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Abstract. In this paper two families of cyclic inequalities in three variables are studied. More
precisely, necessary and sufficient conditions in order that the cyclic sums ∑xm(x + y)n and
∑sα(x)sβ (x+ y) are non-negative are stated and proven. Here m,n are positive integers, α ,β
are positive real numbers and sα (x) = x|x|α−1 , x ∈ R

∗,sα (0) = 0.

1. Introduction

Cyclic inequalities that are not symmetric represent a domain that has been less
studied in the literature. The reason is that inequalities of this class are usually more
difficult to be proven than the classical inequalities that involve symmetric functions.
For references on cyclic inequalities see ([1]–[10]). One of the inequalities that have
initiated a great interest in the study of cyclic inequalities was published by Nesbitt in
1903 [6]. It is a special case (n = 3) of the celebrated inequality conjectured by H. S.
Shapiro in 1954 ([1], [4]). It states that for n � 3

n

∑
i=1

xi

xi+1 + xi+2
� n

2
,

xi � 0,xi+1 + xi+2 > 0 and xi+n = xi for all i ∈ N. Shapiro’s inequality is true for even
n � 12 and for odd n � 23. For other natural values of n the inequality is false. In
this paper, our goal is to study conditions under which two families of two parameter
cyclic sums in three variables are non-negative or fails to be non-negative on R

3 . It will
be proven that the cyclic sums are non-negative or fails to be non-negative on R

3 for
some strange regions in the spaces of parameters. This behavior is similar somewhat
with that of Shapiro’s inequality. Analytical proofs will be combined with computer
experiments in order to obtain the results.
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2. The study of gα ,β

For every positive numbers α,β we consider the function gα ,β : R
3 → R defined

by

gα ,β (x,y,z) = sα (x)sβ (x+ y)+ sα(y)sβ (y+ z)+ sα(z)sβ (z+ x), (x,y,z) ∈ R
3

where we denoted sα(x) = x|x|α−1, x ∈ R
∗,sα (0) = 0.

Note that the functions sα , (α > 0) are increasing odd functions as can be easily
checked.

LEMMA 2.1. Let f : R→R be a real odd increasing function such that f (x+y)�
f (x)+ f (y) for all x,y � 0. Then, ∑

cyclic

f (x2 + xy) � 0, for all x,y,z ∈ R.

Proof. Taking into account that f is odd and increasing, we have that if x,y,z � 0
or x,y,z � 0, then ∑

cyclic

f (x2 + xy) � 0. Suppose that x � 0 and y,z � 0. Putting x =

a,y = −b,z = −c we have a,b,c � 0 and ∑
cyclic

f (x2 + xy) � 0 becomes

f (a2−ab)+ f (b2 +bc)+ f (c2− ca) � 0, a,b,c � 0 (2.1)

To prove the above inequality we distinguish the following cases:

(1) If c � a � b � 0 then a2−ab � 0, b2 +bc � 0, c2 − ca � 0, and (2.1) holds.

(2) If b � a � c � 0 then f (b2 +bc)� f (ab−a2+ac−c2) � f (ab−a2)+ f (ac−
c2) = − f (a2−ab)− f (c2−ac) from which (2.1) follows.

(3) If a � c � b � 0 then a2 − ab+ c2 − ca � 0 that jointly with the fact that
b2 +bc � 0 imply (2.1).

(4) Let a � b � c � 0. Suppose that a2−ab+c2−ca < 0 and b2 +bc+c2−ca �
0. Then, a2 +b2 +2c2−ab−2ac+bc < 0 or equivalently, (a−b)2 +(a−2c)2 +b2 +
2bc< 0. Contradiction. Therefore, a2−ab+c2−ca� 0 or b2+bc+c2−ca� 0. In the
first case we get f (a2−ab+c2−ca)� 0. Thus, f (a2−ab)+ f (b2+bc)+ f (c2−ca)�
0. If b2 +bc+c2−ca � 0, then f (b2 +bc)+ f (c2−ca)+ f (a2−ab) � 0. This proves
that (2.1) holds.

(5) Let c � b � a � 0 or b � c � a � 0. Then a2−ab+b2+bc � 0 and c2−ca �
0. This proves that (2.1) holds. �

THEOREM 2.2. Let α � 1 be a real number. Then gα ,α is non-negative on R
3 ,

that is
sα (x)sα (x+ y)+ sα(y)sα (y+ z)+ sα(z)sα (z+ x) � 0,

holds for all x,y,z ∈ R.

Proof. Note that the function sα is multiplicative and the function f = sα is
supper-additive. Applying the preceding lemma we obtain

gα ,α (x,y,z) = ∑
cyclic

sα (x2 + xy) = ∑
cyclic

sα(x)sα (x+ y) � 0
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for all x,y,z ∈ R. This completes the proof. �
THEOREM 2.3. Let α,β be positive real numbers such that gα ,β is non-negative

for all x,y,z ∈ R and let

h(t,α) =
ln
(
tα +

(
t−1
2

)α)
ln
(

2(t−1)
t+1

) , t ∈ (3,∞)

φ(α) = inf
t>3

h(t,α)

Then β � φ(α).

Proof. We consider the case when z = −(x + y)/2. Since gα ,β is non-negative,
then

gα ,β

(
x,y,−x+ y

2

)
= sα(x)sβ (x+y)+sα(y)sβ

(
y− x

2

)
+sα

(
x+ y

2

)
sβ

(
y− x

2

)
� 0

for all x,y,z ∈ R, or equivalently,

sβ

(
y− x

2

)(
sα(y)+ sα

(
x+ y

2

))
� −sα(x)sβ (x+ y)

for all x,y ∈ R. So, for x �= 0,y ∈ R,x �= y, we have

sα
(
−y

x

)
+ sα

(
−x+ y

2x

)
� sβ

(
2(x+ y)
y− x

)

Putting t = −y/x where x < 0 < y we have t > 0. Now, it is easy to obtain that for all
t > 3, the following inequality holds:

β �
ln

[
sα(t)+ sα

(
t −1

2

)]

ln

(
2(t−1)
t +1

) = h(t,α)

from which follows that β � φ(α) as claimed. �
LEMMA 2.4. Let x,y be real numbers such that x � y � 1. Then

x(x3 − y3)+ y(y3 +1)−2x3 +2 � 0

Proof. Let y � 1 be a fixed real number. We consider the function f : [y,+∞)→R

defined by f (x) = x(x3 − y3)+ y(y3 +1)−2x3 +2. To prove that f (x) > 0 we observe
that f ′(x) = 4x3 − 6x2 − y3 and f ′′(x) = 12x(x− 1) � 0 for all x ∈ [y,+∞) . Since
f ′′ � 0 then f ′ is increasing in [y,+∞) . That is, f ′(x) � f ′(y) = 3y2(y−2).

If y � 2 then f ′(y) � 0 and therefore f ′(x) � f ′(y) � 0 for all x � y. So, f
is increasing in [y,+∞) and f (x) � f (y) � 0 for all x ∈ [y,+∞). If y ∈ [1,2] then
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f ′(y) � 0. Since f ′ is increasing in [y,+∞) , then exists x0 � y � 1 such that f ′(x0) =
4x3

0 − 6x2
0 − y3 = 0. From 1 � y � x0 follows 1 � y3 � x3

0 or 1 � 4x3
0 − 6x2

0 � x3
0.

Therefore 3x3
0 − 6x2

0 = 3x2
0(x0 − 2) � 0 and x0 � 2. But 4x3

0 − 6x2
0 = y3 > 0 implies

4x0−6 � 0. Thus, x0 ∈ [3/2,2] .
Therefore, it will be suffice to prove that f (x) � 0, for all x ∈ [3/2,2] when 4x3−

6x2 = y3. That is, we have to prove that, for all x ∈ [3/2,2], holds y(4x3 −6x2 +1) �
3x4 − 4x3 − 2. By raising to cube, the preceding inequality is equivalent to y3(4x3 −
6x2 +1)3 � (3x4−4x3−2)3 or

(4x3 −6x2)(4x3 −6x2 +1)3 � (3x4−4x3−2)3, x ∈ [3/2,2] (2.2)

In order to prove inequality (2.2) denote g(x) = (4x3 − 6x2)(4x3 − 6x2 + 1)3 , h(x) =
(3x4 −4x3 −2)3 , x ∈ [3/2,2]. Note that g and h are increasing functions on [3/2,2].
Indeed, u(x) = 4x3−6x2,x∈ [3/2,2] is increasing because u′ (x) = 12x2−12x� 0,x∈
[3/2,2]. Since u(x) � 0, x ∈ [3/2,2] then g = u(u+1)3 is increasing. The function
v(x) = 3x4 − 4x3 − 2,x ∈ [3/2,2] is increasing because v′ (x) = 12x3 − 12x2 � 0 for
every x ∈ [3/2,2] . Therefore h = v3 is increasing.

i xi g(xi) h(xi+1) g(xi) > h(xi+1)
1 1.5 0.000000 −5.6 ·10−7 True
2 1.521739 0.349143 0.326456 True
3 1.566478 2.944544 2.924692 True
4 1.608217 10.66051 10.39077 True
5 1.645957 27.21668 26.82787 True
6 1.682696 59.82348 59.36183 True
7 1.719935 121.6644 120.61781 True
8 1.758674 237.1416 235.76013 True
9 1.800413 456.8968 453.03250 True
10 1.846152 882.7773 878.73940 True
11 1.897891 1749.6589 1740.51079 True
12 1.957130 3591.2176 2744.0000 True
13 2.000000

Table 1. In the preceding table are displayed the set of non-equidistant nodes x1,x2, ...,x12,x13

in the interval [3/2,2], the values of g(xi) and h(xi+1) and the logical variable
g(xi) > h(xi+1) .

Consider the set of non-equidistant nodes x1,x2, ...,x12,x13 in the interval [3/2,2]
displayed in table 1. Note that g(x) � g(xi) � h(xi+1) � h(x) for every x ∈ [xi,xi+1]
and i ∈ {1,2, ...,12} . Consequently inequality (2.2) is proven. �

LEMMA 2.5. Let α0 = inf{α > 0 : xα(x− y) + yα(y + 1)− 2x + 2 � 0 for all
x � y � 1}. Then

(i) α0 ∈
(

1
4
,
1
3

]
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(ii) sα (x)(x− y) + sα(y)(y + z) + 2sα(z)(z− x) � 0 for all x � y � z � 0 and
α � α0.

Proof. Let h(α,x,y,z) = sα(x)(x−y)+sα(y)(y+z)+2sα(z)(z−x) for x,y,z ∈R

and α > 0. Assume that α0 � 1/4. Note that h(α,x,y,1) = xα(x− y)+ yα(y+ 1)−
2x+2 and h(α,x,y,1) � 0 for all x � y � 1. One can easily see that h(α0,6,1,1) �
h(1/4,6,1,1) < 0. From the definition of α0 it follows that h(1/4,x,y,1) � 0 for all
x � y � 1. The contradiction we obtained shows that α0 > 1/4. To prove that α0 � 1/3
it is sufficient to prove that h(1/3,x,y,1) = x1/3(x− y)+ y1/3(y+ 1)− 2x+ 2 � 0 for
x � y � 1. The preceding inequality is equivalent to x(x3−y3)+y(y3+1)−2x3+2� 0
for x � y � 1 which holds by the previous Lemma. Thus the statement (i) is proved.
Let α � α0 . Note that the inequality h(α,x,y,0) = xα(x− y) + yα+1 � 0 is valid
for all x � y � 0. If x � y � z > 0 we set a = x/z, b = y/z . Note that a � b � 1
and h(α,x,y,z) = zαh(α,x/z,y/z,1) = aα(a−b)+bα(b+1)−2a+2 � 0. Thus the
statement (ii) is proved. �

LEMMA 2.6. Let f ,g : R → R be real functions such that
(i) Both are odd increasing functions
(ii) f (x+ y) � f (x)+ f (y), for all x,y ∈ R+
(iii) g(x)(x− y)+g(y)(y+ z)+2g(z)(z− x)� 0 if x � y � z � 0
Then, for all x,y,z ∈ R, holds

f (g(x)(x+ y))+ f (g(y)(y+ z))+ f (g(z)(z+ x)) � 0

Proof. First, we note that for x,y,z � 0 or x,y,z � 0 the statement trivially holds.
So, it is suffice to prove the inequality in the case when x � 0 � max{y,z}, where
y,z � 0. Putting a = x,b = −y,c = −z we have to prove

f (g(a)(a−b))+ f (g(b)(b+ c))+ f (g(c)(c−a))� 0, a,b,c � 0 (2.3)

We will distinguish the following cases:

(1) If c � a � b � 0 then g(a)(a−b) � 0,g(b)(b+ c) � 0, g(c)(c−a) � 0 and
(2.3) holds.

(2) Let b � a � c � 0. From ag(a)+ bg(b)+ cg(c) � bg(a)+ ag(c)− cg(b),
we get g(b)(b+ c) � g(a)(b− a)+ g(c)(a− c). Taking into account (i) and (ii), the
preceding relation becomes f (g(b)(b+ c)) � − f (g(a)(a− b))− f (g(c)(c− a)) from
which (2.3) follows.

(3) Let a � c � b � 0. We have g(b)(b + c) � 0 and from (a− b)g(a)− (a−
c)g(c)= ag(a)+cg(c)−bg(a)−ag(c)� ag(a)+cg(c)−cg(a)−ag(c)= (a−c)(g(a)−
g(c)) � 0 we get f (g(a)(a−b))+ f (g(c)(c−a)) � 0 and the statement follows.

(4) Let c � b� a� 0 or b� c � a � 0. We have f (g(c)(c−a))� 0. Furthermore,
from g(a)(a−b)+g(b)(b+ c)= ag(a)+bg(b)+bg(a)+ cg(b)= (g(a)−g(b))(a−
b)+g(b)(a+ c)� 0, we get f (g(a)(a−b))+ f (g(b)(b+ c))� 0 and (2.3) holds.
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(5) Let a � b � c � 0. Suppose that g(a)(a−b)+g(c)(c−a) < 0 and g(b)(b+
c)+g(c)(c−a) < 0. Adding the above inequalities, we obtain g(a)(a−b)+g(b)(b+
c) + 2g(c)(c− a) < 0 which is impossible by (iii). If g(a)(a− b) + g(c)(c− a) �
0 then f (g(a)(a− b)) + f (g(c)(c− a)) � 0. If g(b)(b + c) + g(c)(c− a) � 0 then
f (g(b)(b+ c))+ f (g(c)(c−a)) � 0. In both cases (2.3) holds. �

THEOREM 2.7. Let α,β ∈ [1,+∞) be real numbers such that β � 3α. Then gα ,β
is non-negative on R

3 , that is the following inequality holds

sα(x)sβ (x+ y)+ sα(y)sβ (y+ z)+ sα(z)sβ (z+ x) � 0

for all x,y,z ∈ R.

Proof. Apply Lemma 2.5. and Lemma 2.6. �

3. The study of fm,n

For every natural numbers m , n � 1 we consider the function fm,n : R
3 → R

defined by

fm,n(x,y,z) = xm(x+ y)n + ym(y+ z)n + zm(z+ x)n, (x,y,z) ∈ R
3

Note that fm,n = gm,n if m,n are odd numbers. We shall study conditions under which
the family of cyclic polynomials { fm,n} in three variables is nonnegative.

In the case when m,n are even numbers one can easily see that fm,n is non-
negative on R

3 . If m and n have distinct parity, then m + n is an odd number and
fm,n fails to be non-negative on R

3 . This assertion follows at once from the following
remark: for every y,z ∈ R is

lim
x→−∞ fm,n(x,y,z) = −∞

Therefore, the only case that remains to study is the case when m,n are odd numbers.

LEMMA 3.1. Let x,y,z be any real numbers. Then the inequality

f1,3(x,y,z) = x(x+ y)3 + y(y+ z)3 + z(z+ x)3 � 0

holds.

Proof. Let a = y+z
2 , b = x+z

2 , c = x+y
2 . Then x = b+ c− a , y = a+ c− b , z =

a+b− c and

f1,3(x,y,z) = ∑
cyclic

x(x+ y)3 = 8 ∑
cyclic

(b+ c−a)c3

= 8

(
∑

cyclic

c4− ∑
cyclic

(a−b)c3

)
,
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Note that

∑
cyclic

(a−b)c3 = ∑
cyclic

(b− c)a3 = ∑
cyclic

(a3b−a3c) = ∑
cyclic

(a3b−ab3)

= ∑
cyclic

ab(a2−b2)

Since for all a,b ∈ R, holds

a4 +b4 � |a4−b4| = |a2−b2|(a2 +b2) � 2|ab| · |a2−b2|

then, for all a,b,c ∈ R,

∑
cyclic

a4 =
1
2 ∑

cyclic

(a4 +b4) � ∑
cyclic

|ab| · |a2−b2| � ∑
cyclic

ab(a2−b2)

Hence f1,3(x,y,z) � 0, for all x,y,z ∈ R, and this completes the proof. �

LEMMA 3.2. Let x,y,z be any real numbers. Then the inequality

f1,5(x,y,z) = x(x+ y)5 + y(y+ z)5 + z(z+ x)5 � 0.

holds.

Proof. Let a = y+z
2 , b = x+z

2 , c = x+y
2 . Then x = b+ c− a , y = a+ c− b , z =

a+b− c and

f1,5(x,y,z) = ∑
cyclic

x(x+ y)5 = 32 ∑
cyclic

(b+ c−a)c5

= 32

(
∑

cyclic

c6− ∑
cyclic

(a−b)c5

)

Note that

∑
cyclic

(a−b)c5 = ∑
cyclic

(b− c)a5 = ∑
cyclic

(a5b−a5c) = ∑
cyclic

(a5b−ab5)

= ∑
cyclic

ab(a4−b4)

Now, we claim that

∑
cyclic

(a6 +b6) � 2 ∑
cyclic

|ab| · |a4−b4| � ∑
cyclic

ab(a4−b4), a,b,c ∈ R

To prove our claim will be suffice to establish that

(a6 +b6)2 � 4a2b2(a4−b4)2, a,b ∈ R,
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or equivalently,

a12−4a10b2 +10a6b6−4a2b10 +b12 � 0

Setting c = a/b,(b �= 0) in the preceding we obtain

c12−4c10 +10c6−4c2 +1 � 0

Putting t = c2 +
1
c2 , we get c4 +

1
c4 = t2 − 2 and c6 +

1
c6 = t3 − 3t, and the above

inequality is equivalent to

t3−4t2−3t +18 � 0, for all t ∈ [2,+∞),

which trivially holds because the function f (t) = t3 − 4t2 − 3t + 18 is non-negative
in [2,+∞) as can be easily checked using elementary calculus. This proof our claim.
Finally, we have

∑
cyclic

a6 =
1
2 ∑

cyclic

(a6 +b6) � ∑
cyclic

|ab| · |a4−b4| � ∑
cyclic

ab(a4−b4)

and the Lemma is proven. �

THEOREM 3.3. Let n be an odd positive integer. Then f1,n is non-negative on
R

3 if and only if n ∈ {1,3,5}.

Proof. We note that f1,1 is non-negative on R
3 and from Lemma 3.1. and 3.2. we

have that f1,n is non-negative on R
3 for n∈ {1,3,5} . On the other hand, if n is an odd

positive integer and f1,n is non-negative on R
3 , then

0 � f1,n (−1,5,−2) = −4n +5 ·3n +2 ·3n = 3n
[
7−
(

4
3

)n]

Hence n < 7. It follows that n ∈ {1,3,5} . Therefore, f1,n is non-negative on R
3 if and

only if n ∈ {1,3,5} and this completes the proof. �
Another important result is the following

THEOREM 3.4. Let m be an odd positive integer. Then fm,1 is non-negative on
R

3 .

Proof. We have fm,1(x,y,z) = ∑
cyclic

xm(x+ y) = ∑
cyclic

|x|m+1 + ∑
cyclic

xmy. By the re-

arrangement inequality ∑
cyclic

|x|m+1 � ∑
cyclic

|x|m |y| � − ∑
cyclic

xmy, hence fm,1(x,y,z) � 0

and the theorem is proven. �

Finally, we summarize the preceding in the following main result.
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THEOREM 3.5. Let ψ : N → N, ψ(r) = ln(4r + 9r)/ ln(8/5), r ∈ N. Suppose
that m,n are two odd positive integers such that fm,n is non-negative on R

3. Then
n � ψ(m). Also the following inequality holds ψ(r) � 4.74 r for every r � 3.

Proof. Note that fm,n (−1,9,−4)= 5n(4m +9m)−8n is negative when n >ψ(m) .
Consider the function u(x) = 1

x ln(4x +9x) , x ∈ (0,∞) . One can easily check that the
derivative of u is negative. Consequently u is a decreasing function. Denote k0 =
u(3)/ ln(8/5) = 4.734589... . If r � 3 then ψ (r) = r u(r)

ln(8/5) � r u(3)
ln(8/5) = k0 r � 4.74 r.

In the table 2 are listed some values of the functions φ (from theorem 2.3.) and ψ
and some odd values of n from which fm,n fails to be non-negative on R

3. �

m φ(m) t ψ(m) n
3 14.19484862 9.477960556 14.204 15
5 23.39818368 9.445738092 23.411 25
7 32.71330693 9.448561108 32.732 33
9 42.0519171 9.44990273 42.076 43
11 51.39527022 9.450253907 51.424 53
13 60.73957339 9.450334504 60.774 61
15 70.08406654 9.450351976 70.124 71
17 79.42859768 9.450355666 79.473 81
19 88.77313641 9.450356364 88.823 89

Table 2. In the preceding table are displayed some values of m, φ(m) , the values of t where
the infimum of h(t,x) is attained, ψ(m) and the odd values of n for which fm,n fails to be

nonnegative on R
3.

THEOREM 3.6. Let m,n be odd positive integers and consider the sets

Am = {s ∈ N |s is odd and fm,s is nonnegative on R
3},

Bm = {s ∈ N |s is odd and fm,s fails to be non-negative on R
3},

Cn = {r ∈ N |r is odd and fr,n is nonnegative on R
3},

Fm = {k ∈ N |k is odd and k � m },
Lm = {k ∈ N |k is odd and k � m }.

Then the following assertions hold:
(i) A1 = {1,3,5}
(ii) m ∈ Am for every odd number m
(iii) F3m ⊆ Am for every odd number m
(iv) C1 = L1

(v) L15 ⊆ B3,L25 ⊆ B5,L33 ⊆ B7,L43 ⊆ B9,L53 ⊆ B11,L61 ⊆ B13, L71 ⊆ B15,L81 ⊆
B17,L89 ⊆ B19

Proof. (i) follows from theorem 3.3, (ii) follows from theorem 2.2. From theorem
2.7, we get (iii) and (iv) trivially holds from theorem 3.4. Finally, from table 2, we get
(v). �
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4. Conclusions

We considered two families of cyclic sums depending on two parameters. Our goal
was to determine the values of parameters for which the functions of the two families
belong to two classes of functions. The first class is the class of non-negative functions
on R

3 while the second class is the class of functions that fails to be non-negative on
R

3 . We proved that for every α � 1 there exist two positive numbers φ1 (α) and φ2 (α)
such that

(1) φ1 (α) < φ2 (α)

(2) for every 1 � β � φ1 (α) the cyclic sum gα ,β is non-negative on R
3 .

(3) for every β � φ2 (α) the cyclic sum gα ,β fails to be non-negative on R
3 .

For β in the interval (φ1 (α) ,φ2 (α)) we have undecided cases. We proved that:

(4) for every natural numbers m,n such that m+n is odd, the cyclic sum fm,n fails
to be non-negative on R

3 .

(5) for every even numbers m,n the cyclic sum fm,n is non-negative on R
3 .

(6) for every odd number m there exist two positive numbers ψ1 (m) and ψ2 (m)
such that

(i) ψ1 (m) < ψ2 (m)

(ii) for every odd natural number n � ψ1 (m) the cyclic sum fm,n is non-negative on
R

3.

(iii) for every odd natural number n � ψ2 (m) the cyclic sum fm,n fails to be non-
negative on R

3 .

For n odd natural number in the interval (ψ1 (m) ,ψ2 (m)) we have undecided
cases. Computer experiments may suggest for such n if fm,n is non-negative or fails
to be non-negative on R

3 . But the confidence in the results suggested by computer
experiments cannot be 100% because of the accumulation of roundoff errors. That is
why these results must be accompanied by sound analytical proofs.

In the following we shall make two conjectures.

CONJECTURE 1. For every α � 1 there exist a positive number φ (α) with the
following property: for every β � φ (α) the cyclic sum gα ,β is non-negative on R

3

and for every β > φ (α) the cyclic sum gα ,β fails to be non-negative on R
3 .

CONJECTURE 2. For every positive odd number m there exists an odd positive
number ψ (m) with the following property: for every odd number n �ψ (m) the cyclic
sum fm,n is non-negative on R

3 and for every odd number n > ψ (m) the cyclic sum
fm,n fails to be non-negative on R

3 .
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