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LOW CARDINALITY ADMISSIBLE MESHES

ON QUADRANGLES, TRIANGLES AND DISKS
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(Communicated by J. Pečarić)

Abstract. Using classical univariate polynomial inequalities (Ehlich and Zeller, 1964), we show
that there exist admissible meshes with O(n2) points for total degree bivariate polynomials of
degree n on convex quadrangles, triangles and disks. Higher-dimensional extensions are also
briefly discussed.

1. Introduction

A new insight in the theoretical and computational framework of multivariate poly-
nomial approximation, has been recently given by the theory of “admissible meshes”
of Calvi and Levenberg [8]. These are sequences of finite discrete subsets An of a
d -dimensional real (or complex) compact set K , where the polynomial inequality

‖p‖K � C‖p‖An , ∀p ∈ P
d
n(K) (1)

holds for some C > 0 (with card(An) that grows at most polynomially in n ). Here
and below, ‖ f‖X = supx∈X | f (x)| for f bounded on X , and Pd

n(K) denotes the space
of d -variate polynomials of total degree at most n , restricted to K . We note that in
the literature discrete sets with this property are also known as “norming sets” and
also “Marcinkiewicz-Zygmund arrays” (especially for the sphere, cf. [12, 14]). Such
meshes are nearly optimal for least-squares approximation, and contain interpolation
sets (discrete extremal sets) that distribute asymptotically as Fekete points of the do-
main and can be computed by basic numerical linear algebra [3, 4, 6, 16].

In principle, as is shown in [8, Thm.5], it is always possible to construct an admis-
sible mesh with O(nrd) points on any real compact set satysfying a Markov polynomial
inequality with exponent r . The mesh is obtained simply by intersecting the domain
with a uniform grid having O(n−r) spacing. However, the Markov exponent is typi-
cally r = 2 on real compacts, for example on convex compacts [17]. This means that
in dimension 2 we can easily construct admissible meshes with O(n4) points, but these
become computationally intractable already for moderate values of n .
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In order to circumvent this difficulty a weaker structure has been exploited, called a
“weakly admissible mesh” (again introduced in [8]), i.e., a mesh where C =Cn depends
on n in the inequality above, but grows at most algebraically with n ; cf. [3, 4, 7]. In
such a way we can obtain for example meshes with approximately n2 points and Cn =
O(log2 n) for standard bidimensional compacts like the square, the disk, the triangle.
We refer the reader to [5] for a survey on the properties of (weakly) admissible meshes
and their discrete extremal sets.

A basic question, however, remains open: do admissible meshes with cardinal-
ity O(nd) exist? A deep result by Coppersmith and Rivlin [9] shows that already in
dimension 1 (the interval) we should look for nonuniformly distributed points, since ad-
missible meshes with equally spaced points require a O(n−2) spacing. Indeed, classical
inequalities for univariate polynomials by Ehlich and Zeller [10] show that admissible
meshes with O(n) cardinality, based on Chebyshev points, exist in the interval.

In this note, using such inequalities and suitable geometric transformations, we
construct admissible meshes with O(n2) cardinality on convex quadrangles (with tri-
angles as a degenerate case) and disks. Some higher-dimensional extensions are also
sketched.

2. Univariate admissible meshes with O(n) points

First, we recall a classical inequality for univariate trigonometric polynomials,
from which an inequality for univariate algebraic polynomials follows; cf. [10].

THEOREM 1. Let t be a trigonometric polynomial of degree at most n. Then for
every m > n and for every α ∈ R the following inequality holds:

‖t‖[0,2π ] �
1

cos(nπ/2m)
‖t‖Θm (2)

where Θm = Θm(α) = {α +πk/m , k = 0,1, . . . ,2m−1} are the 2m equally spaced
angles in [α,α +2π) .

For the reader’s convenience we give the complete proof of this Theorem which is
written in German in the original paper.

Proof of Theorem 1. Set θk = α +πk/m , k = 0,1, . . . ,2m− 1. We prove that if
|t(θk)| � 1 for all k then |t(θ )| � 1/cos(πn/2m) for all θ ∈ [0,2π ] . First, observe
that if it’s true for a particular α then it’s true for all α by a translation of θ . Take
α = −π/2m .

Let K = max0�θ�2π |t(θ )|. Without loss of generality we may assume that
K = t(η) , 0 � η � π/2m . Consider the auxiliary trigonometric polynomial f (θ ) =
K cos(n(θ −η))−t(θ ). We have that f (η)= f ′(η)= 0, and f ′′(η)=−Kn2−t ′′(η)�
0 by the Bernstein inequality for trigonometric polynomials [2, Thm. 5.1.4], which as-
serts that |t ′′(θ )| � Kn2 . Now, t ′′(η) � 0, and t ′′(η) = −Kn2 if and only if t(θ ) =
K cos(n(θ −η)) , i.e., f ≡ 0. When t ′′(η) > −Kn2 we have that f ′′(η) < 0 and
thus η is a strict point of maximum of f . By Riesz’s Lemma (cf. [11]), which
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says that if η is a point of maximum of a (nonzero) trigonometric polynomial f of
degree not greater than n , then f (θ ) cannot vanish for |θ −η | � π/2n , we get that
f (θ ) < 0 for |θ −η | � π/2n . These considerations show that in any case f (θ ) � 0,
and thus t(θ ) � K cos(n(θ −η)) , for |θ−η |� π/2n . Take now θ = θ1 =α+π/m =
−π/2m+π/m = π/2m . Then, 1 � t(θ1) � K cos(n(π/2m−η)), from which it fol-
lows that K � 1/cos(πn/2m) . �

From this Theorem, setting x = cosθ , 0 � θ � π , and α = π/2m , we get imme-
diately

THEOREM 2. Let p be any univariate polynomial of degree not greater than n.
Then for every m > n the following inequality holds

‖p‖[−1,1] �
1

cos(nπ/2m)
‖p‖Xm (3)

where Xm = {cos((2 j−1)π/2m) , j = 1, . . . ,m} are the Gauss-Chebyshev points for
degree m−1 , i.e., the zeros of Tm(x) = cos(marccos(x)) .

We note that there is a slightly weaker version of this result in [15]. In view of
(1), Xm is an admissible mesh in [−1,1] for m = �μn� , where μ > 1, with constant
C = 1/cos(π/2μ) and cardinality �μn� . For example, taking μ = 2 we get an ad-
missible mesh in [−1,1] with 2n points and C = 1/cos(π/4) =

√
2. Since admissible

meshes are preserved by affine transformations, we then have an admissible mesh with
O(n) cardinality on any interval [a,b] . By extension, we can say that Θ�μn�(α) is a
“trigonometric admissible mesh” for [α,α +2π ] .

REMARK 1. It is worth noticing that inequality (3) can be obtained also with Xm =
{cos( jπ/m) , j = 0, . . . ,m} (taking α = 0 in Theorem 1), i.e, the m + 1 Chebyshev-
Lobatto points for degree m . In this case, X�μn� is an admissible mesh in [−1,1] , with
cardinality �μn�+1 and constant C = 1/cos(π/2μ) . On the other hand, it is easy to
check that also X�μn�−1 is an admissible mesh in [−1,1] for μ > 3/2 and n � 2, with
cardinality �μn� and constant C = 1/cos(π/(2μ − 1)) . For example, taking μ = 2
we get admissible meshes including the endpoints in [−1,1] , with 2n+ 1 points and
C = 1/cos(π/4) =

√
2, or 2n points and C = 1/cos(π/3) = 2.

3. Bivariate admissible meshes with O(n2) points

In view of Theorem 2 it folows immediately that for tensor product polynomials
we have the inequality

‖p‖[−1,1]d � 1
cosd(nπ/2m)

‖p‖(Xm)d , ∀p ∈
d⊗

j=1

P
1
n (4)
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which in particular holds for total degree polynomials p ∈ Pd
n ⊂

⊗d
j=1 P1

n . This means
that we have at hand admissible meshes (X�μn�)d , even for tensor product polynomi-
als, in d -dimensional cubes (and parallelepipeds by affine mapping) with cardinality
�μn�d .

Let us now focus on the 2-dimensional case. It is well-known that any convex
quadrangle with vertices aaaa1,aaaa2,aaaa3,aaaa4 is the image of a bilinear transformation of the
square, namely

xxxx = (x1,x2) = σ(u,v) =
1
4

(aaaa1(1−u)(1− v)+aaaa2(1+u)(1− v)

+aaaa3(1+u)(1+ v)+aaaa4(1−u)(1+ v)) , (u,v) ∈ [−1,1]2 (5)

with a triangle, e.g. aaaa3 = aaaa4 , as a special degenerate case. We can then prove the
following

PROPOSITION 1. For every fixed μ > 1 , the sequence of “oblique” Gauss-Che-
byshev grids

An = {σ(ξ j,ξk) , 1 � j,k � �μn�} , ξs = cos
(2s−1)π
2�μn� (6)

is an admissible mesh of the convex quadrangle K = {xxxx =∑ciaaaai , ci � 0 , ∑ci = 1 , 1 �
i � 4} , cf. (5), with constant C = 1/cos2(π/2μ) and cardinality �μn�2 .

Proof. It is sufficient to observe that, for any polynomial p ∈ P2
n , q(u,v) =

p(σ(u,v)) is a tensor product polynomial in [−1,1]2 , since the transformation σ is
bilinear. Then we conclude by applying (4) to q with m = �μn� , and using the fact that
σ is surjective, even in the degenerate case of a triangle. Since the transformation is
bilinear, any segment u = const or v = const in [−1,1]2 is mapped into a segment of
the quadrangle. This entails that the admissible mesh is an “oblique” grid and that the
points on each segment are exactly its Gauss-Chebyshev points. Concerning the cardi-
nality, observe that the transformation is bijective when restricted to the interiors, even
in the degenerate case of a triangle, and that the admissible mesh is made of interior
points (the image of tensor product Gauss-Chebyshev points: see Figure 1 left). �

A similar result holds for the disk, as is shown by the following

PROPOSITION 2. For every fixed μ > 1 , the sequence of symmetric polar grids

An = {(r j cosθk,r j sinθk)} (7)

{(r j,θk)} j,k =
{

cos
(2 j−1)π

2�μn� , 1 � j � �μn�
}
×

{
kπ
�μn� , 0 � k � �μn�−1

}

is an admissible mesh of the unit disk K = {xxxx : x2
1 + x2

2 � 1} , with constant C =
1/cos2(π/2μ) and cardinality �μn�2 for �μn� even, and �μn�2−�μn�+1 for �μn�
odd.
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Proof. It is sufficient to observe that the restriction of a polynomial p ∈ P2
n to

the disk in the symmetric polar coordinates (x1,x2) = (rcosθ ,r sinθ ) , −1 � r � 1,
0 � θ < π , becomes a polynomial q(r,θ ) = p(rcosθ ,r sinθ ) of degree n in r for any
fixed value of θ , and a trigonometric polynomial of degree n in θ for any fixed value
of r . Observe that we can take θ ∈ [0,2π ] for such trigonometric polynomials, since
the range of coordinates remains exactly the same (the whole disk). We can conclude
by applying Theorems 1 and 2 with m = �μn� , and observing that the discrete subset
is centrally symmetric (see Figure 1 right). To compute the cardinality, we have to
subtract the repetitions of the center of the disk for �μn� odd. �

Figure 1: Admissible meshes for degree n = 3 and μ = 2 (36 points) in a quadrangle and in a
disk.

We stress that if we had used the standard polar coordinates (see the proof of
Proposition 2), we would have obtained an admissible mesh with twice the number of
points and an artificial clustering at the center of the disk. On the other hand, using
standard polar coordinates and a similar reasoning, it is easy to construct an admissible
mesh with the same constant and 2�μn�2 points in any annulus K = {xxxx : ρ1 � x2

1 +x2
2 �

ρ2 , 0 < ρ1 < ρ2} . In this case the {r j} are the Gauss-Chebyshev points of the interval
[ρ1,ρ2] .

REMARK 2. In view of Remark 1, it is clear that the constructions above can be
based also on Chebyshev-Lobatto points. In this case we get a feature that could be use-
ful in applications, namely that some points of the admissible mesh lie on the boundary
of K . For example, with a quadrangle the side points are exactly the corresponding
Chebyshev-Lobatto points.

REMARK 3. It is interesting to recall that, in view of [8, Thm.1], the uniform error
of the least-squares polynomial approximants at the admissible meshes above is (at
most) O(nEn( f ;K)) , where En( f ;K) is the error of the best polynomial approximation
in P

2
n to f ∈C(K) .

REMARK 4. (Higher-dimensional extensions). It is easy to see that the Propo-
sitions above can be easily extended to d -dimensional instances. In particular, we
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can construct an admissible mesh with (at most) �μn�d cardinality in any compact set
which is a d -linear transformation of [−1,1]d , e.g. in the 3-dimensional simplex (and
thus in any tetrahedron by affine mapping).

More generally, we can extend the constructions to any compact set such that, by
a suitable change of variables/coordinates, a polynomial on it becomes a (tensor prod-
uct) algebraic polynomial in a cube with respect to a group of variables, and a (tensor
product) trigonometric polynomial in the other variables, where each angle ranges in a
whole interval of periodicity.

In this way, we obtain for example admissible meshes with O(n2) points on the
sphere and the torus (where only trigonometric polynomials are involved in spheri-
cal and surface toroidal coordinates, respectively), as well as admissible meshes with
O(n3) points in the ball, the cylinder and the solid torus (where the polynomial be-
comes mixed algebraic/trigonometric in polar, cylindrical and toroidal coordinates, re-
spectively). We recall that in the case of the sphere, existence of admissible meshes
(norming sets) with O(n2) cardinality was proved in [12] and also [14], using other
methods.

Finally, we mention that Kroó [13] has recently shown that there exist low car-
dinality admissible meshes with O(nd) points (optimal meshes) for a wide variety of
compacts in Rd . In the complex case, we mention only that it is easy to construct an
admissible mesh with O(n) points for any compact set K ⊂C1 satisfying a Markov in-
equality of exponent 1, and boundary given by a C1 parametric curve, cf. [1, Prop.17].
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