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Abstract. In this paper, we study the monotonicity properties of the generalized elliptic integrals
and establish two Hölder mean inequalities for the generalized Grötzsch ring function μa(r) and
the generalized Hersch-Pfluger distortion function ϕa

K(r) .

1. Introduction

For real numbers a , b and c with c �= 0,−1,−2, · · · , the Gaussian hypergeometric
function is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, |x| < 1. (1.1)

Here (a,0) = 1 for a �= 0, and (a,n) denotes the shifted factorial function

(a,n) = a(a+1)(a+2)(a+3) · · ·(a+n−1)

for n = 1,2, · · · . For a survey of these functions, see [6].
Recently, the Gaussian hypergeometric function F(a,b;c;x) has attracted the at-

tention of many mathematicians. In particular, many important properties and remark-
able inequalities can be found in the literature [5, 9, 12, 15, 17-19].

For r ∈ (0,1) , r′ =
√

1− r2 and a ∈ (0,1) , the generalized elliptic integrals [3]
are defined by ⎧⎨

⎩
Ka = Ka(r) = πF(a,1−a;1;r2)/2,
Ka

′ = Ka
′(r) = Ka(r′),

Ka(0) = π/2, Ka(1) = ∞
(1.2)

and ⎧⎨
⎩

Ea = Ea(r) = πF(a−1,1−a;1;r2)/2,
Ea

′ = E ′
a(r) = Ea(r′),

Ea(0) = π/2, Ea(1) = sin(πa)/ [2(1−a)].
(1.3)
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In particular, if a = 1/2, then the functions Ka(r) and Ea(r) reduce to K (r)
and E (r) , respectively, which are the well-known complete elliptic integrals of the first
and second kinds, respectively [1, 2, 7, 10, 13]. By symmetry of (1.2), unless stated
otherwise, we assume that a ∈ (0,1/2] . For a ∈ (0,1/2] and r ∈ (0,1) define

ma(r) =
2

π sinπa
r′2Ka(r)Ka

′(r) (1.4)

and

μa(r) =
π

2sinπa
Ka

′(r)
Ka(r)

. (1.5)

Moreover, if a = 1/2, then m1/2(r) = m(r) and μ1/2(r) = μ(r) , where μ(r) is
the modulus of the plane Grötzsch ring B

2 \ [0,r] and B
2 is the unit disk.

It is well known that the Ramanujan’s generalized modular equation with signature
1/a and degree p is

μa(s) = pμa(r), (1.6)

and the solution of equation (1.6) is given by

s = ϕa
K(r) = μa

−1(μa(r)/K). (1.7)

In the special case of a = 1/2, the solution ϕa
K(r) of equation (1.6) reduce to

the Hersch-Pfluger distortion function ϕK(r) , which has many important applications
in the theory of plane quasiconformal mappings [4, 8, 11, 16, 20]. As usual, we call
ϕa

K(r) the generalized Hersch-Pfluger distortion function.
For λ ∈ R , the Hölder mean Mλ (x,y) of order λ of two positive numbers x and

y is defined by

Mλ (x,y) =

{
( xλ+yλ

2 )1/λ , λ �= 0,√
xy, λ = 0.

(1.8)

The main properties of the Hölder mean are given in [14].
In [7, Theorems 5.12 and 10.28], the authors presented the the following Hölder

mean inequalities

M0(μ(x),μ(y)) � μ(M0(x,y)) (1.9)

and

M0(ϕK(x),ϕK(y)) � ϕK(M0(x,y)) (1.10)

for all x,y ∈ (0,1) and K > 1.
The purpose of this paper is to generalize the inequalities (1.9) and (1.10) to the

generalized Grötzsch ring function μa(r) and the generalized Hersch-Pfluger distortion
function ϕa

K(r) for any a ∈ (0,1/2] .
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2. Lemmas

In order to establish our main result we need several lemmas, which we present in
this section.

For 0 < r < 1, 0 < a � 1/2 and s = ϕa
K(r) , the following derivative formulas

were presented in [3, Theorem 4.1].

dKa

dr
= 2(1−a)

Ea− r′2Ka

rr′2
,

dEa

dr
= 2(1−a)

Ea−Ka

r
,

dma(r)
dr

=
2

πr sinπa

[
sinπa

2
−4(1−a)KaEa

′ +2(1−2a)r2KaKa
′
]
,

dμa(r)
dr

= − π2

4rr′2Ka
2 ,

dϕa
K(r)
dr

=
ss′2Ka(s)Ka

′(s)
rr′2Ka(r)Ka

′(r)
.

LEMMA 2.1. (See [3, Lemmas 5.2 and 5.4])
(1) (Ea−r′2Ka)/r2 is strictly increasing from (0,1) onto ((πa)/2, [sin(πa)]/ [2(1−a)]);
(2) (Ea− r′2Ka)/(r2Ka) is strictly decreasing from (0,1) onto (0,a);
(3) r′2Ka is strictly decreasing from (0,1) onto (0,π/2) .

LEMMA 2.2. Let λ be a real number. Then the function

h(r) =
μa(r)λ−1

rλ r′2Ka(r)2

is strictly increasing on (0,1) if and only if λ � 0 .

Proof. By logarithmic differentiation,

h′(r)
h(r)

=(λ −1)
1

μa(r)
(− π2

4rr′2Ka
2 )− λ

r
+

2r

r′2
− 4(1−a)(Ea− r′2Ka)

rr′2Ka

=
π sinπa+2r′2KaKa

′

2rr′2KaKa
′ [h1(r)−λ ], (2.1)

where

h1(r) =
π sinπa+4r2KaKa

′ −8(1−a)(Ea− r′2Ka)Ka
′

π sinπa+2r′2KaKa
′

=
π sinπa+4r2Ka

′Ka[1−2(1−a)(Ea− r′2Ka)/(r2Ka)]
π sinπa+2r′2KaKa

′ .

From Lemma 2.1 we clearly see that h1(r) > 0 and strictly increasing from (0,1)
onto (0,+∞) . Therefore, Lemma 2.2 follows from (2.1). �
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LEMMA 2.3. Let 0 < r < 1 . Then the function g(r)= 4(1−a)Ea−2(1−2a)r′2Ka

is strictly decreasing from (0,1) onto (2[sin(πa)],π) .

Proof. Making use of series expansion, we have

g(r) =
π
2

[4(1−a)
∞

∑
n=0

(a−1,n)(1−a,n)
(n!)2 r2n −2(1−2a)

∞

∑
n=0

(a,n)(1−a,n)
(n!)2 r2n

+2(1−2a)
∞

∑
n=0

(a,n)(1−a,n)
(n!)2 r2n+2]

=π [1−
∞

∑
n=0

An
(a,n)(1−a,n)

[(n+1!)]2
r2n+2], (2.2)

where
An = (2a2 +2a+1)n+(3a2−3a+1) > 0 (2.3)

for a ∈ (0,1/2] and n = 0,1,2 · · · . Therefore, Lemma 2.3 follows from (2.2) and (2.3)
together with (1.3) and Lemma 2.1(3). �

LEMMA 2.4. For 0 < r < 1 , we have

8(1−a)2EaEa
′ −4(1−a)[2(1−a)− (1−2a)r2]KaEa

′

+[4(4a2−5a+2)−4(1−2a)2r2]r2KaKa
′

−4(1−2a)(1−a)r2Ka
′Ea > 0. (2.4)

Proof. Let
f (r) = Ka[4(1−a)Ea

′ −2(1−2a)r2Ka
′]. (2.5)

From Lemma 2.3 we know that f (r) > 0 and strictly increasing on (0,1) . By
differentiation we get

f ′(r) =
f1(r)
rr′2

, (2.6)

where

f1(r) =8(1−a)2EaEa
′ −4(1−a)[2(1−a)− (1−2a)r2]KaEa

′

+[4(4a2−5a+2)−4(1−2a)2r2]r2KaKa
′

−4(1−2a)(1−a)r2Ka
′Ea. (2.7)

Hence, Lemma 2.4 follows from (2.5)-(2.7) and the monotonicity of f (r) . �

LEMMA 2.5. Let 0 < r < 1 , and let f (r) and f1(r) be defined as in Lemma 2.4,
and H(r) = f1(r)/{r′2[ f (r)− (π sin(πa))/2]} . Then the range of H(r) is (0,+∞) .



THE GENERALIZED GRÖTZSCH RING AND HERSCH-PFLUGER DISTORTION FUNCTIONS 241

Proof. From Lemma 2.3 we clearly see that f (r)− [π sin(πa)]/2 is strictly in-
creasing from (0,1) onto ([π sin(πa)]/2,+∞) . Then f1(r) > 0 leads to the conclusion
that H(r) > 0 for r ∈ (0,1) .

Noting that f1(r) can be rewritten as

f1(r) =8(1−a)2EaEa
′ −4(1−a)r′2Ka(

Ea
′ − r2Ka

′

r′2
)

−4(1−2a)(1−a)r′2KaEa
′ +4(1−2a)2r2r′2KaKa

′

−4(1−2a)(1−a)r2Ka
′Ea. (2.8)

Equations (2.7) and (2.8) together with Lemma 2.1 imply that

lim
r→0

f1(r) = 0 (2.9)

and
lim
r→1

f1(r) = π sinπa. (2.10)

Moveover,

lim
r→0

1

r′2{ f (r)− [π sin(πa)]/2} =
2

π sinπa
(2.11)

and

lim
r→1

1

r′2{ f (r)− [π sin(πa)]/2} = +∞. (2.12)

Therefore, Lemma 2.5 follows from (2.9)-(2.12) and H(r) > 0. �

LEMMA 2.6. If λ is a real number and f (r) is defined as in Lemma 2.4, then the
function G(r) = λ r′2Ka(r)Ka

′(r)− f (r) is strictly decreasing on (0,1) if and only if
λ � 0 , and G(r) is not monotone on (0,1) for λ < 0 .

Proof. By differentiation one has

G′(r) =− λ
r

{
Ka
[
4(1−a)Ea

′ −2(1−2a)r2Ka
′]− π sinπa

2

}

−8(1−a)2

[
Ea− r′2Ka

rr′2
Ea

′ − rKa
Ea

′ −Ka
′

r′2

]

+4(1−2a)rKaKa
′ +4(1−a)(1−2a)rKa

′ Ea− r′2Ka

r′2

−4(1−a)(1−2a)rKa
Ea

′ − r2Ka
′

r′2

=
f (r)− [π sin(πa)]/2

r
[−λ −H(r)] , (2.13)

where H(r) is defined as in Lemma 2.5.
It follows from (2.13) and Lemma 2.5 that G′(r) < 0 for all r ∈ (0,1) if and only

if λ � 0. �
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LEMMA 2.7. Let 0 < r < 1 , ma(r) = 2r′2KaKa
′/[π sin(πa)] and s = ϕa

K(r) . If
K > 1 , then the function F(r) = [sλma(s)]/[rλma(r)] is strictly decreasing on (0,1) if
and only if λ � 0 ; If 0 < K < 1 , then F(r) is strictly increasing on (0,1) if and only
if λ � 0 ; F(r) is not monotone on (0,1) for any λ < 0 .

Proof. By logarithmic differentiation we have

F ′(r)
F(r)

=
λ
s

ss′2Ka(s)Ka
′(s)

rr′2Ka(r)Ka
′(r)

+
1

ma(s)
ss′2Ka(s)Ka

′(s)
rr′2Ka(r)Ka

′(r)

× 2
{
[sin(πa)]/2−4(1−a)Ka(s)Ea

′(s)+2(1−2a)s2Ka(s)Ka
′(s)
}

πssin(πa)

− λ
r
− 2

{
[sin(πa)]/2−4(1−a)Ka(r)Ea

′(r)+2(1−2a)r2Ka(r)Ka
′(r)
}

πrma(r)sin(πa)

=
G(s)−G(r)

rr′2Ka(r)Ka
′(r)

, (2.14)

where G(r) is defined as in Lemma 2.6.
It is well known that s > r(< r) for K > 1(< 1) . Therefore, (2.14) and Lemma 2.6

imply that F ′(r) < 0(> 0) for K > 1(< 1) and all r ∈ (0,1) if and only if λ � 0. �

3. Main Results

THEOREM 3.1. Let λ be a real number. Then the inequality

Mλ (μa(x),μa(y)) � μa(Mλ (x,y)) (3.1)

holds for all x,y ∈ (0,1) if and only if λ � 0 , with equality if and only if x = y for all
λ � 0 .

Proof. If λ = 0, then inequality (3.1) follows from [3, Corollary 5.7]. Next, we
prove that inequality (3.1) holds for λ < 0. Without loss of generality, we assume that
x � y . Define

J(x,y) = μa(Mλ (x,y))λ − μa(x)λ + μa(y)λ

2
, λ �= 0. (3.2)

Let t = Mλ (x,y) , then ∂ t/∂x = (x/t)λ−1/2. If x < y , then we clearly see that t > x .
By differentiation, we have

∂J
∂x

=
λ
2
μa(t)λ−1

(
− π2

4tt ′2Ka(t)2

)(x
t

)λ−1− λ
2
μa(x)λ−1

(
− π2

4xx′2Ka(x)2

)

=− π2λxλ−1

8

[
μa(t)λ−1

tλ t ′2Ka(t)2
− μa(x)λ−1

xλ x′2Ka(x)2

]
. (3.3)
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From Lemma 2.2 and (3.3) we know that ∂J/∂x > 0 if and only if λ < 0. There-
fore, J(x,y) is strictly increasing with respect to x and

J(x,y) � J(y,y) = 0. (3.4)

It follows from (3.2) and (3.4) that

μa(Mλ (x,y))λ � μa(x)λ + μa(y)λ

2
(3.5)

for all x,y ∈ (0,1) if and only if λ < 0 .
Therefore, inequality (3.1) follows from inequality (3.5), and we clearly see that

inequality (3.1) holds equality if and only if x = y . �

THEOREM 3.2. For λ ∈ R we have the following statements:
(1) If K > 1 , then inequality

Mλ (ϕa
K(x),ϕa

K(y)) � ϕa
K(Mλ (x,y)) (3.6)

holds for all x,y ∈ (0,1) if and only if λ � 0 .
(2) If 0 < K < 1 , then inequality

Mλ (ϕa
K(x),ϕa

K(y)) � ϕa
K(Mλ (x,y)) (3.7)

holds for all x,y∈ (0,1) if and only if λ � 0 . Inequality (3.6) or (3.7) becomes equality
if and only if x = y.

Proof. If λ = 0, then inequalities (3.6) and (3.7) follows from [3, Theorem 1.14].
Next, we only prove that inequality (3.6) for λ > 0 and K > 1, since the case of
0 < K < 1 is completely similar. Without loss of generality, we assume that x � y .
Define

I(x,y) = ϕa
K (Mλ (x,y))λ − ϕa

K(x)λ +ϕa
K(y)λ

2
, λ �= 0. (3.8)

Let t = Mλ (x,y) , u = ϕa
K(t) and v = ϕa

K(x) . If x < y , then t > x and u > v . By
differentiation, we have

∂ I
∂x

=
λ
2

uλu′2Ka(u)Ka
′(u)

tt ′2Ka(t)Ka
′(t)

(x
t

)λ−1− λ
2

vλ v′2Ka(v)Ka
′(v)

xx′2Ka(x)Ka
′(x)

=
λ
2

xλ−1

(
uλu′2Ka(u)Ka

′(u)
tλ t ′2Ka(t)Ka

′(t)
− vλ v′2Ka(v)Ka

′(v)
xλ x′2Ka(x)Ka

′(x)

)

=
λ
2

xλ−1

(
uλma(u)
tλma(t)

− vλma(v)
xλma(x)

)
. (3.9)

From Lemma 2.7 and (3.9) we know that ∂ I/∂x < 0 if and only if λ > 0. There-
fore, I(x,y) is strictly increasing with respect to x and

I(x,y) � I(y,y) = 0. (3.10)
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It follows from (3.8) and (3.10) that

ϕa
K (Mλ (x,y))λ � ϕa

K(x)λ +ϕa
K(y)λ

2
, (3.11)

for all x,y ∈ (0,1) if and only if λ > 0 .
Therefore, inequality (3.6) follows from inequality (3.11), and we clearly see that

inequality (3.6) becomes equality if and only if x = y . �
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