t) . (38)

Hence for t > B5 we have
Ψ(t) < Ψ̃1(t)+C .

Together with log
− 3

4
[�] (t) << log

− 1
2

[�] (t) for t large this implies that there is T̃ > B5 such

that for all t � T̃ we have
Ψ(t) < Ψ̃(t) .

Since Ψ is increasing and Ψ(t) = tn
′

n′ for t ∈ [0,1] , (30) obviously implies (29).
Now suppose that k = 1. This time we consider

Ψ̃1(t) =
(n−1)1+ α

n−1

n
t

n
n−1 log

− α
n−1

[1] (t)
(
1+ log

− 3
4

[�] (t)
)

.

Estimate (32) for t > B1 and k = 1 reads

φ(t) � tn−1 logα[1](t)
(
1−2log−1

[�] (t)
)

= φ̃ (t) . (39)

There is B2 > B1 such that for every t > B2

ψ̃1(t) = (n−1)
α

n−1 t
1

n−1 log
− α

n−1
[1] (t)

[
1+ log

− 3
4

[�] (t)− α
n

1+ log
− 3

4
[�] (t)

log[1](t)

− 3(n−1)
4n

log
− 3

4
[�] (t)

∏�
j=1 log[ j](t)

]

� (n−1)
α

n−1 t
1

n−1 log
− α

n−1
[1] (t)

(
1+

1
2

log
− 3

4
[�] (t)

)
= ψ̃(t) .

(40)
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Estimates (34) and (37) are still valid in this case provided t is large enough. Next we
need to prove that there is B4 > B3 such that for t > B4 we have

logα[1]
(
ψ̃(t)

)
� 1

(n−1)α
logα[1]

(
1+C log−1

[�] (t)
)

. (41)

If α � 0 then (41) easily follows from (34). Otherwise for t large we use (40) and

estimate ψ̃(t) � Ct
1

n−1 log
− α

n−1
[1] (t) to obtain

log[1]
(
ψ̃(t)

)
� C+

1
n−1

log[1](t)+
|α|

n−1
log[2](t) � 1

n−1
log[1](t)

(
1+

C log[2](t)
log[1](t)

)
.

This implies (recall α < 0) for t large enough

logα[1]

(
ψ̃(t)

)
� 1

(n−1)α
logα[1](t)

(
1+

C log[2](t)
log[1](1)

)α

� 1
(n−1)α

logα[1](t)
(
1−C log−1

[�] (t)
)

.

Thus (41) is proved.
From (37), (39), (40) and (41) we can see that there is B5 > B4 such that for all

t > B5 we have

φ̃(ψ̃(t)) = ψ̃n−1(t) logα[1](ψ̃(t))
(
1−2log−1

[�] (ψ̃(t))
)

�
[
(n−1)

α
n−1 t

1
n−1 log

− α
n−1

[1] (t)
(
1+

1
2

log
− 3

4
[�] (t)

)]n−1 1
(n−1)α

logα[1](t)(
1−C log−1

[�] (t)
)(

1−2log−1
[�] (t)

)
� t

(
1+

1
2

log
− 3

4
[�] (t)

)(
1−C log−1

[�] (t)
)(

1−2log−1
[�] (t)

)
> t .

Now, we conclude the proof the same way as in the case k � 2. �

LEMMA 3.2. There is t0 ∈ (0,1) such that for 0 < t � t0 we have

∣∣∣∣∣∣ 1
yn−1

∣∣∣∣∣∣
LΨ((t,R),ωn−1yn−1dy)

� D log
1
γ
[k]

(1
t

)(
1+ log

− 1
4

[�]

(1
t

))
, (42)

where D =
(ωn−1

B

) n−1
n

. (43)

Proof. We want to prove that for

λ = D log
1
γ
[k]

(1
t

)(
1+ log

− 1
4

[�]

(1
t

))
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we have ∫ R

t
Ψ

( 1
λyn−1

)
ωn−1y

n−1 dy � Ψ(1) =
n−1

n

for t > 0 small enough.

For t ∈ (
0,exp−1

[k] (1)
)

set M = M(t) = exp
(
− log

min{1, 1γ }
(E+2)(n−1)
[k] ( 1

t )
)

. We can clearly

find t1 ∈
(
0,exp−1

[�] (2)
)

such that for 0 < t < t1 we have

t < M < R and
1

λMn−1 > T̃ . (44)

Hence Lemma 3.1 gives us that∫ R

t
Ψ

( 1
λyn−1

)
yn−1 dy

�
∫ M

t
Ψ̃

( 1
λyn−1

)
yn−1 dy+

∫ R

M
Ψ̂

( 1
λyn−1

)
yn−1 dy = I1 + I2 .

(45)

By (29) we have

I2 = E
∫ R

M

1

λ
n

n−1

(
1+

∣∣∣log
( 1
λyn−1

)∣∣∣E)dy
y

� C

λ
n

n−1

∫ R

M

(
1+ | log(λ )|E + | log(y)|E

)dy
y

= J1 + J2 ,

where (we observe that (1− log
− 1

4
[�] ( 1

t ))
−1 < C on (0,t1) ⊂ (0,exp−1

[�] (2)))

J1 =
C

λ
n

n−1

∫ R

M

(
1+ | log(λ )|E

)dy
y

� C

log
n

(n−1)γ
[k] ( 1

t )

(
1+ logE

(
log[k]

(1
t

)))(
1+ log

( 1
M

))

and

J2 =
C

λ
n

n−1

∫ R

M
| log(y)|E dy

y
� C

log
n

(n−1)γ
[k] ( 1

t )

(
1+ logE+1

( 1
M

))

Hence we obtain

I2 � C

log
n

(n−1)γ
[k] ( 1

t )

(
1+ logE

(
log[k]

(1
t

)))(
1+ log

( 1
M

)
+ logE+1

( 1
M

))
.

Thus there is t2 ∈ (0,t1) such that if 0 < t < t2 we have

I2 � C

log
n

(n−1)γ
[k] ( 1

t )
logE+2

( 1
M

)
� C

log
n

(n−1)γ −
min{1, 1γ }

(n−1)
[k] ( 1

t )

� 1

log[�](
1
t )

. (46)
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Next we need to estimate I1 . Our goal is to prove for t > 0 small enough

I1 � n−1
ωn−1n

(
1− 1

2
log

− 1
4

[�]

(1
t

))
. (47)

First, let us prove (47) for k � 2. Since log
1
2
[1](

1
M ) >> log[1](λ ) > 1 for small t > 0,

we can choose t3 ∈ (0,t2) such that if 0 < t < t3 and y ∈ [t,M] we have

log−1
[1]

( 1
λyn−1

)
= log−1

[1]

( 1
yn−1

) 1

1+
log[1](

1
λ )

log[1](
1

yn−1 )

� 1
n−1

log−1
[1]

(1
y

)(
1+

C log[1](λ )

log[1](
1
y )

)

� 1
n−1

log−1
[1]

(1
y

)(
1+

C log[1](λ )

log
1
2
[1](

1
M )

1

log
1
2
[1](

1
y )

)

� 1
n−1

log−1
[1]

(1
y

)(
1+ log−1

[�]

(1
y

))
.

(48)

Further, estimate (13) from Lemma 2.1 gives us t4 ∈ (0,t3) such that if 0 < t < t4 and
y ∈ [t,M] , then we have for j ∈ {2, . . . ,k−1}

log−1
[ j]

( 1
λyn−1

)
� log−1

[ j]

(1
y

)(
1+

C

log[k](
1
y )

)
� log−1

[ j]

(1
y

)(
1+ log−1

[�]

(1
y

))
, (49)

log
− α

n−1
[k]

( 1
λyn−1

)
� log

− α
n−1

[k]

(1
y

)(
1+

C

log[k](
1
y )

)
� log

− α
n−1

[k]

(1
y

)(
1+ log−1

[�]

(1
y

))
,

(50)

1+ log
− 1

2
[�]

( 1
λyn−1

)
� 1+2log

− 1
2

[�]

(1
y

)
(51)

and (
1+ log

− 1
4

[�]

(1
t

))− n
n−1 � 1− log

− 1
4

[�]

(1
t

)
. (52)

Hence (30), (45), (48), (49), (50), (51) and (52) give us that

I1 =
(n−1)2

n

∫ M

t

( 1
λyn−1

) n
n−1

(k−1

∏
j=1

log−1
[ j]

( 1
λyn−1

))
log

− α
n−1

[k]

( 1
λyn−1

)
(
1+ log

− 1
2

[�]

( 1
λyn−1

))
yn−1 dy

�
n−1
n (1− log

− 1
4

[�] ( 1
t ))

D
n

n−1 log
n

(n−1)γ
[k] ( 1

t )

∫ M

t

(k−1

∏
j=1

log−1
[ j]

(1
y

))
log

− α
n−1

[k]

(1
y

)
(
1+ log−1

[�]

(1
y

))k(
1+2log

− 1
2

[�]

(1
y

))dy
y

.
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Further there is t5 ∈ (0,t4) such that for 0 < t < t5 and y ∈ [t,M] we have

(
1− log

− 1
4

[�]

(1
t

))(
1+ log−1

[�]

(1
y

))k(
1+2log

− 1
2

[�]

(1
y

))
� 1− 1

2
log

− 1
4

[�]

(1
t

)
.

Therefore (43) and − α
n−1 = B−1 	= −1 imply

I1 � n−1
n

B
ωn−1

1− 1
2 log

− 1
4

[�] ( 1
t )

log
n

(n−1)γ
[k] ( 1

t )

∫ M

t

(k−1

∏
j=1

log−1
[ j]

(1
y

))
log

− α
n−1

[k]

(1
y

)dy
y

=
n−1

n
B

ωn−1

1− 1
2 log

− 1
4

[�] ( 1
t )

log
n

(n−1)γ
[k] ( 1

t )

[
−

log
1− α

n−1
[k] ( 1

y )

1− α
n−1

]M

t

.

Since 1− α
n−1 = B = n

(n−1)γ and log[k](
1
M ) > 0, we have (47) in case k � 2.

Now, let us prove (47) for k = 1. We need the estimate

log
− α

n−1
[1]

( 1
λyn−1

)
� 1

(n−1)
α

n−1
log

− α
n−1

[1]

(1
y

)(
1+ log−1

[�]

(1
y

))
. (53)

For α � 0 estimate (53) easily follows from (48). Let α < 0. This time log[1](λ ) > 0
implies

log[1]

( 1
λyn−1

)
= log[1]

( 1
yn−1

)(
1+

log[1](
1
λ )

log[1](
1

yn−1 )

)
� (n−1) log[1]

(1
y

)

and (53) follows trivially.
Hence (31), (45), (51), (52) and (53) give us that

I1 =
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n
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) n
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1+ log
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n (1− log
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4
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n−1 log
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.

Further there is t5 ∈ (0,t4) such that for 0 < t < t5 and y ∈ [t,M] we have

(
1− log

− 1
4

[�]

(1
t

))(
1+ log−1
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Therefore (43) and − α
n−1 = B−1 	= −1 imply

I1 � n−1
n

B
ωn−1

1− 1
2 log

− 1
4

[�] ( 1
t )

log
n

(n−1)γ
[k] ( 1

t )

∫ M

t
log

− α
n−1

[1]

(1
y

)dy
y

=
n−1

n
B

ωn−1

1− 1
2 log

− 1
4

[�] ( 1
t )

log
n

(n−1)γ
[k] ( 1

t )

[
−

log
1− α

n−1
[1] ( 1

y )

1− α
n−1

]M

t

.

Since 1− α
n−1 = B = n

(n−1)γ and log[k](
1
M ) > 0, we have (47) also for k = 1.

Finally, from (45), (46) and (47) we obtain that there is t0 ∈ (0,t5) such that for
0 < t < t0 we have the desired inequality

∫ R

t
Ψ

( 1
λyn−1

)
yn−1 dy � I1 + I2 � log−1

[�]

(1
t

)
+

n−1
ωn−1n

(
1− 1

2
log

− 1
4

[�]

(1
t

))

� n−1
ωn−1n

=
1

ωn−1
Ψ(1) . �

4. Concentration-Compactness Alternative

Proof of Corollary 1.4. Since K < Kk,n,α , we can find δ > 0 such that K(1 +
δ ) < Kk,n,α . Hence, by Theorem 1.2(i) we see that the assumptions of Lemma 2.3 are
satisfied (with K̃ = K and C1 = S(K(1+ δ ),Φ) < ∞) and thus Lemma 2.3 concludes
the proof. �

In the proof of Theorem 1.3 we distinguish three cases. These cases are studied
separately in Propositions 4.2, 4.3 and 4.4 bellow.

Case 1

In this subsection we prove the Compactness in the case u = 0 and μ 	= δx0 .

LEMMA 4.1. Let n � 2 , α < n−1 , k ∈ N and let Φ be a Young function satis-
fying (3). Let {u j}∞j=1 ⊂W0LΦ(Ω) satisfy ‖Φ(|∇u j|)‖L1(Ω) � 1 . Suppose that

u j ⇀ 0 in W0L
Φ(Ω) and Φ(|∇u j|) ∗

⇀ μ in M (Ω) .

Let F,N ⊂Ω be compact sets such that F ∩N = /0 and μ(N) > 0 . Then there is δ > 0
such that

‖exp[k](Kk,n,α (1+ δ )|u j|γ )‖L1(F) is bounded . (54)

Similarly, if μ(Ω) < 1 , then there is δ > 0 such that (54) is satisfied with F replaced
by Ω .
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Sketch of proof. In [2, proof of Lemma 3.1] it is shown that if μ(N) > 0, Φ is
a Young function satisfying the Δ2 -condition and {u j}∞j=1 ⊂W0LΦ(Ω) satisfy ‖Φ(|∇u j|)‖L1(Ω) �
1, then there are δ̃ > 0, j1 ∈ N and {v j}∞j= j1+1 ⊂W0LΦ(Ω) such that

∫
Ω
Φ(|∇v j|) � 1 and v j = (1+2δ̃)u j on F for all j > j1 . (55)

Thus using Theorem 1.2(i) with K = 1+δ̃
(1+2δ̃)

Kk,n,α < Kk,n,α we obtain for j > j1

‖exp[k](Kk,n,α (1+ δ̃)γ |u j|γ)‖L1(F) = ‖exp[k](K(1+2δ̃)γ |u j|γ )‖L1(F)

� ‖exp[k](K|v j|γ )‖L1(Ω) � S(K,Φ) < ∞ .

Moreover, by Proposition 1.1, for every fixed j ∈ {1, . . . , j1} there is Cj such that
‖exp[k](Kk,n,α(1 + δ̃ )|u j|γ)‖L1(F) � Cj . Hence we obtain (54) for δ = (1 + δ̃ )γ − 1
with the bound max(C1, . . . ,Cj1 ,S(K,Φ)) .

If μ(Ω) < 1, then using Φ(|∇u j|) ∗
⇀ μ in M (Ω) with the test-function ψ ≡ 1

and (20) we find δ̃ > 0 and j1 ∈ N such that (55) is satisfied with v j = (1 + 2δ̃)u j

on Ω and we conclude the proof the same way as before. �

PROPOSITION 4.2. Let n � 2 , α < n−1 , k ∈ N and let Φ be a Young function
satisfying (3). Let {u j}∞k=1 ⊂W0LΦ(Ω) satisfy ‖Φ(|∇u j|)‖L1(Ω) � 1 . Further suppose
that

u j ⇀ 0 in W0L
Φ(Ω) , u j → 0 a.e. in Ω and Φ(|∇u j|) ∗

⇀ μ in M (Ω) ,

where μ is not a Dirac mass at one point. Then there is δ > 0 such that

exp[k](Kk,n,α(1+ δ )|u j|γ) is bounded in L1(Ω)

and

exp[k](Kk,n,α |u j|γ) j→∞→ exp[k](Kk,n,α |u|γ) in L1(Ω) .

Sketch of proof. If μ(Ω) < 1, then the proof follows from Lemma 4.1.

If μ(Ω) = 1, then the same way as in [2, proof of Proposition 3.2] we can find
compact sets F1,F2 ⊂ Ω such that F1 ∪F2 = Ω and the complement of each of these
sets contains a compact set with a positive μ -measure. Hence we conclude easily by
Lemma 4.1.

The case μ(Ω) > 1 is impossible as one can see using Φ(|∇u j|) ∗
⇀ μ in M (Ω)

with the test-function ψ ≡ 1. �
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Case 2

In this subsection we prove the Concentration in the case u = 0 and μ = δx0 .

PROPOSITION 4.3. Let n � 2 , α < n−1 , k ∈ N and let Φ be a Young function
satisfying (3). Let {u j}∞j=1 ⊂W0LΦ(Ω) satisfy ‖Φ(|∇u j|)‖L1(Ω) � 1 . Further suppose
that

u j ⇀ 0 in W0L
Φ(Ω) , u j → 0 a.e. in Ω and Φ(|∇u j|) ∗

⇀ δx0 in M (Ω) ,

where x0 ∈Ω .
(i) If K � 0 and u j satisfy

∫
Ω

exp[k](K|u j|γ )− exp[k](0)
j→∞→ c ∈ [0,∞) , (56)

then
exp[k](K|u j|γ)− exp[k](0) ∗

⇀ cδx0 in M (Ω) .

(ii) In addition, if Φ satisfies the condition S(Kk,n,α ,Φ) < ∞ , then the sequence
{exp[k](Kk,n,α |u j|γ)−exp[k](0)}∞j=1 is relatively compact with respect to the weak∗ con-

vergence in M (Ω) and the limits of convergent subsequences belong to

{cδx0 : c ∈ [0,S(Kk,n,α ,Φ)− exp[k](0)Ln(Ω)]} .

The proof of Proposition 4.3 is very similar to [2, proof of Proposition 3.3]. How-
ever, sketching the proof might be a bit confusing because of the constant 1 in [2] which
sometimes comes from the estimate of the modular in W0LΦ(Ω) and sometimes it is
exp(0) and it needs to be replaced by exp[k](0) in such a case. Moreover we need to
replace condition (6) by the assumption S(Kk,n,α ,Φ) <∞ . Therefore we give a detailed
proof for the convenience of the reader.

Proof. Let us prove the first assertion. For K = 0 we can only have c = 0 and the
proof is trivial. Thus suppose K > 0. First, we claim that

η > 0 =⇒
∫
Ω\B(x0,η)

exp[k](K|u j|γ )− exp[k](0)
j→∞→ 0 . (57)

From Lemma 4.1 for N = B(x0,
η
2 ) and F = Ω\B(x0,η) we obtain that

∫
Ω\B(x0,η)

exp[k](K(1+ δ )|u j|γ )

is bounded for some δ > 0 and thus we may use Lemma 2.3 to obtain (57).
Further we observe that (57) and assumption (56) imply

η > 0 =⇒
∫

B(x0,η)
exp[k](K|u j|γ )− exp[k](0)

j→∞→ c . (58)
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Fix arbitrary test function ψ ∈C(Ω) and let ε > 0. Then there is η > 0 such that

|ψ(x)−ψ(x0)| < ε
2max(c,1)

whenever |x− x0| < η . (59)

We have

I : =
∣∣∣∫

Ω
ψ d(cδx0)−

∫
Ω
ψ

(
exp[k](K|u j|γ)− exp[k](0)

)∣∣∣
=

∣∣∣cψ(x0)−
∫
Ω
ψ

(
exp[k](K|u j|γ)− exp[k](0)

)∣∣∣
�

∫
Ω\B(x0,η)

|ψ |(exp[k](K|u j|γ )− exp[k](0)
)

+
∫

B(x0,η)
|ψ−ψ(x0)|

(
exp[k](K|u j|γ )− exp[k](0)

)
+ |ψ(x0)|

∣∣∣c−∫
B(x0,η)

(
exp[k](K|u j|γ)− exp[k](0)

)∣∣∣ = I1 + I2 + I3 .

By (57) and supΩ |ψ | < ∞ we see that there is j1 ∈ N such that I1 < ε for j > j1 .
Further, using (58) and (59) we obtain

I2 =
∫

B(x0,η)
|ψ−ψ(x0)|(exp[k](K|u j|γ)− exp[k](0))

� ε
2max(c,1)

∫
B(x0,η)

exp[k](K|u j|γ )− exp[k](0)
j→∞→ ε

2
c

max(c,1)
� ε

2
.

Therefore we can find j2 > j1 such that I2 < ε for j > j2 . Finally, from (58) and
|ψ(x0)| <∞ we obtain j3 > j2 such that I3 < ε for j > j3 . Hence we have I < 3ε for
j large and the first assertion is proved.

Let us prove the second assertion. By assumption S(Kk,n,α ,Φ) < ∞ we have

‖exp[k](Kk,n,α |u j|γ )− exp[k](0)‖L1(Ω) � S(Kk,n,α ,Φ)− exp[k](0)Ln(Ω) . (60)

Now, we use the fact that every bounded set in the L1(Ω)-norm is relatively compact
in M (Ω) with respect to the weak∗ -convergence. Further, suppose that {v j}∞j=1 ⊂
{u j}∞j=1 is such that

exp[k](Kk,n,α |v j|γ )− exp[k](0) ∗
⇀ ν in M (Ω) .

Choosing the test function ψ ≡ 1 we obtain∫
Ω

exp[k](K|v j|γ )− exp[k](0)

=
∫
Ω
ψ(exp[k](K|v j|γ)− exp[k](0))

j→∞→
∫
Ω
ψ dν = ν(Ω) .

Thus the sequence {v j}∞j=1 satisfies the assumptions of the first part of our proposition

with c = ν(Ω) ∈ [0,S(Kk,n,α ,Φ)−exp[k](0)Ln(Ω)] (for the upper estimate of c we use
(60)), thus the first assertion concludes the proof. �
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Case 3

In this subsection we prove the Compactness for u 	= 0.

PROPOSITION 4.4. Let n � 2 , α < n−1 , k ∈ N and let Φ be a Young function
satisfying (3) and (8). Assume that {u j}∞j=1 ⊂W0LΦ(Ω) is such that

‖Φ(|∇u j|)‖L1(Ω) � 1 , u j ⇀ u in W0L
Φ(Ω) and u 	= 0 .

Then there is δ > 0 such that ‖exp[k](Kk,n,α (1+ δ )|u j|γ )‖L1(Ω) is bounded and

exp[k](Kk,n,α |u j|γ) j→∞→ exp[k](Kk,n,α |u|γ) in L1(Ω) .

The key ingredient of the proof of Proposition 4.4 is the following lemma telling
us that if the sequence {u j}∞j=1 satisfies condition (61) (which is what we do not
want in Proposition 4.4), then we actually have u = 0. Notice that we do not assume
S(Kk,n,α ,Φ) < ∞ in the lemma. It is important for us in the last section.

LEMMA 4.5. Let n � 2 , α < n−1 , k ∈ N and let Φ be a Young function satis-
fying (3) and (8). Let R > 0 and let {g j}∞j=1 ⊂C1([0,R]) be non-increasing functions
satisfying g j(R) = 0 . Set

u j(x) = g j(|x|) , x ∈ B(R) , j ∈ N

and assume that ||Φ(|∇u j|)||L1(B(R)) � 1 . If

lim
j→∞

||exp(Kk,n,α(1+ δ )|u j|γ ||L1(B(R)) = ∞ for every δ > 0 , (61)

then ∫
B(R)\B(r)

Φ(|∇u j|) j→∞→ 0 for every r ∈ (0,R) (62)

and
u j

j→∞→ 0 uniformly on B(R)\B(r) for every r ∈ (0,R) .

Proof. First let us prove (62). If (62) is not true then passing to a subsequence we
can find τ > 0 and r0 ∈ (0,R) such that∫

B(R)\B(r0)
Φ(|∇u j|) � τ for all j ∈ N

and thus ∫
B(r0)

Φ(|∇u j|) � 1− τ for all j ∈ N . (63)

Put dμ(y) = ωn−1yn−1dy and let Φ1 be the Young function from (28). Fix t ∈ (0,r0)
and for every j ∈ N set

Aj = {y ∈ (t,r0) : |g′j(y)| > G} , Ã j = {y ∈ (r0,R) : |g′j(y)| > G}
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(Recall that the constant G comes from (28)). From (28) and (63) we obtain

∫
Aj

Φ1(|g′j(y)|)ωn−1y
n−1 dy � ωn−1

n

∫
Aj

Φ(|g′j(y)|)yn−1dy

� ωn−1

n

∫ r0

0
Φ(|g′j(y)|)yn−1dy =

1
n

∫
B(r0)

Φ(|∇u j(x)|) dx

� 1
n
(1− τ) = (1− τ)Φ1(1) .

(64)

Thus (20) gives τ̃ > 0 independent of j ∈ N such that

||g′j(y)||LΦ1 (Aj ,dμ) � 1−2τ̃ , j ∈ N . (65)

The same way we obtain from ||Φ(|∇u j|)||L1(B(R)) � 1

||g′j(y)||LΦ1 (Ã j ,dμ) � 1 , j ∈ N . (66)

The generalized Hölder’s inequality (15) gives

g j(t) �
∫ R

t
|g′j(y)|dy =

∫
(r0,R)\Ã j

+
∫

Ã j

+
∫

(t,r0)\Aj

+
∫

Aj

� GR+
∫
Ã j

|g′j(y)|
1

ωn−1yn−1 dμ(y)+Gr0 +
∫
Aj

|g′j(y)|
1

ωn−1yn−1 dμ(y)

� C+
1

ωn−1
||g′j(y)||LΦ1 (Ã j ,dμ)

∣∣∣∣∣∣ 1
yn−1

∣∣∣∣∣∣
LΨ((r0,R),dμ)

+
1

ωn−1
||g′j(y)||LΦ1 (Aj ,dμ)

∣∣∣∣∣∣ 1
yn−1

∣∣∣∣∣∣
LΨ((t,R),dμ)

.

Therefore Lemma 3.2, (65), (66) and || 1
yn−1 ||LΨ((r0,R),dμ) � C ( 1

yn−1 is bounded on

(r0,R)) imply in case t ∈ (0,min(t0,r0))

g j(t) � C+
1

ωn−1
(1−2τ̃)D log

1
γ
[k]

(1
t

)(
1+ log

− 1
4

[�]

(1
t

))
.

Therefore there is t1 ∈ (0,min(t0,r0)) such that

g j(t) � (1− τ̃)
1

ωn−1
D log

1
γ
[k]

(1
t

)
for t ∈ (0,t1) . (67)

Finally pick δ0 > 0 small enough so that

(1+ δ0)(1− τ̃)γ = η < 1 (68)
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and let us show that we have a contradiction with (61). If k � 2, then (67), (68) and
Kk,n,α( D

ωn−1
)γ = 1 (see (5) and (43)) imply

∫
B(R)

exp[k](Kk,n,α(1+ δ0)|u j(x)|γ )dx

= ωn−1

∫ R

0
exp[k](Kk,n,α (1+ δ0)|g j(y)|γ )yn−1 dy

� C
∫ R

t1
exp[k](C|g j(t1)|γ)yn−1 dy+C

∫ t1

0
exp[k]

(
η log[k]

(1
y

))
yn−1 dy

� C+C
∫ t1

0
yn−2 dy � C .

If k = 1, then (67), (68), η < 1 and K1,n,α( D
ωn−1

)γ = n imply

∫
B(R)

exp[1](K1,n,α(1+ δ0)|u j(x)|γ )dx

= ωn−1

∫ R

0
exp[1](K1,n,α(1+ δ0)|g j(y)|γ )yn−1 dy

� C
∫ R

t1
exp[1](C|g j(t1)|γ)yn−1 dy+C

∫ t1

0
exp[1]

(
ηn log[1]

(1
y

))
yn−1 dy

� C+C
∫ t1

0
yn−1−ηn dy � C .

Hence we have a contradiction with (61) in both cases and (62) is proved. Now, fix
r ∈ (0,R) and let us check the uniform convergence. From (18) and (62) we obtain
‖∇u j‖LΦ(B(R)\B(r)) → 0. Hence ‖∇u j‖L1(B(R)\B(r)) → 0 and thus the radial symmetry
of u j , u j||x|=R = 0 and the monotonicity with respect to |x| imply the uniform conver-
gence. �

Proof of Proposition 4.4. We prove Proposition 4.4 by contradiction. Suppose that

sup
j∈N

‖exp[k](Kk,n,α (1+ δ )|u j|γ )‖L1(Ω) = ∞ for every δ > 0 .

Recall that for fixed j ∈ N and δ > 0 we have

‖exp[k](Kk,n,α(1+ δ )|u j|γ)‖L1(Ω) < ∞

by Proposition 1.1. Thus passing to a subsequence, we can suppose that

‖exp[k](Kk,n,α(1+ δ )|u j|γ)‖L1(Ω)
j→∞→ ∞ for every δ > 0 . (69)

By a standard symmetrization argument based on Theorem 2.2 and the density
of C∞

0 -functions in W0LΦ(Ω) (cf. [2, Proof of Proposition 3.4]) we may assume that
Ω = B(R) , R > 0, u j , u are continuous, spherically symmetric, non-negative, non-
increasing with respect to |x| and differentiable almost everywhere. Hence the assump-
tions of Lemma 4.5 are satisfied and we obtain that u j converge uniformly to the zero



CONCENTRATION-COMPACTNESS PRINCIPLE 189

function on B(R) \B(r) for every r ∈ (0,R) . This implies u = 0 a.e. and we have
a contradiction with u 	= 0.

The last assertion of Proposition 4.4 follows from Lemma 2.3. �

Proof of Theorem 1.3. Theorem 1.3 follows from Propositions 4.2, 4.3 and 4.4. �

Proof of Theorem 1.5. Put

S := sup{ΛF(u) : u ∈W0L
Φ(Ω),‖Φ(|∇u|)‖L1(Ω) � 1} .

There is a sequence

{u j}∞j=1 ⊂ {u ∈W0L
Φ(Ω) : ‖Φ(|∇u|)‖L1(Ω) � 1}

such that ΛF(u j)
j→∞→ S . We can further suppose that

u j ⇀ u in W0L
Φ(Ω), u j → u a.e. in Ω and Φ(|∇u j|) ∗

⇀ μ in M (Ω) ,

otherwise we pass to a subsequence. Obviously we have ‖Φ(|∇u|)‖L1(Ω) � 1, thus all
we need to show is ΛF(u) = S .

If (10) is satisfied, then let us find δ > 0 such that K(1 + δ ) < Kk,n,α . Now, it
is enough to use Lemma 2.3 (with K̃ = K and C1 = S(K(1+ δ ),Φ) < ∞) and we are
done.

If we have (11), we have to be more careful than in [2]. Let us distinguish the three
cases that were important in the proof of Theorem 1.3:
(a) u = 0 and μ is not a Dirac mass at one point,
(b) u = 0 and μ = δx0 ,
(c) u 	= 0.

If (a) or (c) is satisfied, then the proof follows from Proposition 4.2 and Proposi-
tion 4.4, respectively, combined with Lemma 2.3.

Finally, suppose that (b) is satisfied. This time we prove

S = lim
j→∞

ΛF(u j) = Ln(Ω)F(0) = ΛF(0)

the same way as in [2, Proof of Theorem 1.2] and we are done. �

5. Example

In this section we carefully modify the construction and estimates from [16, proof
of Theorem 4.1] to obtain an example proving Theorem 1.2(iv) in the case k = 1.

EXAMPLE 5.1. Let n � 2, α < n− 1 and K = K1,n,α . If there are t0 > 1, a ∈
(0,min(1,B)) and C > 0 such that the Young function Φ satisfies

Φ(t) �
{

Ctn for t ∈ [0,t0]

tn logα(t)
(
1− log−a(t)

)
for t ∈ [t0,∞) ,

(70)
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then for every m ∈ N there is f ∈W0LΦ(B(R)) such that
∫
B(R)Φ(|∇ f |) dx � 1 but

∫
B(R)

exp(K| f (x)|)γ ) dx > m .

Proof. For s > 1 we define fs(x) = gs(|x|) where

gs(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
− 2

Ry+2
)
K− 1

γ nB logB(2)s
1
γ −B

(
1+ log(s)

s

) 1
γ

for y ∈ [R
2 ,R]

K− 1
γ nB logB

(
R
y

)
s

1
γ −B

(
1+ log(s)

s

) 1
γ

for y ∈ [Re−
s
n , R

2 ]

K− 1
γ s

1
γ
(
1+ log(s)

s

) 1
γ

for y ∈ [0,Re−
s
n ] .

An easy computation gives us∫
B(R)

exp
(
K| fs(x)|γ

)
dx �

∫
B(Re−

s
n )

exp
(
K| fs(x)|γ

)
dx

= Ce−se(1+ log(s)
s )s s→∞→ ∞ .

It remains to prove that
∫
B(R)Φ(|∇ fs|) � 1 for s large enough. On [Re−

s
n , R

2 ] we
have

|g′s(y)| = K− 1
γ nBB logB−1

(R
y

) 1
R

R
y
s

1
γ −B

(
1+

log(s)
s

) 1
γ

. (71)

Set M = R
slog(s) . Plainly there is s1 > 1 such that for s > s1 we have Re−

s
n < M < R

2
and therefore

∫ R

0
Φ(|g′s(y)|)yn−1dy =

∫ M

Re−
s
n
+

∫ R
2

M
+

∫ R

R
2

= I1 + I2 + I3 . (72)

Obviously ( 1
γ −B)< 0 and |g′s(y)|�Cs

1
γ −B for y∈ (R

2 ,R) . Hence there is s2 > s1

such that for every s > s2 and y∈ (R
2 ,R) we have |g′s(y)|< t0 . It follows from (70) that

I3 � C
∫ R

R
2

|g′s(y)|nyn−1 dy � Cs(
1
γ −B)n = Cs−B . (73)

Using (71) on [M, R
2 ] we obtain

| log(|g′s(y)|)|n � C
(
logn(s)+ logn

(R
y

))
� C

(
logn(s)+ logn

( R
M

))
� C log2n(s) .

(74)
Now, if β 	= −1, then

∫ R
2

M
logβ

(R
y

)dy
y

=
1

β +1

[
logβ+1

(R
y

)]M

R
2

� C+C logβ+1
( R

M

)
.
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Further

∫ R
2

M
log−1

(R
y

)dy
y

=
[
log

(
log

(R
y

))]M

R
2

� C+C log
(
log

( R
M

))
.

Thus in both cases we have

∫ R
2

M
logβ

(R
y

)dy
y

� C+C logβ+2
( R

M

)
� C log2(β+2)(s) . (75)

From (70) we obtain Φ(t) � Ctn(1 + | log(t)|n) on [0,∞) , hence (71), (74), (75) and
log(|g′s(M)|) � C log(slog(s)) = C log2(s) imply that

I2 � C
∫ R

2

M
|g′s(y)|n(1+ | log(|g′s(y)|)|n)yn−1 dy

� Cs(
1
γ −B)n log2n(s)

∫ 1
2

M
log(B−1)n

(1
y

)dy
y

� Cs(
1
γ −B)n log2n(s) log2Bn−2n+4(s)

= Cs−B log2Bn+4(s) .

(76)

Since M << s
1
γ −B << 1, by (71) we can find s3 > s2 such that if s > s3 then

y ∈ [Re−
s
n ,M] ⇒ |g′s(y)| > t0 .

Plainly there is s4 > s3 such that for s > s4 we have by (71)

sup
y∈(Re−

s
n ,M]

|g′s(y)| = lim
y→(Re−

s
n )+

|g′s(y)| � es .

Thus (70) gives us for y ∈ [Re−
s
n ,M] and s > s4 that

Φ(|g′s(y)|) �
(
1− 1

sa

)
|g′s(y)|n logα(|g′s(y)|) . (77)

We are ready to estimate I1 for α � 0. Since s
1
γ −B s→∞→ 0, there is s5 > s4 such

that |g′s(y)| � R
y for α � 0, s > s5 and y ∈ [Re−

s
n ,M] . Therefore from (2), (5), (77)

and −( 1
γ −B)n = B = (B−1)n+α+1 we obtain for s > s5 and α � 0 that
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I1 �
(
1− 1

sa

)∫ M

Re−
s
n
|g′s(y)|n logα(|g′s(y)|)yn−1dy

=
(
1− 1

sa

)(
1+

log(s)
s

) n
γ
K− n

γ nBnBns−B
∫ M

Re−
s
n
log(B−1)n

(R
y

)
logα(|g′s(y)|)

dy
y

�
(
1− 1

sa

)(
1+

log(s)
s

) n
γ
K− n

γ nBnBns−B
∫ M

Re−
s
n
logB−1

(R
y

)dy
y

�
(
1− 1

sa

)(
1+

log(s)
s

) n
γ
K− n

γ nBnBns−B ( s
n )B

B

� 1
ωn−1

(
1− 1

sa

)(
1+

logs
s

) n
γ

.

(78)
Using (73), (76), (78) we obtain that for s large enough and α � 0 we have

∫
B(R)

Φ(|∇ fs(x)|)dx = ωn−1

∫ R

0
Φ(|g′s(y)|)yn−1 dy = ωn−1(I1 + I2 + I3)

�
(
1− 1

sa

)(
1+

log(s)
s

) n
γ
+Cs−B log2Bn+4(s) � 1 .

Now, let α < 0. Clearly we can find s5 > s4 such that for s > s5 and y∈ [e−
s
n ,M]

we have

logα(|g′s(y)|)
logα(R

y )
=

(
1+

log( y
R |g′s(y)|)

log(R
y )

)α
� 1+C

| log(Cs
1
γ −B logB−1(R

y ))|
log(R

y )

� 1+C
log(s)
log(R

y )
+C

log(| logB−1(R
y )|)

log(R
y )

.

(79)

From α < 0 we have B 	= 1. Further estimate (79) implies that it is enough to replace
the integral

∫ M
Re−

s
n
logB−1(R

y ) dy
y in (78) by

∫ M

Re−
s
n
logB−1

(R
y

)(
1+C

log(s)
log(R

y )
+C

(B−1) log(log(R
y ))

log(R
y )

)dy
y

=
[ 1
B

logB
(R

y

)
+

C
B−1

logB−1
(R

y

)

+C
( logB−1(R

y )

B−1
− logB−1

(R
y

)
log

(
log

(R
y

)))]Re−
s
n

M

�
( s

n )B

B

(
1+

C
s

+
C
s

+
C
s

log(s)
)

�
( s

n )B

B

(
1+

C log(s)
s

)
.
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Hence finding s large enough we conclude also for α < 0

∫
B(R)

Φ(|∇ fs(x)|)dx = ωn−1

∫ R

0
Φ(|g′s(y)|)yn−1 dy = ωn−1(I1 + I2 + I3)

�
(
1− 1

sa

)(
1+

log(s)
s

) n
γ
(
1+

C log(s)
s

)
+Cs−B log2Bn+4(s) � 1 . �

6. Some notes on concentrating sequences

In this section (similarly as in [12]), we say that a sequence {u j}∞j=1 ⊂W0LΦ(Ω)
is a normalized concentrating sequence if

(i) ||Φ(|∇u j)|)||L1(Ω) = 1 for every j ∈ N ,

(ii) u j ⇀ 0 in W0L
Φ(Ω) ,

(iii) there is x0 ∈Ω such that
∫
Ω\B(x0,ρ)

Φ(|∇u j|) → 0 for every ρ > 0 .

(80)

A sequence {u j}∞j=1 ⊂W0LΦ(Ω) is a normalized sequence if it satisfies (i) of (80).
First, let us show that the sequences of functions constructed in [16, Proof of The-

orem 1.2] and [3, Proof of Theorem 1.2] can be modified so that we have a normalized
concentrating sequences proving Theorem 1.2(ii).

EXAMPLE 6.1. Let n � 2, α < n−1, k ∈ N , K > Kk,n,α and let Φ be a Young
function satisfying (3). Suppose that x0 ∈Ω and R > 0 are such that B(x0,R)⊂Ω and
let j ∈ N . Then there is a function fK, j ∈W0LΦ(Ω) such that

spt fK, j = B(x0,R) , ||Φ(|∇ fK, j|)||L1(Ω) = 1 ,

||exp[k](K| fK, j|γ)||L1(Ω) � j , ||Φ(|∇ fK, j|)||L1(Ω\B(x0,
1
j ))

� 1
j

.
(81)

Proof. We can assume that x0 = 0 ∈ Ω and j > S( 1
2Kk,n,α ,Φ) (we know that

S( 1
2Kk,n,α ,Φ) < ∞ by Theorem 1.2(i)).

Let us consider k = 1 first. By the construction in [16, Proof of Theorem 1.2] there
are A > 0, ε > 0 and s0 > 0 such that for every s > s0 the function fs(x) = gs(|x|) ,
where

gs(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for y ∈ [R,∞)(
2− 2

Ry
)
AnB logB(2)s

1
γ −B for y ∈ [R

2 ,R]

AnB logB
(

R
y

)
s

1
γ −B for y ∈ [Rexp−

1
n (s), R

2 ]

As
1
γ for y ∈ [0,Rexp−

1
n (s)] ,

satisfies

||Φ(|∇ fs|)||L1(Ω) � 1 , ||exp(K| fs|γ )||L1(Ω) � ωn−1

n
Rne−se(1+ε)s = Ceεs . (82)
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Let us show that if s > s0 is large enough and if we set

fK, j =
fs

||∇ fs||LΦL (Ω)
,

where || ||LΦL (Ω) denotes the Luxemburg norm in LΦ(Ω) , then fK, j satisfies (81). The
first property in (81) follows from the definition of gs . The second is given by the basic
properties of the Luxemburg norm (Φ satisfies the Δ2 -condition). The third property
is obviously satisfied by (82) for s large enough. Only the proof of the fourth property
corresponding to the Concentration phenomenon requires some work. First, let us show
that we have for all s large enough

1
2
K1,n,α < K||∇ fs||γLΦL (Ω)

. (83)

If (83) is not true, then (82), Theorem 1.2(i) and our assumption S( 1
2Kk,n,α ,Φ) < j give

j < ||exp(K| fs|γ )||L1(Ω) =
∣∣∣∣∣∣exp

(
K||∇ fs||γLΦL (Ω)

∣∣∣ fs
||∇ fs||γLΦL (Ω)

∣∣∣γ)∣∣∣∣∣∣
L1(Ω)

�
∣∣∣∣∣∣exp

(1
2
K1,n,α

∣∣∣ fs
||∇ fs||γLΦL (Ω)

∣∣∣γ)∣∣∣∣∣∣
L1(Ω)

� S
(1

2
K1,n,α ,Φ

)
< j

and we have a contradiction. Therefore for all s large enough we have by the definition
of gs , by the definition of fK, j and by (83)

|∇ fK,s(x)| � Cs
1
γ −B provided |x| > 1

j
.

Since 1
γ −B < 0, the fourth property in (81) follows.

For k � 2, we use the construction from [3, Proof of Theorem 1.2]: there are
A > 0, ε > 0, T > exp[k](1) and s0 > 0 such that for s > s0 the function fs(x)= gs(|x|) ,
where

gs(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for y ∈ [R,∞)(
2− 2

Ry
)
A logB

[k](T +2)s
1
γ −B for y ∈ [R

2 ,R]

A logB
[k]

(
T + R

y

)
s

1
γ −B for y ∈ [Rexp

− 1
n

[k] (s), R
2 ]

A logB
[k]

(
T + exp

1
n
[k](s)

)
s

1
γ −B for y ∈ [0,Rexp

− 1
n

[k] (s)] ,

satisfies

||Φ(|∇ fs|)||L1(Ω) � 1 , ||exp[k](K| fs|γ )||L1(Ω) � ωn−1

n
Rn

exp[k]((1+ ε)s)
exp[k](s)

.

We conclude the proof the same way as in the case k = 1. �
Let us give a summary of the properties of the normalized concentrating sequences.

In all following claims we suppose n � 2, α < n− 1, k ∈ N and that Φ is a Young
function satisfying (3) and (8).
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CLAIM 6.2. Let K < Kk,n,α . Then the following statements hold.
(i) For any normalized concentrating sequence

||exp[k](K|u j|γ )||L1(Ω) → exp[k](0)Ln(Ω) .

(ii) The supremum S(K,Φ) is attained.

Proof. The first assertion follows from Corollary 1.4. Indeed, since u j ⇀ 0 in
W0LΦ(Ω) , we have u j → 0 in L1(Ω) and thus we conclude the proof using the fact that
each subsequence of {u j}∞j=1 contains a subsequence converging almost everywhere
in Ω .

For the proof of the second assertion we use the same argument for a maximizing
sequence. �

CLAIM 6.3. If K > Kk,n,α , then there are both normalized concentrating and nor-
malized non-concentrating sequences such that

||exp[k](K|u j|γ)||L1(Ω) → ∞ .

Proof. As a normalized concentrating sequence we can take {u j}∞j=1 := { fK, j}∞j=1 ,
where fK, j are given by Example 6.1 (constructed on B(x0,R) ⊂ Ω). We pass to
a weakly convergent subsequence, if necessary.

Let us show, how a non-concentrating sequence can be constructed. Fix K̃ ∈
(Kk,n,α ,K) and a ball B(x0,2R) ⊂Ω . Then set

ũ j = fK̃, j , j ∈ N

where fK̃, j come from Example 6.1. Hence

||exp[k](K̃|ũ j|γ )||L1(B(x0,R)) → ∞ .

For v j = ( K̃
K )

1
γ ũ j we therefore have

||exp[k](K|v j|γ)||L1(B(x0,R)) → ∞

and, by the Δ2 -condition (we use a version of (19) for the Luxemburg norm)

||Φ(|∇v j|)||L1(B(x0,R)) � 1−η for every j ∈ N and some η > 0 .

Now it is enough to take some v ∈ W0LΦ(B(x0,2R)) such that v is non-negative,
||Φ(|∇v|)||L1(B(x0,2R)) � η and v is equal to a positive constant on B(x0,R) . Obviously,
the sequence {u j}∞j=1 := {v j + v}∞j=1 has the desired properties. �

CLAIM 6.4. If

||exp[k](Kk,n,α (1+ δ )|u j|γ)||L1(Ω) → ∞ for every δ > 0 (84)

is satisfied for a normalized sequence, then this sequence contains a normalized con-
centrating subsequence. Moreover, such a sequence exists.
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Proof. Proving the first assertion let us pass to a subsequence satisfying

u j ⇀ u in W0L
Φ(Ω) , u j → u a.e. in Ω and Φ(|∇u j|) ∗

⇀ μ in M (Ω) .

We have u = 0 and μ = δx0 for some x0 ∈ Ω , since otherwise Proposition 4.2 and
Proposition 4.4, respectively, give a contradiction with (84).

Fix ρ > 0 and let ψ ∈C(Ω) be a test function such that ψ � 0, ψ = 0 on B(x0,
ρ
2 )

and ψ = 1 on Ω\B(x0,ρ) . Hence we have

0 �
∫
Ω\B(x0,ρ)

Φ(|∇u j|) =
∫
Ω\B(x0,ρ)

ψΦ(|∇u j|)

�
∫
Ω
ψΦ(|∇u j|) j→∞→

∫
Ω
ψ dδx0 = ψ(x0) = 0 .

This is (80)(iii) and thus we have a normalized concentrating subsequence.
Let us prove the second assertion. Fix x0 and R > 0 such that B(x0,R) ⊂ Ω .

Now it is enough to set {u j}∞j=1 := { fKk,n,α+ 1
j , j
}∞j=1 , where fK, j are given by Exam-

ple 6.1. �

CLAIM 6.5. If S(Kk,n,α ,Φ) = ∞ and if {u j}∞j=1 ⊂W0LΦ(Ω) is normalized and

||exp[k](Kk,n,α |u j|γ )||L1(Ω) → ∞

then this sequence contains a normalized concentrating subsequence.

Proof. The proof follows from Claim 6.4. �

CLAIM 6.6. If K � 0 and there is a normalized concentrating sequence {u j} j=∞
j=1 ⊂

W0LΦ(Ω) such that
||exp[k](K|u j|γ)||L1(Ω) → c ∈ [0,∞] ,

then for every d ∈ [0,c] there is a normalized concentrating sequence {v j}∞j=1 such
that

||exp[k](K|v j|γ )||L1(Ω) → d .

Proof. We can use the construction given in [2, Proof of Proposition 5.1]. Notice,
that the assumption K � Kk,n,α of the Proposition is not used in the proof, and also the
assumption k = 1 is also not important (the function exp[k] is as well continuous as
exp[1] ). �

REMARK 6.7. We do not know much about normalized concentrating sequences
in the case with K = Kk,nα and S(Kk,n,α ,Φ) < ∞ . Of course, the modulars in the
multiple exponential space cannot exceed S(Kk,n,α ,Φ) and obviously S(Kk,n,α ,Φ) >

exp[k](0)Ln(Ω) . In the W 1,n
0 -case (it is k = 1 and α = 0) there is an interesting result

by Carleson and Chang [1] telling us that

limsup
j→∞

||exp[1](K1,n,0|u j| n
n−1 )||L1(Ω) < S

(
K1,n,0,t

n
)

for every normalized concentrating sequence and thus S(K1,n,0,tn) is attained.



CONCENTRATION-COMPACTNESS PRINCIPLE 197

Acknowledgment

The work is a part of the research project MSM 0021620839 financed by MŠMT.
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