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ON A FORMULA FOR THE nTH DERIVATIVE AND ITS APPLICATIONS

VERA ČULJAK AND MIRKO S. JOVANOVIĆ

(Communicated by J. Pečarić)

Abstract. In this paper we obtain a formula which involves the n th derivative of the first order
divided difference and a corresponding inequality for functions whose (n+ 1) -th derivative be-
longs to a Lp space. These results are a generalization of the results from [1] and [2]. Finally,
some examples are given.

1. Introduction

T.H. Gronwall in [1] and [2] gave the following results for the n th derivative of

functions f (x) =
sinx
x

and f (x) =
cosx

x
:

dn

dxn

(
sinx
x

)
=

1
xn+1

∫ x

0
yn sin

(
y+

(n+1)π
2

)
dy, (1)

and
dn

dxn

(
1− cosx

x

)
=

1
xn+1

∫ x

0
yn sin

(
y+

nπ
2

)
dy∣∣∣∣ dn

dxn

(
sinx
x

)∣∣∣∣ � 1
n+1

and

∣∣∣∣ dn

dxn

(
1− cosx

x

)∣∣∣∣ � 1
n+1

. (2)

In this note, the formula for the n th derivative of the first order divided difference
f (x)− f (0)

x
which generalizes (1) is proven. Furthermore, corresponding generaliza-

tion of the inequalities in (2) for functions f such that f (n+1) ∈ Lp is obtained. Some
examples for certain elementary functions are also given.

Before we proceed to the main results, let us recall one of the most important
integral inequality in analysis, the Hölder inequality (cf. [3]), since it will be applied in
one of the proofs:

THEOREM 1.1. Let p and q be such that 1 � p,q � ∞ and
1
p

+ 1
q

= 1 and let

S be a measurable subset of R
n with the Lebesgue measure. Finally, let f ∈ Lp(S) and

g ∈ Lq(S) . Then
‖ f g‖1 � ‖ f‖p · ‖g‖q,

where ‖ f‖p =

{(∫
S | f (x)|p dx

)1/p (1 � p < ∞),
sup
x∈S

| f (x)| (p = ∞).
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2. Main results

THEOREM 2.1. Let I = [−a,a] ⊆ R , a > 0 and f : I → R be such that f (n+1)

is integrable on I . Then it holds

dn

dxn

(
f (x)− f (0)

x

)∣∣∣∣
x�=0

=
1

xn+1

∫ x

0
yn f (n+1)(y)dy, (3)

dn

dxn

(
f (x)− f (0)

x

)∣∣∣∣
x=0

=
f (n+1)(0)

n+1
. (4)

Proof. Let x �= 0, since
∫ 1

0
f ′(tx)dt =

∫ x

0
f ′(y)

dy
x

=
f (x)− f (0)

x
, we get

dn

dxn

(
f (x)− f (0)

x

)
=

dn

dxn

∫ 1

0
f ′(tx)dt =

∫ 1

0

dn

dxn f ′(tx)dt

=
∫ 1

0
tn f (n+1)(tx)dt

=
1

xn+1

∫ x

0
yn f (n+1)(y)dy

by the substitution tx = y.

For x = 0 we have

dn

dxn

(
f (x)− f (0)

x

)∣∣∣∣
x=0

= lim
x→0

∫ x
0 yn f (n+1)(y)dy

xn+1 (L’Hospital’s rule)

= lim
x→0

xn f (n+1)(x)
(n+1)xn =

f (n+1)(0)
n+1

. �

THEOREM 2.2. Let p,q ∈ R be such that 1 � p,q � ∞ and 1/p+1/q = 1. Let
I = [−a,a]⊆ R , a > 0 , and f : I → R be such that f (n+1) ∈ Lp([0, |x|]) for x ∈ I and
n � 0 .

Then it holds ∣∣∣∣ dn

dxn

(
f (x)− f (0)

x

)∣∣∣∣ � ‖ f (n+1)‖p

(nq+1)1/q |x|1/p
. (5)

The inequality is sharp for 1 < p � ∞ and the best possible for p = 1.

Proof. To prove (5), we start from identity (3). For x ∈ I and f (n+1) ∈ Lp([0, |x|])
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we can estimate this expression by using Hölder inequality as follows∣∣∣∣ dn

dxn

(
f (x)− f (0)

x

)∣∣∣∣ =
1

|x|n+1

∣∣∣∣∫ |x|

0
yn f (n+1)(y)dy

∣∣∣∣
� 1

|x|n+1

∫ |x|

0
|yn f (n+1)(y)|dy

� 1
|x|n+1

(∫ |x|

0
|yn|qdy

)1/q (∫ |x|

0
| f (n+1)(y)|pdy

)1/p

=
1

|x|1/p

‖ f (n+1)‖p

(nq+1)1/q
.

Now, we consider the sharpness of this inequality. For x ∈ I we have to find a
function f for which equality in (5) is attained, i.e. such that∣∣∣∣∫ |x|

0
yn f (n+1)(y)dy

∣∣∣∣ =
(∫ |x|

0
|yn|qdy

)1/q (∫ |x|

0
| f (n+1)(y)|pdy

)1/p

.

For 1 < p < ∞ , take f̃ such that f̃ (n+1)(y) = sgn(yn)|yn| 1
p−1 . Then we have∣∣∣∣∫ |x|

0
yn f̃ (n+1)(y)dy

∣∣∣∣ =
|x|nq+1

nq+1
=

( |x|nq+1

nq+1

)1/p ( |x|nq+1

nq+1

)1/q

= ‖ f̃ (n+1)‖p ‖yn‖q

For p = ∞ , take f̃ such that f̃ (n+1)(y) = sgn(yn) . Then∣∣∣∣∫ |x|

0
yn f̃ (n+1)(y)dy

∣∣∣∣ = ‖yn‖1 = ‖ f̃ (n+1)‖∞ ‖yn‖1.

Finally, for p = 1 we prove that inequality∣∣∣∣ dn

dxn

(
f (x)− f (0)

x

)∣∣∣∣ � 1
|x| ‖ f (n+1)‖1,

which is equivalent to

1
|x|n+1

∣∣∣∣∫ |x|

0
yn f (n+1)(y)dy

∣∣∣∣ � 1
|x|n+1 sup

y∈[0,|x|]
|yn|

∫ |x|

0
| f (n+1)(y)|dy (6)

=
1
|x| ‖ f (n+1)‖1,

is the best possible, i.e. that the constant
1
|x| cannot be replaced by a smaller one. Note

that lim
q→∞

(nq+1)1/q = 1.

For a small enough δ > 0, define function f̃δ such that

f̃ (n)
δ (y) =

{
0 (0 � y � |x|− δ ),

1
δ

(y−|x|+ δ ) (|x|− δ � y � |x|).
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For this function, the left-hand side of (6) becomes

1
|x|n+1

∣∣∣∣∫ |x|

0
yn f̃ (n+1)

δ (y)dy

∣∣∣∣ =
1

|x|n+1

∫ |x|

|x|−δ
yn 1
δ

dy

=
1

|x|n+1

1
δ
|x|n+1− (|x|− δ )n+1

n+1
,

while the right-hand side becomes

|x|n
|x|n+1

∫ |x|

0
| f̃ (n+1)
δ (y)|dy =

1
|x|

∫ |x|

|x|−δ
1
δ

dy =
1
|x| .

Now, taking the limit value of the left-hand side of (6) when δ → 0

1
(n+1)|x|n+1 lim

δ→0

|x|n+1− (|x|− δ )n+1

δ
=

1
|x| ,

the statement follows. �

REMARK 2.1. Applying identity (3) for function f (x) = sinx and f (x) = cosx ,
we recapture the formulas (1) from [1].

REMARK 2.2. Applying inequality (5) for p = ∞ and function f (x) = sinx and
f (x) = cosx , we obtain the inequalities (2) from [2].

EXAMPLE 1. If in (5) we take f (x)= eαx, f (x)= chαxsinβx, f (x)= chαxcosβx
and p = ∞, we get ∣∣∣∣ dn

dxn

(
eαx −1

x

)∣∣∣∣ � |α|n+1 e|αx|

n+1
(x ∈ R),∣∣∣∣ dn

dxn

(
chαxsinβx

x

)∣∣∣∣ � (α2 +β 2)
(n+1)/2 e|αx|

n+1
(x ∈ R),∣∣∣∣ dn

dxn

(
1− chαxcosβx

x

)∣∣∣∣ � (α2 +β 2)
(n+1)/2 e|αx|

n+1
(x ∈ R).

If in (5) we take f (x) = eαx and p = 1 we have the following estimation∣∣∣∣ dn

dxn

(
eαx −1

x

)∣∣∣∣ � 1
|x| |α|

n (e|αx| −1) (x ∈ R).

EXAMPLE 2. If in (3) we take f (x) = ln(1+ x), (x �= 0, x > −1) we get∣∣∣∣ dn

dxn

(
ln(x+1)

x

)∣∣∣∣ =
∣∣∣∣ 1
xn+1

∫ x

0
yn (−1)n+1 n!

(1+ y)n+1 dy

∣∣∣∣
� n!

|x|n+1

∫ |x|

0

yn

(1+ y)n+1 dy

=
n!

|x|n+1

(
ln(1+ |x|)+

n

∑
k=1

(−1)k
(

n
k

)
1
k

(
1− 1

(1+ |x|)k

))
.
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Using (5) for p = ∞ we obtain

∣∣∣∣ dn

dxn

(
ln(x+1)

x

)∣∣∣∣ � 1
n+1

sup
y∈[0,|x|]

∣∣∣∣ (−1)n+1 n!
(1+ y)n+1

∣∣∣∣
=

n!
n+1

.

For p = 1 it holds

∣∣∣∣ dn

dxn

(
ln(x+1)

x

)∣∣∣∣ � 1
|x|

∫ |x|

0

∣∣∣∣(−1)n+1 n!
(1+ y)n+1

∣∣∣∣dy

=
n!
|x|

∫ |x|

0

1
(1+ y)n+1 dy

=
(n−1)!

|x|
(

1− 1
(1+ |x|)n

)
.

EXAMPLE 3. Finally, if in (5) we take f (x) = arctanx, for 1 � p < +∞ and
x �= 0, we have∣∣∣∣ dn

dxn

(
arctanx

x

)∣∣∣∣ � 1

|x|1/p

1

(nq+1)1/q(∫ |x|

0

∣∣∣∣ (−1)n n!

(1+ y2)(n+1)/2
sin

(
(n+1)arctany

)∣∣∣∣p

dy

)1/p

� n!

|x|1/p

1

(nq+1)1/q

(∫ |x|

0

(
1√

1+ y2

)(n+1)p

dy

)1/p

,(by y = tan t)

=
n!

|x|1/p

1

(nq+1)1/q

(∫ arctan |x|

0
cos(n+1)p−2 t dt

)1/p

<
n!

|x|1/p

1

(nq+1)1/q

(∫ π/2

0
cos(n+1)p−2 t dt

)1/p

=
n!

|x|1/p

1

(nq+1)1/q

⎛⎜⎝√
π

2

Γ
( (n+1)p−1

2

)
Γ
( (n+1)p

2

)
⎞⎟⎠

1/p

.

Using (5) for p = ∞ we obtain

∣∣∣∣ dn

dxn

(
arctanx

x

)∣∣∣∣ � n!
n+1

.
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