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TWO FAMILIES OF CYCLIC INEQUALITIES
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(Communicated by P. S. Bullen)

Abstract. In this paper two families of cyclic inequalities in three variables are studied. More
precisely, necessary and sufficient conditions in order that the cyclic sums Y x™(x+ y)" and
Y sa(x)sg(x+y) are non-negative are stated and proven. Here m,n are positive integers, o, f3
are positive real numbers and s¢ (x) = x[x|* 1, x € R* 5¢(0) =0.

1. Introduction

Cyclic inequalities that are not symmetric represent a domain that has been less
studied in the literature. The reason is that inequalities of this class are usually more
difficult to be proven than the classical inequalities that involve symmetric functions.
For references on cyclic inequalities see ([1]-[10]). One of the inequalities that have
initiated a great interest in the study of cyclic inequalities was published by Nesbitt in
1903 [6]. Itis a special case (n = 3) of the celebrated inequality conjectured by H. S.
Shapiro in 1954 ([1], [4]). It states that for n > 3

Xi

D=

b

[NSRE

O R—
=1 Xir1 T X2

xi 2 0,xi41 +xj12 > 0 and x;4, = x; for all i € N. Shapiro’s inequality is true for even
n < 12 and for odd n < 23. For other natural values of n the inequality is false. In
this paper, our goal is to study conditions under which two families of two parameter
cyclic sums in three variables are non-negative or fails to be non-negative on R>. It will
be proven that the cyclic sums are non-negative or fails to be non-negative on R* for
some strange regions in the spaces of parameters. This behavior is similar somewhat
with that of Shapiro’s inequality. Analytical proofs will be combined with computer
experiments in order to obtain the results.
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2. The study of g, g

For every positive numbers o, 8 we consider the function g, g R3® — R defined
by

80 B(,3,2) = 5a(x)sp (x+¥) + 5a(¥)sp (v +2) + sa(2)sp (2 +x), (x,y,2) €R’

where we denoted sq (x) = x|x|*~!, x € R*,54(0) = 0.
Note that the functions s, (0t > 0) are increasing odd functions as can be easily
checked.

LEMMA 2.1. Let f:R — R be a real odd increasing function such that f(x+y) >
f(x)+ f(y) forall x,y > 0. Then, Z f(x2 +xy) 20, forall x,y,z € R.

cyclic

Proof. Taking into account that f is odd and increasing, we have that if x,y,z > 0
or x,y,z < 0, then 2 f(x* 4+xy) > 0. Suppose that x >0 and y,z < 0. Putting x =
cyclic
a,y=—b,z=—c we have a,b,c >0 and Z flx +xy) 0 becomes

cyclic
f(@® —ab) + f(b*+bc) + f(c? —ca) >0, a,b,c >0 (2.1
To prove the above inequality we distinguish the following cases:
() Ifc=a>b>0thena®—ab>0, b>+bc>0, ¢*—ca>0, and (2.1) holds.

(2)Ifb=a>c>0then f(b*+bc) > f(ab—a*+ac—c?) > flab—a*) + f(ac—
) =—f(a®— ab) f(c? — ac) from which (2.1) follows.

(3) If a>c>b>0 then a*> —ab+c* —ca > 0 that jointly with the fact that
b>+bc>0 1mply (2 1).

(4) Leta>b > c > 0. Suppose that a?—ab+c*—ca<0and b?>+bc+c?—ca<
0. Then, a® +b*+2c¢> — ab —2ac + be < 0 or equivalently, (a —b)?+ (a—2¢)> +b* +
2bc < 0. Contradiction. Therefore, a® —ab+c2—ca >0 or b*+bc+c2—ca > 0. Inthe
first case we get f(a® —ab+c?—ca) > 0. Thus, f(a*—ab)+ f(b*+bc)+ f(c* —ca) >
0. If b* +bc+c*—ca >0, then f(b>+bc)+ f(c* —ca)+ f(a? —ab) > 0. This proves
that (2.1) holds.

(5)Letc=b>a>00rb>c>a>0. Then @ —ab+b*+bc >0 and ¢ —ca >
0. This proves that (2.1) holds. U

THEOREM 2.2. Let o > 1 be a real number. Then gq o is non-negative on R3,
that is
S (X)sa (X + ) + 5a(¥)sa (y + 2) + 5 (2)s0 (2 +x) 20,
holds for all x,y,z € R.

Proof. Note that the function s, is multiplicative and the function f = s4 is
supper-additive. Applying the preceding lemma we obtain

Soa (X 3.2) = Y, Sa(X+xy) = Y sa(X)sa(x+y) >0

cyclic cyclic
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for all x,y,z € R. This completes the proof. [J

THEOREM 2.3. Let a,[3 be positive real numbers such that g, g is non-negative
forall x,y,z € R and let

Then B < ¢(a).

Proof. We consider the case when z = —(x+y)/2. Since g, g is non-negative,
then

X4y y—x Xty y—x
8a.p <xaya_T> =sa(x)sg(x+y) +5a(y)sp <?) +Sa <T> sg <T> >0

for all x,y,z € R, or equivalently,

—X x4+
59 (257 (50050 (52) ) = satwispla-+)
for all x,y € R. So, for x £ 0,y € R, x # y, we have
y x+y 2(x+y)
_Z 7)) > -
s“( x>+sa< Zx)/sﬁ< y—x

Putting r = —y/x where x < 0 <y we have ¢ > 0. Now, it is easy to obtain that for all
t > 3, the following inequality holds:

In [5¢(t) + 5 1
a [ h:<2(;+§)>2 )] -

from which follows that § < ¢() as claimed. O

LEMMA 2.4. Let x,y be real numbers such that x >y > 1. Then

X =y) 3+ 1) -2 +2>0

Proof. Let y > 1 be a fixed real number. We consider the function f : [y, +o0) — R
defined by f(x) = x(x* —y*) +y(y* + 1) — 2x> +2. To prove that f(x) > 0 we observe
that f'(x) = 4x* —6x> —y® and f”(x) = 12x(x — 1) > 0 for all x € [y, +0). Since
f" >0 then f’ is increasing in [y, +oo). Thatis, f'(x) > f'(y) = 3y*(y — 2).

If y >2 then f'(y) > 0 and therefore f'(x) > f'(y) > 0 for all x > y. So, f
is increasing in [y, +eo) and f(x) > f(y) > 0 for all x € [y, +eo). If y € [1,2] then
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f'(v) <0. Since f’ is increasing in [y, +oo), then exists xo >y > 1 such that f’(xo) =
4x3 —6x3 —y® = 0. From 1 <y < xo follows 1 <y® <xf or 1 <4x)—6x3 < x3.
Therefore 3x3 — 6x3 = 3x3(x0 —2) < 0 and xg < 2. But 4xj —6x3 = y* > 0 implies
4xy — 6 > 0. Thus, xo € [3/2,2].

Therefore, it will be suffice to prove that f(x) >0, for all x € [3/2,2] when 4x> —
6x> = y3. That is, we have to prove that, for all x € [3/2,2], holds y(4x*> — 6x% + 1) >
3x* — 4x3 — 2. By raising to cube, the preceding inequality is equivalent to y?(4x> —
6x> +1)% > (3x* —4x* —2)3 or

(4 —6x?)(4x® —6x> + 1) > (3x* —4x® —2)°, x € [3/2,2] (2.2)

In order to prove inequality (2.2) denote g (x) = (4x> — 6x2)(4x> — 6x> + 1), h(x) =
(3x* —4x® —2)3, x € [3/2,2]. Note that g and & are increasing functions on [3/2,2].
Indeed, u (x) = 4x> — 6x%,x € [3/2,2] is increasing because #’ (x) = 12x> —12x > 0,x €
[3/2,2]. Since u(x) >0, x € [3/2,2] then g = u(u+1)* is increasing. The function
v(x) = 3x* —4x® —2,x € [3/2,2] is increasing because V' (x) = 12x* — 12x* > 0 for
every x € [3/2,2] . Therefore i = v3 is increasing.

i Xi g(xi) h(xiy1) g(xi) > h(xit1)
1 1.5 0.000000 | —5.6-1077 True
2 | 1.521739 | 0.349143 0.326456 True
3 | 1.566478 | 2.944544 2.924692 True
4 | 1.608217 | 10.66051 10.39077 True
5 | 1.645957 | 27.21668 26.82787 True
6 | 1.682696 | 59.82348 59.36183 True
7 | 1.719935 | 121.6644 120.61781 True
8 | 1.758674 | 237.1416 | 235.76013 True
9 | 1.800413 | 456.8968 | 453.03250 True
10 | 1.846152 | 882.7773 | 878.73940 True
11 | 1.897891 | 1749.6589 | 1740.51079 True
12 | 1.957130 | 3591.2176 | 2744.0000 True
13 | 2.000000

Table 1. In the preceding table are displayed the set of non-equidistant nodes x1,x,...,X12,X13
in the interval [3/2,2], the values of g(x;) and h(x;11) and the logical variable

8(xi) > h(xis1).

Consider the set of non-equidistant nodes xi,x,...,x12,X13 in the interval [3/2,2]
displayed in table 1. Note that g (x) > g (x;) = h(xi+1) = h(x) for every x € [x;,x;+1]
and i € {1,2,...,12}. Consequently inequality (2.2) is proven. [

LEMMA 2.5. Let o = inf{at > 0: x*(x —y) +y*(y+1) —2x+2 > 0 for all
x=y>1}. Then

) 11
(i) ap € 13
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(ii) sq(x)(x—y) +5a(y)(y+2) +25(2)(z—x) 20 forall x>y >z>0 and
o= 0.

Proof. Let h(a,x,y,z) = sq(x)(x—y)+5a()(y+2)+25¢(z)(z—x) for x,y,z€R
and o > 0. Assume that o < 1/4. Note that h(o,x,y,1) = x%(x —y) +y*(y+ 1) —
2x+2 and h(o,x,y,1) >0 forall x>y > 1. One can easily see that /1 (0,6,1,1) <
h(1/4,6,1,1) < 0. From the definition of ¢ it follows that 4 (1/4,x,y,1) > 0 for all
x>y > 1. The contradiction we obtained shows that o > 1/4. To prove that cp < 1/3
it is sufficient to prove that /1 (1/3,x,y,1) = x'/3(x —y) + y!/3(y4+1) —2x+2 > 0 for
x>y > 1. The preceding inequality is equivalent to x(x* —y3) +y(y* +1) —2x*+2 >0
for x >y > 1 which holds by the previous Lemma. Thus the statement (i) is proved.
Let o > . Note that the inequality % (a,x,y,0) = x%(x —y) +y**! > 0 is valid
forall x >y >0.If x>y>z>0 weset a=x/z, b=y/z. Note that a > b > 1
and h(o,x,y,z) = 2% (0,x/2,5/7,1) = a%(a—b) +b%*(b+1) —2a+2 > 0. Thus the
statement (ii) is proved. [J

LEMMA 2.6. Let f,g:R — R be real functions such that

(i) Both are odd increasing functions

(ii) fxty) > f00)+f(), forall x,y € Ry

(iii)  g(x)(x—y)+8()(y+2)+28(x)(z—x) 20 ifx>2y>220
Then, for all x,y,z € R, holds

fe()(x+y) + (g (y+2) +/(g(z)(z+x)) =0

Proof. First, we note that for x,y,z > 0 or x,y,z < 0 the statement trivially holds.
So, it is suffice to prove the inequality in the case when x > 0 > max{y,z}, where
v,z < 0. Putting a = x,b = —y,c = —z we have to prove

f(gla)(a=b))+f(g(b)(b+c))+f(g(c)(c—a)) 2 0,a,b,c 20 (2.3)
We will distinguish the following cases:

() Ifcza>b>0then gla)(a—b) >0,g(b)(b+c) =0, g(c)(c—a) >0 and
(2.3) holds.

(2) Let b= a>c>0. From ag(a)+bg(b)+cg(c) = bg(a)+ag(c) —cg(b),
we get g(b)(b+c¢) > g(a)(b—a) + g(c)(a—¢). Taking into account (i) and (ii), the
preceding relation becomes f(g(b)(b+c¢)) > —f(g(a)(a—b)) — f(g(c)(c —a)) from
which (2.3) follows.

(3) Let a > c > b > 0. We have g(b)(b+c¢) > 0 and from (a—b)g(a) — (a —
c)glc) =ag(a )+cg( )—bgla)—ag(c) > ag(a)+cglc) —cgla) —ag(c) = (a—c)(g(a) -
g(c)) =0 we get f(g(a)(a—b))+ f(g(c)(c—a)) = 0 and the statement follows.

(4)Letczb>a>00rb>c>a>0. Wehave f(g(c)(c—a)) > 0. Furthermore,

from g(a)(a—b)+g(b)(b+c)=ag(a)+bg(b)+bg(a)+cg(b) = (g(a) —g(b))(a—
b)+g(b)(a+c) >0, we get f(g(a)(a—b))+ f(g(b)(b+c)) >0 and (2.3) holds.
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(5) Leta > b > ¢ > 0. Suppose that g(a)(a—b)+g(c)(c—a) <0 and g(b)(b+
¢)+g(c)(c—a) < 0. Adding the above inequalities, we obtain g(a)(a —b)+g(b)(b+
¢)+2g(c)(c —a) < 0 which is impossible by (iii). If g(a)(a —b)+g(c)(c—a) >
0 then f(g(a)(a—"Db))+ f(g(c)(c—a)) = 0. If g(b)(b+c)+g(c)(c—a) > 0 then
flgb)(b+c))+ f(g(c)(c—a)) = 0. In both cases (2.3) holds. [

THEOREM 2.7. Let o, € [1,+4o0) be real numbers such that B < 3a. Then g, g
is non-negative on R3, that is the following inequality holds

S (x)sg(x+y) +5a(y)spg(y+2) +5a(2)sg(z+x) =0

forall x,y,z € R.

Proof. Apply Lemma 2.5. and Lemma 2.6. U

3. The study of f, ,

For every natural numbers m, n > 1 we consider the function f, , : R} SR
defined by

Fun(x3,2) = X" (x4+y)" +Y" (0 +2)"+"(z+x)", (x,y,2) €R?

Note that f,, , = gm,n if m,n are odd numbers. We shall study conditions under which
the family of cyclic polynomials {f,,,} in three variables is nonnegative.

In the case when m,n are even numbers one can easily see that f,, is non-
negative on R*. If m and n have distinct parity, then m 4 n is an odd number and
fm,n fails to be non-negative on R3. This assertion follows at once from the following
remark: for every y,z € R is

xglzlw ﬁn,n (x7y7 Z) ==

Therefore, the only case that remains to study is the case when m,n are odd numbers.
LEMMA 3.1. Let x,y,z be any real numbers. Then the inequality
fiayz) = x(x+y) +y(+2)° +2(z+x)7 >0

holds.

Proof. Let azyzi, bz%, CZ’%. Then x=b+c—a,y=a+c—b, z=
a+b—cand

fizlnyz) =) x(x+y)?* =8 D (b+c—a)c’

cyclic cyclic

:8(2 A=Y (a—b)c3>,

cyclic cyclic
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Note that
D (a—b)c* = D (b—c)a® = D (@*b—d’c) = D (@b —ab?)
cyclic cyclic cyclic cyclic
= 2 ab(a* —b?)
cyclic

Since for all a,b € R, holds
a* +b* > |a* — b*| = |a® — b*|(a® 4 b?) > 2|ab| - |a® — b?|

then, for all a,b,c € R,

Y a4:% N @ +v)y= Y ab|-|a* =0 > Y, ab(a® —b?)

cyclic cyclic cyclic cyclic
Hence f3(x,y,z) > 0, for all x,y,z € R, and this completes the proof. [

LEMMA 3.2. Let x,y,z be any real numbers. Then the inequality
fi5(3,2) = x(x+y) +y(r+2)" +2(z+x)° > 0.

holds.

Proof. Leta:yzﬁ, b:)%, c:)%. Then x=b+c—a,y=a+c—b, z=
a+b—c and

fis(x,yz) = 2 x(x+y)5 =32 2 (b—i—c—a)c5

cyclic cyclic
=32 ( D b — D (a—b)c5>
cyclic cyclic
Note that
D (a—b)c® = D (b—c)a® = D (@b —a’c) = D (a®b — ab’)
cyclic cyclic cyclic cyclic
=) ab(a* — b*)

cyclic
Now, we claim that

D (a®+b%) =2 D |ab| - |a* — b*| > D ab(a*—b*), a,b,c € R

cyclic cyclic cyclic
To prove our claim will be suffice to establish that

(a®+b%)? > 4a°b? (a* — b*)?, a,b € R,
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or equivalently,
a'? — 4a'%% + 10a%° — 4a*p'° + b2 > 0

Setting ¢ = a/b, (b # 0) in the preceding we obtain

=49 4100 — 42+ 1 >0

1 1 1
Putting t = ¢ + —, we get ct+ = = t>—2 and b+ <= t3 — 3¢, and the above
c c c

inequality is equivalent to
£} —42 —3t+18>0, forallz € [2,+o0),

which trivially holds because the function f(¢) = > — 41> — 3t + 18 is non-negative
in [2,4o0) as can be easily checked using elementary calculus. This proof our claim.
Finally, we have

1
D a® = 3 D (a8 + %) > Y, |ab|- la* —b*| > D ab(a* — b*)
cyclic cyclic cyclic cyclic
and the Lemma is proven. []
THEOREM 3.3. Let n be an odd positive integer. Then fi, is non-negative on

R3 if and only if n € {1,3,5}.

Proof. We note that f ; is non-negative on R3 and from Lemma 3.1. and 3.2. we
have that f; , is non-negative on R? for n € {1,3,5}. On the other hand, if 7 is an odd
positive integer and fi , is non-negative on R3, then

4 n
0< fin(—1,5,-2)=—4"+5.3"+2.3"=3" [7— <§> ]

Hence n < 7. It follows that n € {1,3,5}. Therefore, f; , is non-negative on R? if and
only if n € {1,3,5} and this completes the proof. [
Another important result is the following

THEOREM 3.4. Let m be an odd positive integer. Then f,, 1 is non-negative on
R3.

Proof. We have fy,1(x,y,2) = Y, ¥"(x+y)= Y, | Y ¥™y. By the re-

cyclic cyclic cyclic
arrangement inequality Y, [x["*' > Y |x["|y| =~ 3 ¥y, hence f,,1(x,y,2) >0
cyclic cyclic cyclic

and the theorem is proven. [

Finally, we summarize the preceding in the following main result.
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THEOREM 3.5. Let w: N — N, y(r) =1In(4"4+9")/In(8/5), r € N. Suppose
that m,n are two odd positive integers such that f,,, is non-negative on R3. Then
n < y(m). Also the following inequality holds y(r) < 4.74 r for every r = 3.

Proof. Note that fi,,, (—1,9,—4) =5"(4"+9™) — 8" is negative when n > y(m).
Consider the function u (x) = 1In(4¥+9"), x € (0,0). One can easily check that the
derivative of u is negative. Consequently u is a decreasing function. Denote ky =

u(3)/In(8/5) =4.734589.... If >3 then v (r) = Z4L < 14O — 3 <4747

= @5 S InE/5)
In the table 2 are listed some values of the functions ¢ (from theorem 2.3.) and v

and some odd values of n from which f,, , fails to be non-negative on R3.

m ¢ (m) t y(m) | n
3 | 14.19484862 | 9.477960556 | 14.204 | 15
5 | 23.39818368 | 9.445738092 | 23.411 | 25
7 | 32.71330693 | 9.448561108 | 32.732 | 33
9 | 42.0519171 | 9.44990273 | 42.076 | 43
11 | 51.39527022 | 9.450253907 | 51.424 | 53
13 | 60.73957339 | 9.450334504 | 60.774 | 61
15 | 70.08406654 | 9.450351976 | 70.124 | 71
17 | 79.42859768 | 9.450355666 | 79.473 | 81
19 | 88.77313641 | 9.450356364 | 88.823 | 89

Table 2. In the preceding table are displayed some values of m, ¢(m), the values of t where
the infimum of h(t,x) is attained, y(m) and the odd values of n for which fu, fails to be
nonnegative on R3.

THEOREM 3.6. Let m,n be odd positive integers and consider the sets

Ay = {s € N|sis odd and f, s is nonnegative on ]R3},

By = {s € N|sis odd and f,, s fails to be non-negative on R3}7
C, = {reN|ris odd and f., is nonnegative on R3},
Fy,={keNlkisoddandk <m},

Ly, ={keN|kisoddandk>m }.

Then the following assertions hold:

(i) Ay ={1,3,5}

(ii) m € Ay, for every odd number m

(iii) F3, C Ay, for every odd number m

(iv) C1 =Ly

(v) L1s € B3, L5 C Bs, L33 C B7,L43 C B, Ls3 C By1,Le1 € B13, L71 € Bis,Lg1 C
Bi7,Ls9 € By

Proof. (i) follows from theorem 3.3, (ii) follows from theorem 2.2. From theorem
2.7, we get (iii) and (iv) trivially holds from theorem 3.4. Finally, from table 2, we get
v). O
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4. Conclusions

We considered two families of cyclic sums depending on two parameters. Our goal
was to determine the values of parameters for which the functions of the two families
belong to two classes of functions. The first class is the class of non-negative functions
on R? while the second class is the class of functions that fails to be non-negative on
R3. We proved that for every o > 1 there exist two positive numbers ¢; () and ¢, ()
such that

(1) ¢1(a) < p(a)
(2) forevery 1 < B < ¢; (o) the cyclic sum g, g is non-negative on R?.
(3) forevery B > ¢» (a) the cyclic sum g, g fails to be non-negative on R?.
For f in the interval (¢ (o), (a)) we have undecided cases. We proved that:

(4) for every natural numbers m,n such that m +n is odd, the cyclic sum f,, , fails
to be non-negative on R3.

(5) for every even numbers m,n the cyclic sum f,,, is non-negative on R3.

(6) for every odd number m there exist two positive numbers y; (m) and y; (m)
such that

@) yi(m) <ya(m)

(i) for every odd natural number n < y; (m) the cyclic sum f;, , is non-negative on
R3.

(iii) for every odd natural number n > s (m) the cyclic sum f, , fails to be non-
negative on R3.

For n odd natural number in the interval (y; (m),y, (m)) we have undecided
cases. Computer experiments may suggest for such n if f,,, is non-negative or fails
to be non-negative on R3. But the confidence in the results suggested by computer
experiments cannot be 100% because of the accumulation of roundoff errors. That is
why these results must be accompanied by sound analytical proofs.

In the following we shall make two conjectures.

CONJECTURE 1. For every o > 1 there exist a positive number ¢ (o) with the
following property: for every B < ¢ (o) the cyclic sum g, g is non-negative on R?
and for every 8 > ¢ (o) the cyclic sum g, g fails to be non-negative on R*.

CONIJECTURE 2. For every positive odd number m there exists an odd positive
number y (m) with the following property: for every odd number n < y (m) the cyclic
sum f;,, is non-negative on R3 and for every odd number 1 > y (m) the cyclic sum
Jfm.n fails to be non-negative on R3.
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