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A NOTE ON THE ESTIMATE OF GAMMA DISTRIBUTION
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Abstract. The lower and upper estimates with explicit coefficients for Gamma distribution are
given. Furthermore, using these results, the estimates of spherically symmetric distribution and
ellipsoidal distribution are obtained.

1. Introduction

It is well known that Mills’ ratio R(x) is defined to be the normal probability
beyond a certain point divided by the normal density at that point; that is,

R = [ 100y / 160,

where f(x) = (2r)"!/2¢="/ is a standard normal density. It has been studied for a
long history in view of the purpose of computation. Lots of lower and upper estimates
were obtained by many mathematicians, such as Birnbaum [4], Steck [10], Hashorva
and Hiisler [7], Lu and Li [9] et. They obtained very sharp lower and upper bounds for
Mills’ ratio and Multivariate Mills’ ratio. In addition, it has been recognized for some
time that Gamma distribution plays an important role both in theory and application.
The nature of Gamma distribution has been studied by many mathematicians, such as
Bar-Lev and Reiser [1], Keating, Glaser and Ketchum [8], Basawa [2], Diaconis and
Pealman [6], Batir [3] et. However, we find that there are very few estimates with
explicit coefficients for Gamma distribution in the literature. This is the motivation of
our work in this paper.
Returning to our problem, in this paper, the Gamma ratio is defined as

HO) = [ elukonds [ a0, Ly

where g(x,A,a) = A%x* le=**/T'(a) with A >0 and & > 0, T is the usual Gamma
function. Based on the method in Lu and Li [9], a pair of lower and upper estimates for
the Gamma ratio are obtained.
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The rest of this paper is arranged as follow etc. In Section 2, we give the asymp-
totic estimates for the Gamma ratio. Furthermore, some lower and upper estimates with
explicit coefficients for the Gamma ratio are obtained. In Section 3, applying the result
of the Gamma ratio, the lower and upper bounds of spherically symmetric distribu-
tion and ellipsoidal distribution are given. The whole proof of Theorem 2.1 is given in
Section 4.

2. Asymptotic estimates for the Gamma ratio

Throughout the paper, the set of natural numbers is denoted by N, and the set of
positive integers is denoted by Z* .
From (1.1), the Gamma ratio is denoted again by

_ oyl ay

H(x) prm g 2.1)
For the brevity, let
o 0
g = [ e Py Gl =, [T 2.2)
x i=1
If € Z1, itis easy to see
*° Hi':ll (OC - ])
x) = a—lg=hygy = -4
g( ) /x y Y 1@2@){ )szzfaelx
Plugging g(x) into (2.1) yields
Hj'_:ll (o —j)
1<i<a

Then we give an asymptotic estimate for H(x) .

PROPOSITION 2.1. H(x) is defined as above in (1.1), for any o, > 0, we have

lim H(x) = 1/A. (2.4)

X—00

Proof. Since H(x) is an increasing function for o, if k < ot < k+ 1,k €N, we

have k—1 _,—A 1,-A k ,—A
SOy ey [Tyt e Py [T ye Py
xkfleflx = xafleflx = xkeflx :

If k> 1, from (2.3), we have

>

1<i<k

- (k=) o [Cy* e My

M (k41— )
Aixi—1 T ya—lp—Ax ’

Diyi—1

>

1<i<k+1
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For x — oo, obviously

M2 k—j) 1 M\ k+1-/) 1
) T g and > Aipi—1 3

1<i<k 1<i<k+1

By the sandwich theorem, we obtain (2.4).
If k=0, we have

fxmy’le”lydy fxmya’le”lydy I eMdy 1
< < = —.
xfleflx xafleflx eflx A

For x — oo, it is easy to verify

o 1 -7
[oyTledy 1

x~le=Ax A
By the sandwich theorem again, we also obtain (2.4).

Next we give some estimates with explicit coefficients for H(x).

THEOREM 2.1. For2k+1<a<2k+2,k€N,ncZ" and n> k.
If xe [22 28 e have

T, (o — j) I (e —))
1<i<2n+1 X 1<i<2n X
If x € [t 2220 e haye
I (o — ) I (o — )
S e <HW< ¥ S (2.6)
1<i<2n+1 X 1<i<2n+2 X
For2k<oa <2k+1,ifxe [2"/1;0‘ ,%j), we have
I (o)) I (o —))
1<i<2n X 1<i<2n+1 X
Ifxe [%ﬂ ,%ﬂ), we have
M (a—)) M (a—))
o <HE) < T (2.8)
1<i<2n+2 X 1<i<2n+1 X

For the brevity, the detail of proof is given in Section 4.
In addition, for @ < 0, using the similar argument of 2k < o < 2k+ 1, we have
the following conclusion.
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COROLLARY 2.1. For a <0, ne€Z". Ifx¢ [2”7_0‘ ,%ﬂ), we have

Hi;ll(a_j) Hi;ll(a_j)
1<i<2n X 1<i<2n+1 X
If x € [2l=e 220y e gye
;';11(a_j) ;';11(a_j)
Y S <HW< Y e (2.10)
1<i<2n+2 x 1<i<2n+1 X

3. Application in spherically symmetric distribution and ellipsoidal distribution

In this section, applying the results of the Gamma ratio into spherically symmetric
distribution and ellipsoidal distribution, their exact estimates are obtained, respectively.
Comparing with the case of 2-dimensional, for the one of d-dimensional, we only need
consider more parameters. Thus, for the clarity, in this section, we only provide the
result of 2-dimensional. First, we introduce the definitions of elliptically contoured
distribution and spherically symmetric distribution as follows:

DEFINITION 3.1. Let x be a random vector in R" with eigenfunction
explit 1) (1'%2),

where W:nx1, X:nxn and £ >0, ¢ is an arbitrary function. Then we say
that x obey elliptically contoured distribution with parameter W,%, ¢ and write x ~
EC,(u,XZ,0). Especially, if u =0, 2=1,, EC,(0,1,,¢) is called spherically symmet-
ric distribution, write S,(¢).

In addition, we introduce an useful Lemma.

LEMMA 3.1. Assuming x 2 Ru™ ~ S,(9), the density function of x exists if and
only if the density function g(-) of R exists, and the relation between f(-) and g(-) is

277,'"/2

gx) = WX"‘lf(le

L8]

The result can be easily found in Cambanis, Huang and Simons [5].
Let g(x) = %x’_le%x, i.e.: the distribution of R is Gamma distribution. From

r !
Lemma (3.1), we have f(x'x) = Mflr’m (x'x) T e~ (¥x)?2

cally symmetric distribution, we have

. For 2-dimensional spheri-

r

27 (r)

flx1,x) = (x%+x%)(r72)/2e_k\/m.
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where r > 0. Furthermore,
A’I’ oo oo
PX >t} = e / / (02 +23) D/ 2= AV iy dix,y 3.1)
1% n

Next, using the result in Section 2, we give the estimates of (3.1). By

(x1 +x2)/V2 < \/oF +3F < x1

max(x;2,x572) < (3 +3) D2 <G (T2 a2,

where C, is a constant. We have

o0 oo X172 o0 oo x§72
max /t2 / md}(ld}CL/Q /tl md}(ﬁldxz
-2)/2
/ / x1+x2 ——=dxidx»
n Jn x+x2

+x2 2)
—— <= ~dxidx;. 3.2
/[2 /rl X1+x2 v ndx (3.2)

If we want to estimate (3.1), we should estimate the upper and lower bounds in (3.2),
respectively. On the one hand, for the upper bounds in (3.2), we have

G2 +x?)
dxd
/tz /fl X1+X2 )/V2 a0

\/—C 7/1t2 xl’ 2 7)u1 oo xl’—2
d 7 / d 33
e / Sarmdn et [ (3.3)

In the following, we only consider the case of 2k < r—1 < 2k+ 1, k € N and others
are similar.

PROPOSITION 3.1. For 2k+1<r<2k+2,k€N,n; >k, j=1,2.
Ifl e [ 2n1+1-—r 2n1+2—r) = [ 2np+1—r 2n2+2—r)

ANVZ A2 ANVZ O A2
-2)/2
/ / xlﬂz L dxidx (3.4)
n g
__ G 2 2RI (r =1 ) +2"12+1 2002 (r— 11— )
T i /V2hn/V2 AT ~ AT :

Proof. Let r—1 = o and A/v/2 = A,. Plugging r—1 and A//2 into (2.7) of
Theorem (2.1) yields, if #; € [ 2utlr  2mtd_ry 'y o[ 2l s 2mi2 7y

A/V2 A2 A2 A/V2
—Ap . - .
e /m % g <C > 2P A1) (3.5)
A f e% r1<i<2n2+1)t"+1t§‘+17re“1/\/§e’“2/‘/§ ’



222 DAWEI LU, LIXIN SONG AND YI WANG

—Atp . .
V3G /oo X2 2RI (=1 )
1

—dx) <G, - - .
B e P A A

(3.6)

Combining (3.2), (3.3) (3.5) and (3.6), we obtain (3.4).
Using the similar method, we can obtain results in other case as:

2ni+1—r 2n4+2—r 2mp+2—r  2np43-ry.
LnelSn S ) 2el5m S )

2n14+2—r 2n1+3—r 2np+l—r 2np42-ry.
2 nelSym Tr ) el T

2n1+2—r  2n;4+3—r
AV2 T AN2

2np+2—r 2n2+3—r)

3.l1€[ WVE ) AR

)vt2€[

On the other hand, for the lower bounds in (3.2), we only consider the case of
2k <r—1<2k+1, k€ N and others are similar.

PROPOSITION 3.2. For 2k+1<r<2k+2,k€N,n; >k, j=1,2.
e[y 2 e[l i),

-2)/2

x +x2
dxidx
[2 / e
w It (r—1—5) 2 [Ilr—1—j
>max{ Y ,J*.lfl_ >,Z _J*.lfl_ )L 3.7)
= ll-ﬁ-lté reA’tl e)ttz et A’H—lti reA’tl e)ttz

Proof. Let r—1 = a and note that the relation between H(x) and g(x). Plug-

ging r—1 into (2.7) of Theorem (2.1) yields, if #; € | 2”1J£1—f 7 2"1;2—r) e
[2n2+1—r 2n2+2—r)
I
,)Ltl ooxr 2 Hi-_l (I’—l—])
Jj=1
/;2 /1 el x1+X2 dxldxz l 1 /Uzd 2> 1<l§<:2n2AiHl‘éH*rehleMz. (3.8)

e )
1
/tz/1 S dndn = /emldx1> S g 09
Combining (3.2), (3.8) and (3.9), we obtain (3.7).
Using the similar method, we can obtain results in other case as:

2nj+1—r  2nj42-r
=)

1. f E[ - , 2np+2—r 2n2-;3—r),

7Z2G[T7 )

9. = [ 2n1-52—r , 2n1-;3—r) . hE [ 2n2-;1—r , 2n2-/'{2—r);

3. = [ 2nlJ)rL27r , 2nlJAr37r) € [ 2n24£27r , 2n24£37r)'
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Next, we consider the ellipsoidal distribution. In this case, the density function of
X is |2|‘% f(x'271x), 2 is positive definite. There exists an orthogonal matrix D such
that & = DAD’ , where A = diag(A;,4,) is the diagonal matrix. Let B = > 1 so
B=DA'D' = Ddiag(A; "4, 1)D’
Let Amax, Amin be the largest and the smallest eigenvalue of X respectively, clearly
Amax = Amin > 0, and moreover for all x € R?, we have
1 1
ﬂmax < )Lmin <

Since the density function of ellipsoidal distribution is

x,x) < (x,Bx) < X,X).

_ ‘z‘—1/2)tr / (r=2)/2 _—A+/X'Bx
flx1,x) = 22T (x'Bx) e ,

we need to estimate

~ 2 ——Ar r— 7
/ / ‘27‘rl“2 1Bx) D2 AN gy gy (.10
15) 151
By
(X/X)(r—2)/2 _ (X/BX)(r—Z)/Z _ (X/X)(r_z)/z
x'x = A VX' Bx = ) /l
l(r_z)/zel Fmin ¢ Ar(mn g o
max
We have
< e (x'x)(2/2 (x'Bx)(r2)/
‘/t2 A dx1dX2 ‘/t2 / 7L T Tn dxldX2
)nglax )/2 \ Fmin
2)/2
</ / — _dxidxy. (3.11)
f (r-2) /2 Ay X
mm
Let A, = /—)L Az = \/7 using Proposition 3.1 and 3.2, we can get the estimate

of lower and upper bounds in (3.11). Combining all above formulas, we get the final
proposition in this paper.

PROPOSITION 3.3. For 2k+1<r<2k+2,k€N,n; >k, j=1,2.
2n1+1-—r 2n1+2—r 2np+1—r 2np+2—r
RS eyl y v, el RN vy, wdt Y o

), we have

2|72 ’ — A /TBx
/ / | | 2)‘ x)( 2)/2e A, XBxd)Cldxz
th Jn 27TF

|Z|_7)L’C
al(r ))Lém 2)/2 ml/\/—zxmemz/\/—um
( ORI (-1 ) 2"1+lz<f+1>/2nj-—ﬁ<r—1—j>>
i=1

/\

ny+1
+ —
2 A/ V) 5T S (A Ama) T
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Ifl e [ 2n1+1-r 2n1+2—r) th € [ 2np+1—r 2np+2—r

A i) 2 S e )

-5 r
/ / ‘Z‘ 21’ x)("—z)/ze—/l\/x’Bxdxld)62
) I 27'L'F

\zrw

>
an( ))‘( )/2 )Ltl/ mlne)ttZ/\/ Amin

2 H Lr—1—j) v [TL0r—1-))
X max 2 — ,2 — )
& O/ i) T Qi) T
4. Proof of Theorem 2.1

First, in the case of 0 < ¢ — 1 < 1, assuming o; = &. On the one hand, from
(2.2), by variable substitution, we have

G(x) = / (xH0)% e M. @.1)
0
From the derivative of (4.1) with respect to x, we have, for l € N,
G (x) >0, G (x) <o0. (4.2)

On the other hand, differentiating G(x) = ¢**g(x) directly yields

G (x) = A6V (x) — []‘[ (al—z)] x= (4.3)

1<i<i

where [ € N. Combining (4.2) with (4.3), we have

i1 .
':1(051 —J)
g1(x) > P W = Roiy1, (4.4)
S
3';11(051 - ])
g1(x) < =Ry s (4.5)

iyvi—0 pAx
1<i<apy AXT%e

where g;(x)

= f y1~le=Aydy. Ttis easy to see Rajy1 < Rojio.
If xe[0,%

%), we have

<Ry <Ry <o <Ry <g1(x)<R2<---<R2;<R2;+2<---,

thus R; and R, are the best lower and upper bounds.
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IfxE[2 oy 3)Locl )’
<Ry <Ry <o <R3 <g1(x) <Ry < - <Ry <Rpppp<-ev,

since R3 > Ry, thus R3 and R; are the best lower and upper bounds.
By induction, if x € [ ;% 2'”;%‘“ ),nezZ",

-+ <Ront3 < Rong1 < 81(x) <Rop < Rypgn < -+,

since Ry,+1 > Royma1, Ron < Ry, when n>m. Thus Ry, and Ry, are the best lower

and upper bounds.

If x g [ 2= 2oy

< Ront3 < Ropt1 < 81(x) < Ropia < Rapga <o+,

since Ry,+1 > Ropmt1, Ronto < Ropy2, when n>m. Thus Ry,41 and Ry, 4, are the best
lower and upper bounds. From (4.4) and (4.5), it is easy to see that lim Ry, = Rop42-
X—o0

Combining (2.1), (4.4) and (4.5), we have, if x € [ 2%, 2n+/11—061 ),

(o =) _ —J)
2 jli i—1 < 2 z i—1 ’ (46)
1<i<2n+1 X 1<i<2n Alx
where Hj(x) = e*¥g;(x)/x®A 1,
If xe [ 2n+)lfal , 2n+§:a| )’
I (o1 = J) I (e = J)
1<i<2n+1 X 1<i<2n+2 X

Next, if 2k < ox —1 < 2k+ 1, thatis 2k+ 1 < a < 2k+2, we write 0] = .
Forevery 0.1 € (2k+1,2k+2), there exists a ¢y € (1,2) such that api 1 = oy + 2k.
Assuming

Qs (x /ya2k+11 Mdy

Then
8 (x) = Z Hl,;ll (a2k+l _ J) Hl 1 a2k+1 —1i /°° ya2A+l —2k—1 y
2k+1 L A ixi— 02k 1 ghx e .
82k+1\X
Hopy1(x) = _Sun(¥) .

xa2k+1 7lefﬂ,x

_1 i . (o] _ _ _
Hlj:l(azk‘*‘l —J) Hizil(azk-s-l —1) [ y%k k—1o=2yqy
Aixi—1 )2k 2k k12T Ax

1<i<2k
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If x e [ 2= kel 2"“;”‘“), n>k,thatis x € | 2"_2f_“1 , 2"_2]‘)?1_&1), combining
(4.6) and (4.8), we have

T2} (o1 — J) IT—) (oks1 — )
2 Aixi—1 < Hp1(x) < 2 Aixi—1 :

1<i<2n+1 1<i<2n

[ 2n+1—-0pp41 2n+2— 00k 41 ) 2n—2k+1-0y 2n—2k+2—0y )
A A ’

Similarly, if x € , that is x € | n , N

combining (4.7) and (4.8), we have

T} (a1 — )
T <Hys(x)< Y
I<i<ont2

I (o1 — J)
T

>

1<i<2n+1

Using the similar method as above for 2k+1 < a — 1 < 2k + 2, we have the following.
If x e [2n—ifzk+2 2"+1;O¢2k+2)

)

T2} (0ks2 — ) T2} (0ak2 — )

< Hyya(x) <

i1 i1
1<i<2n Alx 1<i<2n+1 Alx
2n+1—a 2n+2—a
Ifx c [ T 2k+2 , T 2k+2)7
i

[T 71(O‘2k+2 ) HJ L (0ks2 — )

Aiyi—1 < H2k+2(x) < Z Aiyxi—1
1<i<2n+2 1<i<2n+1

Combining similar results in any other case, we obtain the uniform expansions in
(2.5), (2.6), (2.7) and (2.8), respectively. Using the similar argument above, we obtain
that the result for 0 < o < 1 is the special case of (2.7) and (2.8).

Acknowledgements. We thank the referee for careful reading of our manuscript
and for helpful and valuable comments and suggestions. The research of the first au-
thor is supported by the Fundamental Research Funds for the Central Universities under
number 3004-852005. The second author is supported by the Funds for Frontier Inter-
disciplines of DUT in 2010 (Grant No.DUT10JS06).

REFERENCES

[1] S.K.BAR-LEV AND B. REISER, A note on maximum conditional likelihood estimation for the gamma
distribution, Sankhya, 45, 2 (1983), 300-302.

[2] 1.V. BASAWA, A note on estimation of gamma and stable procesess, Biometrika, 67 (1980), 234-236.

[3] N. BATIR, Inequalities for the gamma function, Arch. Math, 91 (2008), 554-563.

[4] Z.W. BIRNBAUM, An inequality for Mill’s ratio, Ann. Math. Statist, 13 (1942), 245-246.

[5] S. CAMBANIS, S. HUANG, G. SIMONS, On the theory of elliptically contoured distributions, J. Mult.
Anal., 10 (1981), 368-385.

[6] P. DIACONIS AND M.D. PEALMAN, Bounds for tail probabilities of weighted sums of independent
gamma random variables, Lecture Note-Monograph Series, 16 (1990), 147-166.

[71 E. HASHORVA AND J. HUSLER, On multivariate Gaussian tails, Ann. Inst. Statist. Math, 55, 3 (2003),
507—522.



A NOTE ON THE ESTIMATE OF GAMMA DISTRIBUTION 227

[8] J.P. KEATING, R.E. GLASER AND N.S. KETCHUM, Testing Hypotheses about the sharp parameter of
a gamma distribution, Technometrics, 32, 1 (1990), 67-82.
[9] D. Lu AND W.V. L1, A Note on Multivariate Gaussian Estimates, J. Math. Anal. Appl., 354 (2009),
704—707.
[10] G.P. STECK, Lower bounds for the multivariate normal Mills’ ratio, Ann. Probab, 7 (1979), 547-551.

(Received June 24, 2010) Dawei Lu
School of Mathematical Sciences

Dalian University of Technology

Dalian 116023

China

e-mail: ludawei — dlut@163.com

Lixin Song

School of Mathematical Sciences
Dalian University of Technology
Dalian 116023

China

e-mail: 1xsong@dlut.edu.cn

Yi Wang

School of Mathematical Sciences
Dalian University of Technology
Dalian 116023

China

e-mail: 375425044@qq . com

Mathematical Inequalities & Applications
www.ele-math.com

nia@ele-math.com



