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HOLDER MEAN INEQUALITIES FOR THE GENERALIZED GROTZSCH
RING AND HERSCH-PFLUGER DISTORTION FUNCTIONS

SONG-LIANG QIU, YE-FANG QIU, MIAO-KUN WANG AND YU-MING CHU

(Communicated by J. Pecaric)

Abstract. In this paper, we study the monotonicity properties of the generalized elliptic integrals
and establish two Holder mean inequalities for the generalized Grotzsch ring function p,(r) and
the generalized Hersch-Pfluger distortion function ¢g(r).

1. Introduction

For real numbers a, b and ¢ with ¢ #0,—1,—2,---, the Gaussian hypergeometric
function is defined by

n
F(a,b;c;x) =oF(a,b;c;x) = —, ¥ < 1. (L.1)

Here (a,0) =1 for a # 0, and (a,n) denotes the shifted factorial function
(@,n) =ala+1)(a+2)(a+3)---(a+n—1)

for n=1,2,---. For a survey of these functions, see [6].

Recently, the Gaussian hypergeometric function F(a,b;c;x) has attracted the at-
tention of many mathematicians. In particular, many important properties and remark-
able inequalities can be found in the literature [5, 9, 12, 15, 17-19].

For r € (0,1), ¥ =+v1—7r2 and a € (0,1), the generalized elliptic integrals [3]
are defined by

Hy = Hy(r) = rF(a,1 —a;1;12) /2,
o= (r) = Aa(r), (1.2)
Ha(0) = 1/2, Hi(1) = oo
and
&y =Ey(r)=nF(a—1,1-a;1;r%)/2,
& =ENr) = &.(r), (1.3)
&(0)=m/2, &,(1)=sin(ra)/2(1—a)].
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In particular, if a = 1/2, then the functions .#;(r) and &,(r) reduce to % (r)
and &(r), respectively, which are the well-known complete elliptic integrals of the first
and second kinds, respectively [1, 2, 7, 10, 13]. By symmetry of (1.2), unless stated
otherwise, we assume that a € (0,1/2]. For a € (0,1/2] and r € (0,1) define

Ma(r) = ¥ (r) A (1) (1.4)

and
om0
 2sinma H#,(r)

Ha(r) . (1.5)
Moreover, if a = 1/2, then my,(r) = m(r) and p;/,(r) = u(r), where u(r) is
the modulus of the plane Grétzsch ring B2\ [0,7] and B? is the unit disk.
Itis well known that the Ramanujan’s generalized modular equation with signature
1/a and degree p is
Pa(s) = pta(r), (1.6)

and the solution of equation (1.6) is given by
5= @k(r) =t (Ha(r)/K). (1.7)

In the special case of a = 1/2, the solution @g(r) of equation (1.6) reduce to
the Hersch-Pfluger distortion function @k (r), which has many important applications
in the theory of plane quasiconformal mappings [4, 8, 11, 16, 20]. As usual, we call
@%(r) the generalized Hersch-Pfluger distortion function.

For A € R, the Holder mean M) (x,y) of order A of two positive numbers x and
y is defined by

H AN 1/4
_ L (55 a0,
M; (x,y) {\/)72 2l (1.8)

The main properties of the Holder mean are given in [14].
In [7, Theorems 5.12 and 10.28], the authors presented the the following Holder
mean inequalities

Mo (p(x), p(y)) < (Mo (x,y)) (1.9)

and
Mo(@k (x), 9k (v)) < @x (Mo(x,)) (1.10)

forall x,y € (0,1) and K > 1.

The purpose of this paper is to generalize the inequalities (1.9) and (1.10) to the
generalized Grotzsch ring function p,(r) and the generalized Hersch-Pfluger distortion
function @g(r) forany a € (0,1/2].
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2. Lemmas

In order to establish our main result we need several lemmas, which we present in

this section.
For 0 <r<1,0<a<1/2 and s = @¢(r), the following derivative formulas

were presented in [3, Theorem 4.1].

d.x, E—r A, dé, Ei— Ha
dr (1-a) r T dr (1-a) ro
a 2 i
dmalr) 2 [$In%a_ g st 4201 - 2a)R e
dr 7rsin ma 2
dua(r) @
dr 4r?

dog(r) _ 55" Hals) #d(s)
dr 2 2, (r) A (r)

LEMMA 2.1. (See [3, Lemmas 5.2 and 5.4])

(1) (& —r*4,) /% is strictly increasing from (0,1) onto ((ma) /2, [sin(na)] / [2(1 —a)]);
(2) (& —r*26,) ) (PP is strictly decreasing from (0,1) onto (0,a);

(3) 24, is strictly decreasing from (0,1) onto (0,7/2).

LEMMA 2.2. Let A be a real number. Then the function

A1
o=

is strictly increasing on (0,1) if and only if A <0.

Proof. By logarithmic differentiation,

"o _ oy L m? A 2 4(1—a) (=1 Ha)
h(r) Pa(r)" a2 1 2 2,
wsinza -+ 2r> 8,
— hi(r) — Al 2.1
21 Ay () =41 @D
where
() msinma+ 42— 8(1 —a) (& — 1) A
e wsinma+ 2 Ay Ay
msinma+ 42, 1 - 2(1 — a) (& — 12 ) [ (PP A)]
B msinza+ 21> #,, '

From Lemma 2.1 we clearly see that & (r) > 0 and strictly increasing from (0,1)
onto (0,+e). Therefore, Lemma 2.2 follows from (2.1). O
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LEMMA 2.3. Let 0 < r < 1. Then the function g(r) = 4(1—a)&,—2(1—2a)r"* %,
is strictly decreasing from (0,1) onto (2[sin(ma)], ).

Proof. Making use of series expansion, we have

g(r) 22[4(1 _a> i (a_ 17")(1 _a’n)r2n_2(1 —Za) i (Cl,l’l)(l _a7n)r2n

= (n!)? = (n!)?
+2(1-2a) Y 7(‘1’”)((;')_2 an) P22
n=0 :
o & (a,n)(l—a,n)rn
- S

where
Ap=(2d* +2a+1)n+ (3>~ 3a+1)>0 (2.3)

for a € (0,1/2] and n=0,1,2---. Therefore, Lemma 2.3 follows from (2.2) and (2.3)
together with (1.3) and Lemma 2.1(3). O

LEMMA 2.4. For 0 <r <1, we have

8(1—a)’6,8) —4(1 —a)[2(1 —a) — (1 —2a)r| 8,
+ [4(4a* — 5a+2) — 4(1 —2a)* )P A8
—4(1 —2a)(1 —a)rPA &, > 0. (2.4)

Proof. Let
f(r) = A 401 — )& —2(1 —2a)r 7). (2.5)

From Lemma 2.3 we know that f(r) > 0 and strictly increasing on (0,1). By
differentiation we get

£y =10 2.6)

)
rr'?

where

fi(r) =8(1—a)?&,&, —4(1 —a)[2(1 —a) — (1 — 2a) | Ao &)
+ [4(4a* — 5a+2) — 4(1 — 2a)*?) P Aoy
—4(1=2a)(1 —a)r’ Ay &,. 2.7)

Hence, Lemma 2.4 follows from (2.5)-(2.7) and the monotonicity of f(r). O

LEMMA 2.5. Let 0 <r <1, andlet f(r) and fi(r) be defined as in Lemma 2.4,
and H(r) = fi (r)/{r’z[f(r) — (msin(ma)) /2]}. Then the range of H(r) is (0,+o0).
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Proof. From Lemma 2.3 we clearly see that f(r) — [msin(za)] /2 is strictly in-
creasing from (0,1) onto ([sin(ma)]/2,+e=). Then fi(r) > 0 leads to the conclusion
that H(r) > 0 for r € (0,1).

Noting that f;(r) can be rewritten as

@@ r_ 2 !/
F1() =8(1 — P8 — 41— app (S

r
—4(1—2a)(1 — a)r* .8, +4(1 — 2a)2 7 A, 4,
—4(1—=2a)(1 —a)r*#; &,. (2.8)

Equations (2.7) and (2.8) together with Lemma 2.1 imply that

lim fi (r) = 0 (2.9)
and
lim f1(r) = 7 sin7a. (2.10)
r—
Moveover,
. 1 2
lim — : = 2.11)
r=0 2{f(r) — [wsin(na)]/2} ~ 7sinma
and |
(2.12)

lim — - =+
=1 {f(r) = [msin(ma)] 12}
Therefore, Lemma 2.5 follows from (2.9)-(2.12) and H(r) >0. O
LEMMA 2.6. If A is a real number and f(r) is defined as in Lemma 2.4, then the
function G(r) = Ar* Ay (r) Ay (r) — f(r) is stricily decreasing on (0,1) if and only if
A >0, and G(r) is not monotone on (0,1) for A <0.

Proof. By differentiation one has

G'(r)=- 2 {'%/a [4(1—a)&/ —2(1 —2a)” 2] — ns1;17ra}
.
_ /2 ’ /
R —ap S Hagr gl M
rr’ r’
— /2
+4(1 = 2a)rAe 2 +4(1 —a)(1_za)r%/u
-
éi/_,z%l
—4(1-a)(1 —261)”%T
_[f(r)—[msin(na)] /2 A H(). .

r

where H(r) is defined as in Lemma 2.5.
It follows from (2.13) and Lemma 2.5 that G'(r) < 0 for all r € (0,1) if and only
iftA>0. O
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LEMMA 2.7. Let 0 < r < 1, ma(r) =212 2,4, | [msin(na)] and s = @i(r). If
K > 1, then the function F(r) = [s*my(s)]/[r*ma(r)] is strictly decreasing on (0,1) if
andonly if A 2 0; If 0 < K < 1, then F(r) is strictly increasing on (0,1) if and only
if A > 0; F(r) is not monotone on (0,1) for any A <0.

Proof. By logarithmic differentiation we have
F'(r) A ss”> Ha(s) 4 (s) 1 552 ()4 (s)

il (
F(r) s rr’z%(r)%/( ) + ma(s) rr’* %, (r) 4 (r)
y 2 {[sin(na)] /2 —4(1 —a) Ky ()& (s) +2(1 — 2a)52%(s)%’(s)}

mssin(za)
A 2{[sin(za)] /2 — 4(1 — a) Ha(r)E (r) + 2(1 = 2a)r? o (r) 2 (r) }
r rtrmg(r) sin(ma)
_ G(s)—=G(n)
A (2.14)

where G(r) is defined as in Lemma 2.6.
It is well known that s > (< r) for K > 1(< 1). Therefore, (2.14) and Lemma 2.6
imply that F'(r) < 0(>0) for K > 1(< 1) and all r € (0,1) ifandonlyif A >0. O

3. Main Results

THEOREM 3.1. Let A be a real number. Then the inequality

M, (pa(x), Ua(y)) < Ha(My, (x,Y)) (3.1

holds for all x,y € (0,1) if and only if A <0, with equality if and only if x =y for all
A <0.

Proof. If A =0, then inequality (3.1) follows from [3, Corollary 5.7]. Next, we
prove that inequality (3.1) holds for A < 0. Without loss of generality, we assume that
x < y. Define

M) + M) Lo,

J(6,y) = Ha(M (x,3))* - R (3.2)

Let 1 = M, (x,y), then 0t/dx = (x/t)*~'/2. If x < y, then we clearly see that 7 > x.
By differentiation, we have

W A (L NN A (L
ax_z"‘“(t) ( 4;#2%(;)2) (t) 2'ua(x) doex"? A (x)?

__nz/lxlfl ‘uu(t)}rl B ua(x)lfl
8 A1) NP ()2 |

(3.3)
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From Lemma 2.2 and (3.3) we know that dJ/dx > 0 if and only if A < 0. There-
fore, J(x,y) is strictly increasing with respect to x and

J(x,y) <J(ny) =0. (3.4)
It follows from (3.2) and (3.4) that

.ua( ) ‘|‘Ma(y))L

a(M () < B2

forall x,y € (0,1) ifand only if A <O .
Therefore, inequality (3.1) follows from inequality (3.5), and we clearly see that
inequality (3.1) holds equality if and only if x=y. U

(3.5)

THEOREM 3.2. For A € R we have the following statements:
(1) If K > 1, then inequality

M; (9 (x), 9% (v)) < @k (M. (x,y)) (3.6)
holds for all x,y € (0,1) ifand only if A >0
(2)If 0 < K < 1, then inequality

M; (9 (x), 0k (v)) = @g (M), (x,)) (3.7

holds for all x,y € (0,1) ifand only if A > 0. Inequality (3.6) or (3.7) becomes equality
ifand only if x=y.

Proof. If A =0, then inequalities (3.6) and (3.7) follows from [3, Theorem 1.14].
Next, we only prove that inequality (3.6) for A > 0 and K > 1, since the case of
0 < K <1 is completely similar. Without loss of generality, we assume that x < y.
Define

a(\A a(\,\A
) = o (M3 (e~ RESZ OS5 g (39)

Let t = M) (x,y), u= @g(t) and v = ¢@g(x). If x <y, then r >x and u >v. By
differentiation, we have

ﬂ /11/114’2(%/ ' (u) <f>/1 1 )Lv’lv’ze%/( VA (v)
t
(

ax 2 u”A,(1) (1) 2 xx2 0, (x) Ay (x)
A <u u%/(u) ) VA () A, (v)>
(.

\Q

2 P12 A (1) K (1) XX A (x) A (x)
A, u*mg (1) mg(v)
_Ex’L 1( ( ) (3.9)

t*mq(t) x’lma X)

From Lemma 2.7 and (3.9) we know that d1/dx < 0 if and only if A > 0. There-
fore, I(x,y) is strictly increasing with respect to x and

I(x,y) = 1(y,y) = 0. (3.10)
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It follows from (3.8) and (3.10) that

2o 00+ op ()

o (M) (x,y))" = 5 , (3.11)

forall x,y € (0,1) ifand only if A >0 .

Therefore, inequality (3.6) follows from inequality (3.11), and we clearly see that
inequality (3.6) becomes equality if and only if x=y. O
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