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INEQUALITIES FOR THE NORMS OF FINITE DIFFERENCE

OPERATORS OF MULTIPLY MONOTONE SEQUENCES

YULIYA BABENKO AND SERGIY BORODACHOV

(Communicated by B. Opic)

Abstract. In this paper we shall present discrete Kolmogorov type inequalities for multiply
monotone sequences defined on non-positive integers. Moreover, we will provide a more delicate
information by obtaining the description of the following modulus of continuity

ωk, j,r
p,q (δ ,ε) = sup{‖Δkx‖q : x,Δx, . . . ,Δ j x � 0, ‖x‖p = δ , ‖Δrx‖∞ = ε}

for δ � ε > 0 and values of j = r−2 or j = r−1 depending on values of other parameters.

1. Notation, definitions, and history

Let M := Z− ∪{0} = {· · · ,−2,−1,0} . We shall define the (forward) difference
operator as follows: for the sequence x = {xm}m∈M set

Δx := {xm − xm−1}m∈M,

Δ0x := x, Δ1x := Δx,

and, recursively,
Δ jx := Δ(Δ j−1)x for j = 2,3, . . . .

Let lp = lp(M) , p∈ [1,∞] , be the space of all real-valued sequences defined on M such
that the norm

‖x‖p :=

⎧⎪⎪⎨⎪⎪⎩
(

∑
m∈M

|xm|p
)1/p

, 1 � p < ∞,

sup
m∈M

|xm|, p = ∞,

is finite. Note that in contrast with the derivative operator D = d
dt , the difference oper-

ator Δ is a bounded linear operator defined on all lp(M) for any 1 � p � ∞ .
In this paper we shall consider sharp discrete inequalities of Kolmogorov type, i.e.

inequalities of the form

‖Δkx‖q � C‖x‖α
p‖Δrx‖1−α

s , x ∈ lp(U), Δrx ∈ ls(U) (1)

where U = M or U = Z and α ∈ [0,1] is defined by relation (9) below. The exact con-
stants C = C(k,r, p,q,s) in inequalities of this form have been found in the following
cases:
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1. U = Z , q = p = s = ∞ :

(a) k = r−1 by Z. Ditzian in 1983 [3];

(b) 2 � r � 4,k < r and k = 2,r = 5 by H.G. Kaper and B.E. Spellman in 1987
[4];

(c) k = 3,r = 5 by M. Kwong and A. Zettl in 1988 [9] (see also [10]);

(d) necessary and sufficient conditions for the existence of inequality (1) were
obtained by M. Kwong and A. Zettl in 1988 [9]

(e) k = 1,∀r ∈ N by J. Velikina in 1999 [13];

(f) upper estimate for C(k,r,∞,∞,∞) by J. Velikina in 1999 [13].

2. U = Z , k = 1,r = 2 and p = q = s = 1,2 (see [8] for references).

3. U = Z+ , k = 1,r = 2 and p = q = s = 1,2,∞ (see [8] for references).

Note that the sharp constants in the discrete and continuous cases do not necessar-
ily coincide (see [9]).

In this paper we shall investigate a more narrow class of sequences, namely, the
class l j

p(M) , j ∈ N∪{0} , p ∈ [1,∞] , of sequences x : M → R with the properties:
1) x(m) � 0, ∀m ∈ M ;
2) x ∈ lp(M) ;
3) Δ jx(m) � 0, ∀m ∈ M .
Sequences from this class we shall call multiply monotone or j -monotone se-

quences.
The inequalities we obtain in this paper are discrete analogues of results by V. F.

Babenko and Yu. Babenko [1]. We adopt some of the ideas from this paper for the
discrete case and use results by Hardy, Littlewood and Polya [11] from majorization
theory to obtain our results. Once again, we would like to emphasize that best constants
do not have to coincide in the continuous and discrete cases.

Properties 1)–3) imply a larger set of properties some of which are described be-
low.

PROPOSITION 1. Let j ∈ N and p ∈ [1,∞] . For every sequence x ∈ l j
p(M) , there

holds
1) Δkx(m) � 0, ∀m ∈ M, 0 � k � j;

2) ‖Δkx‖q < ∞, k ∈ N, q ∈ [1,∞].

The proof of this proposition is given in Section 3
Considering this class l j

p(M) (more narrow comparing to lp(M)) will allow us to
substantially expand the possibilities for the parameters. More precisely, in this paper
we shall solve (a more delicate) problem of finding the modulus of continuity

ωk, j,r
p,q (δ ,ε) := sup{‖Δkx‖q : x ∈ l j

p(M), ‖x‖p = δ , ‖Δrx‖∞ = ε}, (2)

for numbers p,q ∈ [1,∞] , δ � ε > 0, integers 0 < k < r , and j = r − 2 or r − 1
(depending on the values of q and k ). Note that whenever δ < ε , the set over which
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the supremum is taken in the above definition of the modulus of continuity, is empty
if 2 j � r (see relation (12) in Proposition 6). In the case r � 4, inequality δ � ε > 0
describes the set of all admissible values of δ and ε . In the case r = 3 the set of
admissible pairs (δ ,ε) can be wider (see Remark after Proposition 6).

Note that for the general class of sequences l∞(M) inequality without any restric-
tions on the parameters k,r,q, p,s is not possible (see the discrete analog of Gabushin’s
existence theorem in [9]).

2. Main results

Before we state the main results of this paper, let us construct the extremal se-
quence that will play a crucial role in our results.

Construction of the extremal (or comparison) sequence. The rth difference Δrϕa,h

of the extremal sequence ϕa,h for a ∈ M and h ∈ [0,1) we define to be

Δrϕa,h(n) :=

⎧⎪⎨⎪⎩
0, n < a;

h, n = a;

1, n > a.

(3)

Now define the operator S : l1(M) → l∞(M) in the following way:

S(x;n) :=
n

∑
i=−∞

x(i) (4)

and let S1 := S and
Sk := S1 ◦ Sk−1, k = 2,3, . . . . (5)

Define the extremal sequence ϕa,h to be

ϕa,h(n) := Sr(Δrϕa,h;n). (6)

For every value of parameters a∈M\{0} and h∈ [0,1) , we have ‖ϕa,h‖∞ = ϕa,h(0) =
Cr

r−a−1 +hCr−1
r−a−1 (see Proposition 7), and ϕ0,h(0) = h , h ∈ [0,1) . It is not difficult to

see that the value of ‖ϕa,h‖p , p ∈ [1,∞] , varies continuously from 0 to ∞ as parameter
−a+h increases. This allows us to choose the values of parameters a and h to obtain
any given non-negative value for ‖ϕa,h‖p .

THEOREM 1. Let r,k ∈ N , k < r , and p,q ∈ [1,∞] . If we have either k � r− 2
or q = ∞ , then for every δ � ε > 0 , we have

ωk,r−2,r
p,q (δ ,ε) = ε‖Δkϕa,h‖q, (7)

where parameters a and h of sequence ϕa,h are chosen so that ‖ϕa,h‖p = δ/ε .
In the case k = r−1 and 1 � q < ∞ , for every δ � ε > 0 , there holds

ωr−1,r−1,r
p,q (δ ,ε) = ε‖Δr−1ϕa,h‖q, (8)

where parameters a and h are chosen so that ‖ϕa,h‖p = δ/ε .
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REMARK. At least in some cases when k = r−1 and 1 � q < ∞ , relation (7) does
not hold. We give a counterexample for the case r = 3, k = 2, p = ∞ , and q = 1 in
Section 4.

As an application of Theorem 1 we obtain the multiplicative inequality for multi-
ply monotone sequences for arbitrary q, p∈ [1,∞] and any k < r . The result is provided
by the following theorem and the details of the proof are given in the Section 8.

We let

α = α(k,r, p,q) :=
r− k+1/q

r+1/p
, (9)

where quantities 1/p and 1/q are set equal to zero if p or q equal ∞ .

THEOREM 2. Let 1 � k < r be integers and p,q ∈ [1,∞] . Let x ∈ lr−1
p (M) if

1 � q < ∞ and k = r−1 , and x ∈ lr−2
p (M) in all other cases. Then the following sharp

inequality holds

‖Δkx‖q � Dk,r
p,q · ‖x‖α

p · ‖Δrx‖1−α
∞ , (10)

where Dk,r
p,q is a finite constant defined as

Dk,r
p,q := sup

a∈M, h∈[0,1)
(a,h)�=(0,0)

‖Δkϕa,h‖q

‖ϕa,h‖α
p

.

Moreover, for 1 � k � r−1 , we have

Dk,r
∞,∞ =

(r!)
r−k
r

(r− k)!
,

Dk,r
1,∞ =

((r+1)!)
r−k
r+1

(r− k)!
,

Dk,r
∞,1 =

(r!)
r−k+1

r

(r− k+1)!
,

Dk,r
1,1 =

((r+1)!)
r−k+1
r+1

(r− k+1)!
.

REMARK. In the case p = q = ∞ inequality (10) turns into equality only for con-
stant sequences x .

REMARK. Note that the sharp constant in inequality (10) for p = q = ∞ is the
same as in its continuous version obtained by Olovyanishnikov [12].

As a corollary of Theorem 2 one can obtain the known inequality for general
bounded sequences on M when p = q = s = ∞ , k = 1, r = 2 (see Kwong and Zettl
[9]).
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3. Some properties of multiply monotone sequences

The proof of Proposition 1 will use the following auxiliary statements.

PROPOSITION 2. If sequence x is bounded, then any Δkx is bounded as well.

Proof.
‖Δx‖∞ = sup

n∈M
|x(n)− x(n−1)|� 2‖x‖∞.

For an arbitrary k , the statement is obtained by induction. �

PROPOSITION 3. If sequence x is non-negative, bounded, and Δ jx(m) � 0 for all
m ∈ M, then Δkx(m) � 0 for all m ∈ M and all k = 0,1, ..., j .

Proof. The assertion of Proposition 3 holds trivially when j = 1. Let now j � 2
be arbitrary integer and assume that the proposition holds for j−1. Let x ∈ l j

∞(M) be
an arbitrary sequence. Then Δ j−1x is non-decreasing (since Δ jx � 0 by assumption)
and is bounded due to Proposition 2. Denote

b := lim
m→−∞

Δ j−1x(m).

If it were that b < 0, for every integer m less than or equal to some number n0 ∈ M ,
we would have Δ j−1x(m) < b/2. Hence, for each m < n0 , we would have

Δ j−2x(m) = Δ j−2x(n0)−
n0

∑
i=m+1

(Δ j−2x(i)−Δ j−2x(i−1))

= Δ j−2x(n0)−
n0

∑
i=m+1

Δ j−1x(i) > Δ j−2x(n0)−b(n0−m)/2,

which would imply that Δ j−2x is unbounded. Since by Proposition 2, sequence Δ j−2x
is bounded, we obtain a contradiction, which shows that b � 0. Since Δ j−1x is non-
decreasing, we have that Δ j−1x is non-negative and, hence, x∈ l j−1

∞ (M) . By the induc-
tion assumption, we have that Δkx is non-negative for every k = 0,1, . . . , j−1. Since
Δ jx is also non-negative, we obtain the assertion of the proposition for the considered
value of j . Proposition 3 is proved. �

PROPOSITION 4. Let q ∈ [1,∞] . If x ∈ lq(M) , then for every k ∈ N , we have
Δkx ∈ lq(M) .

Proof. In the case q = ∞ , the assertion of this proposition follows from Proposi-
tion 2. Let us now take 1 � q < ∞ . For every x ∈ lq(M) , in view of convexity of the
function z(t) = tq , q � 1, we have

‖Δx‖q
q = ∑

m∈M
|Δx(m)|q = ∑

m∈M
|x(m)− x(m−1)|q

� 2q ∑
m∈M

( |x(m)|+ |x(m−1)|
2

)q

� 2q−1 ∑
m∈M

(|x(m)|q + |x(m−1)|q) � 2q‖x‖q
q,
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which implies that Δx ∈ lq(M) . For an arbitrary k the statement is obtained by induc-
tion. �

Proof of Proposition 1. It is not difficult to see that every sequence in l j
p(M) be-

longs to l j
∞(M) and in view of Propositions 3, we obtain 1). Statement 2) for q = ∞

follows from Proposition 2. It remains to prove 2) for q < ∞ . In view of Proposition 3,
we have Δx(m) � 0, m ∈ M . Hence,

‖Δx‖1 = ∑
m∈M

Δx(m) = x(0)− lim
m→−∞

x(m) � x(0) = ‖x‖∞ < ∞, (11)

and we have that Δx ∈ l1(M) . Then 0 � Δx(m) < 1 for every m ∈ M sufficiently large
negative, and we will have (Δx(m))q � Δx(m) for such m . Hence, Δx ∈ lq(M) . Then
by Proposition 4, we have Δkx ∈ lq(M) for every k ∈ N , which completes the proof of
statement 2). Proposition 1 is proved. �

Next statement gives a pointwise estimate of differences of order up to 2 j of a
sequence from l j

∞(M) .

PROPOSITION 5. Let j ∈N and x∈ l j
∞(M) . Then for every k = 0,1, . . . ,2 j , there

holds ∣∣∣Δkx(m)
∣∣∣� x(m), m ∈ M.

Proof. We shall proceed by induction. In the case x ∈ l1∞(M) we have
∣∣Δ0x(m)

∣∣=
x(m) , m ∈ M ,

|Δx(m)| = Δx(m) = x(m)− x(m−1) � x(m), m ∈ M,

and for m ∈ M ,∣∣Δ2x(m)
∣∣ = |Δx(m)−Δx(m−1)|
� Δx(m)+ Δx(m−1) = x(m)− x(m−2) � x(m).

If the assertion of the proposition holds for j− 1, j � 2, then for every x ∈ l j
∞(M) ,

we have Δx ∈ l j−1
∞ (M) and by the induction assumption, for every k = 1,2, . . . ,2 j−1,

there holds∣∣∣Δkx(m)
∣∣∣= ∣∣∣Δk−1Δx(m)

∣∣∣� Δx(m) = x(m)− x(m−1) � x(m), m ∈ M.

Finally, using the induction assumption again, for all m ∈ M , we obtain∣∣Δ2 jx(m)
∣∣ =

∣∣Δ2 j−1x(m)−Δ2 j−1x(m−1)
∣∣

�
∣∣∣Δ2( j−1)Δx(m)

∣∣∣+ ∣∣∣Δ2( j−1)Δx(m−1)
∣∣∣

� Δx(m)+ Δx(m−1) = x(m)− x(m−2) � x(m).

Proposition 5 is proved. �
As a corollary of Proposition 5 we obtain the following statement.
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PROPOSITION 6. Let j ∈ N and q ∈ [1,∞] .

1. For every x ∈ l j
q(M) , there holds

‖Δkx‖q � ‖x‖q, k = 0,1, . . . ,2 j. (12)

In the case x ∈ l0∞(M) , relation (12) holds for q = ∞ and k = 1 .

2. For every x ∈ l j
∞(M) , we have

‖Δkx‖q � ‖x‖∞, k = 1, . . . ,2 j−1. (13)

REMARK. Even if x ∈ l j
1(M) , inequalities (12) and (13) do not hold in general for

k = 2 j + 1 and k = 2 j , respectively. A counterexample is given by the sequence ϕa,0

corresponding to a = −2 and r = j−1. For this sequence we have

‖ϕa,0‖q = ( jq +1)1/q < ‖Δ2 j+1ϕa,0‖q = (( j +1)q +1)1/q

and
‖ϕa,0‖∞ = j < ‖Δ2 jϕa,0‖q = ( jq +1)1/q.

Proof of Proposition 6. Relation (12) follows immediately from Proposition 5. If
x ∈ l0∞(M) , for every m ∈ M , we have

|Δx(m)| = |x(m)− x(m−1)|� max{x(m),x(m−1)} � ‖x‖∞,

which implies (12) with q = ∞ and k = 1.
For every x ∈ l j

∞(M) , j ∈ N , by Proposition 1, we have Δx ∈ l j−1
q (M) . Applying

(12) to sequence Δx , in the case j � 2, we have

‖Δk+1x‖q � ‖Δx‖q, k = 0,1, . . . ,2 j−2

(in the case j = 1 this relation is trivial). Since for every sequence y ∈ l1(M) , there
holds ‖y‖q � ‖y‖1 , using estimate analogous to (11), we obtain

‖Δkx‖q � ‖Δx‖q � ‖Δx‖1 � ‖x‖∞, k = 1, . . . ,2 j−1.

Proposition 6 is proved. �

4. Some auxiliary statements

Formula for the values of the sequence ϕa,h . As usual, by Ck
r we denote the

binomial coefficients and we agree that Cr
r−1 = 0.

PROPOSITION 7. For every a ∈ M and h ∈ [0,1) , we have

ϕa,h(m) =

⎧⎪⎨⎪⎩
0, m < a,

h, m = a,

Cr
m−a+r−1 +hCr−1

m−a+r−1, m > a.

Hence,
‖ϕa,h‖∞ = Cr

r−a−1 +hCr−1
r−a−1. (14)
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Proof. We denote by

ψ(m) :=

⎧⎪⎨⎪⎩
0, m < 0,

h, m = 0,

1, m > 0.

Note that Δrϕa,h(m) = ψ(m−a) , m ∈ M . We shall show that

Sk(ψ ;m) = Ck
m+k−1 +hCk−1

m+k−1, m,k ∈ N, (15)

using induction (on the sum). It is not difficult to see that S1(ψ ;m)= m+h =C1
m+hC0

m ,
m∈N , and Sk(ψ ;1) = 1+kh =Ck

k +Ck−1
k h . Let m > 1 and k > 1 be arbitrary integers.

Assume that (15) holds for pairs (m−1,k) and (m,k−1) . Then

Sk(ψ ;m) =
m

∑
i=−∞

Sk−1(ψ ; i) =
m−1

∑
i=−∞

Sk−1(ψ ; i)+Sk−1(ψ ;m)

= Sk(ψ ;m−1)+Sk−1(ψ ;m) = Ck
m+k−2 +hCk−1

m+k−2

+Ck−1
m+k−2 +hCk−2

m+k−2 = Ck
m+k−1 +hCk−1

m+k−1.

Then for every m ∈ M , m > a , we have

ϕa,h(m) = Sr (Δrϕa,h;m
)

= Sr(ψ ;m−a) = Cr
m−a+r−1 +hCr−1

m−a+r−1.

Since ‖ϕa,h‖∞ = ϕa,h(0) , we obtain (14). Values of ϕa,h for m � a are obtained triv-
ially. Proposition 7 is proved. �

Counterexample for relation (7) in case k = r−1 and q < ∞ . Let k = 2, r = 3,
p = ∞ , and q = 1. Define a parametric family of sequences zc = S(y; ·) , c ∈ N , where

y(n) =

{
1, 1−2c � n � −1, n is odd,

0, otherwise.

Then zc ∈ l1∞(M) and we also have

Δ2zc(n) = Δy(n) =

⎧⎪⎨⎪⎩
1, 1−2c � n � −1, n is odd,

−1, 2−2c � n � 0, n is even,

0, n � −2c,

Let c � 2. For every ε > 0, let δ = cε/2. Choose a and h so that ‖ϕa,h‖∞ = δ/ε =
c/2, where ϕa,h corresponds to r = 3. Then x = ε

2 zc ∈ l1∞(M) and

‖x‖∞ =
ε
2
‖zc‖∞ =

ε
2
‖y‖1 =

εc
2

= δ

and
‖Δ3x‖∞ =

ε
2
‖Δ2y‖∞ = ε.
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However,
‖Δ2x‖1 = ε

2‖Δ2zc‖1 = ε
2‖Δy‖1 = εc = 2ε‖ϕa,h‖∞

� 2ε‖Δϕa,h‖∞ = 2ε‖Δ2ϕa,h‖1 > ε‖Δ2ϕa,h‖1.

This implies that
ω2,1,3

∞,1 (cε/2,ε) > ε‖Δ2ϕa,h‖1,

which shows that (7) does not hold in the considered case.

5. Comparison theorem for the class lr−2
∞ (M)

Comparison theorems are results which provide an estimate of some characteristic
of a sequence (or a function) x(n) from a certain class (for instance, value at a point,
value of the norm ‖x‖p , value of the norm of the k -th difference ‖Δkx‖q etc.) with the
help of the same characteristic of some fixed sequence (function) from the same class.
This fixed sequence (function) is called étalon or comparison sequence (function) for
this class.

The first theorem of this type was proved by Kolmogorov. He showed that perfect
Euler splines are comparison functions for the class Wr

∞(R) := {x∈ Lr
∞(R) : ‖x(r)‖∞ �

1} . We shall show that above constructed sequence ϕa,h is the comparison sequence
for the class lr−2

∞ (M) by proving several comparison theorems, which will be needed
for completeness of the picture and the proof of the main result.

THEOREM 3. Let x ∈ lr−2
∞ (M) , r ∈N , r � 2 . If parameters a∈ M and h ∈ [0,1)

of sequence ϕa,h are such that

‖x‖∞ � ‖ϕa,h‖∞ (16)

and

‖Δrx‖∞ � ‖Δrϕa,h‖∞, (17)

then for every integer 0 < k < r , there holds

‖Δkx‖∞ � ‖Δkϕa,h‖∞. (18)

Proof. First, assume that a = 0. For every k = 0,1, . . . ,r , we have Δkϕa,h(0) = h
and Δkϕa,h(n) = 0, n < 0. In view of (16), we have 0 � x(n) � h , n ∈ M . Then
|Δx(n)| = |x(n)− x(n−1)| � h , n ∈ M , and hence, ‖Δx‖∞ � h = ‖Δϕa,h‖∞ . In the
case r = 2 this completes the proof for a = 0. If r � 3, then Δx is non-negative and we
obtain that 0 � Δx(n) � h . By induction, we can prove that for every k = 1, . . . ,r−2,
there holds 0 � Δkx(n) � h , n ∈ M , which immediately implies that ‖Δkx‖∞ � h =
‖Δkϕa,h‖∞ , k = 1, . . . ,r−2, and we also have ‖Δr−1x‖∞ � h = ‖Δr−1ϕa,h‖∞ .

Let now a � −1. The main ingredients of the proof in this case are the following
statements.
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LEMMA 1. (The discrete analogue of the Rolle’s theorem). Let r ∈ N , r � 2 ,
a ∈M \{0} , and w : M →R be such a sequence that w(m1) � 0 , w(m0) > 0 for some
a � m0 < m1 � 0 , and Δkw(a−1) � 0 for every 0 � k � r−2 . Then there is m′ ∈ M,
a < m′ � 0 , such that Δrw(m′) < 0 .

Proof. Since w(a− 1) � 0, w(m0) > 0, and w(m1) � 0, there are n1,n2 ∈ M ,
a−1< n2 � m0 < n1 � m1 , such that Δw(n2) > 0 and Δw(n1) < 0. By assumption, we
also have Δw(a−1)� 0. Using induction, one can show that there are n3,n4 ∈M such
that a−1 < n4 < n3 � 0, Δr−2w(n4) > 0, and Δr−2w(n3) < 0. Since by assumption,
Δr−2w(a−1) � 0, there exist n5,n6 ∈ M such that a−1 < n6 < n5 � 0, Δr−1w(n6) >
0, and Δr−1w(n5) < 0. Then there is m′ ∈ M such that a � n6 < m′ � n5 � 0 and
Δrw(m′) < 0. Lemma 1 is proved. �

LEMMA 2. Let sequence y ∈ lρ−2
∞ (M) , ρ ∈ N , ρ � 3 , be such that

‖y‖∞ � ‖ϕa,h‖∞ and ‖Δρy‖∞ � 1,

where the sequence ϕa,h corresponds to r = ρ . Then

‖Δy‖∞ � ‖Δϕa,h‖∞.

Proof. Assume to the contrary that under assumptions of the lemma we have
‖Δy‖∞ > ‖Δϕa,h‖∞ , i.e. Δy(ñ) > Δϕa,h(0) for some ñ ∈ M . Let ỹ(n) := y(n + ñ) .
The relation Δỹ(n) � Δϕa,h(n) does not hold for every n ∈ M , since by assumptions of
the lemma and definition of the difference operator,

0
∑

n=−∞
Δỹ(n) = ỹ(0)− lim

n→−∞
ỹ(n) � ỹ(0) � ‖y‖∞

� ‖ϕa,h‖∞ = ϕa,h(0) =
0
∑

n=−∞
Δϕa,h(n),

and Δỹ(0) > Δϕa,h(0) . Hence, Δϕa,h(n0) > Δỹ(n0) for some n0 < 0. Denote θ (n) :=
Δϕa,h(n)−Δỹ(n) . Then θ (0) < 0, θ (n0) > 0, and Δkθ (a−1) � 0, k = 0,1, . . . ,ρ −3.
Hence, a � n0 < 0 and by Lemma 1 (with r = ρ −1), there is m′ ∈ M such that a <
m′ � 0 and Δρ−1θ (m′) < 0. Then Δρ−1θ (m′) = Δρ ϕa,h(m′)−Δρ ỹ(m′) = 1−Δρy(m′+
ñ) < 0, which contradicts the assumption ‖Δρy‖∞ � 1. Lemma 2 is proved. �

For 0 < k � r−2, r � 3, we will conduct the proof of Theorem 3 by induction on
k . Letting ρ = r and y = x , in Lemma 2 we obtain

‖Δx‖∞ � ‖Δϕa,h‖∞,

which is the assertion of the theorem for k = 1. Let k∈N , 1 < k � r−2. Let us assume
that Theorem 3 holds for k−1. Set ρ = r−k+1 and y := Δk−1x . Since x is bounded,
by Proposition 2, y is bounded as well. In addition, by assumption of the theorem, y is
non-negative and Δρ−2y = Δr−2x � 0. Hence, y ∈ lρ−2

∞ (M) , where ρ � 3. Moreover,
‖Δρy‖∞ = ‖Δrx‖∞ � 1, and by the induction assumption,

‖y‖∞ = ‖Δk−1x‖∞ � ‖Δk−1ϕa,h‖∞ = ‖Sρ(Δrϕa,h; · )‖∞.
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In view of Lemma 2, we have

‖Δkx‖∞ = ‖Δy‖∞ � ‖Sρ−1(Δrϕa,h; · )‖∞ = ‖Δkϕa,h‖∞,

which completes the proof of (18) for 0 < k � r−2.
To show (18) for k = r− 1 we assume to the contrary that there exists a point

n0 ∈ M such that
∣∣Δr−1x(n0)

∣∣> ‖Δr−1ϕa,h‖∞ = −a+h . For every n ∈ M , a � n � 0,
we have

Δr−1x(n0)−Δr−1x(n0 +n) =
0

∑
k=n+1

Δrx(n0 + k).

If Δr−1x(n0) > 0, since ‖Δrx‖∞ � 1, we have

Δr−1x(n0)−Δr−1x(n0 +n) � −n,

which implies that

Δr−1x(n0 +n) � Δr−1x(n0)+n > −a+h+n, a � n � 0.

Hence,

Δr−2x(n0)−Δr−2x(n0 +a−1) =
0

∑
k=a

Δr−1x(n0 + k)

>
0

∑
k=a

(−a+h+ k)=
0

∑
k=a

Δr−1ϕa,h(k)

= ‖Δr−2ϕa,h‖∞.

Since Δr−2x is non-negative at every point, we obtain that Δr−2x(n0) > ‖Δr−2ϕa,h‖∞ .
In the case Δr−1x(n0) < 0, using analogous argument we obtain that Δr−2x(n0 +

a−1) > ‖Δr−2ϕa,h‖∞ . In both cases we have ‖Δr−2x‖∞ > ‖Δr−2ϕa,h‖∞ , which contra-
dicts inequality (18) proved above for k = r−2. This contradiction shows that (18) is
true for k = r−1. Theorem 3 is proved. �

LEMMA 3. Let x∈ lr−2
p (M) , r � 2 , p∈ [1,∞] , and numbers a∈M and h∈ [0,1)

be such that
‖x‖p � ‖ϕa,h‖p and ‖Δrx‖∞ � ‖Δrϕa,h‖∞.

Then
‖x‖∞ � ‖ϕa,h‖∞.

Proof. For p = ∞ , the assertion of the lemma is trivial, and we consider the case
p ∈ [1,∞) . First, let us consider the case a = 0. Then ϕa,h(0) = h and ϕa,h(n) = 0,
n < 0. If x ∈ lr−2

p (M) is such that ‖x‖p � ‖ϕa,h‖p = h , then x(n) � h , n ∈ M , and
hence, ‖x‖∞ � h = ‖ϕa,h‖∞ .

Let now a �−1. Assume to the contrary that ‖x‖∞ > ‖ϕa,h‖∞ . Let ñ∈M be such
that x(ñ) > ‖ϕa,h‖∞ = ϕa,h(0) . Let x̃(n) = x(n+ ñ) and v(n) := ϕa,h(n)− x̃(n) , n∈M .
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If it were that ϕa,h(n) � x̃(n) for every n ∈ M , since ϕa,h(0) < x̃(0) , we would have
‖ϕa,h‖p < ‖x̃‖p � ‖x‖p , which contradicts to the assumption of the lemma. Hence,
there is a negative integer n0 such that v(n0) > 0. Since Δkϕa,h(a− 1) = 0, 0 � k �
r−2, and x ∈ lr−2

p (M) , we have Δkv(a−1) � 0, 0 � k � r−2. We have v(0) < 0 and
a � n0 < 0. By Lemma 1, we obtain that Δrv(m′) < 0 for some a < m′ � 0. Hence,
Δrx̃(m′) > Δrϕa,h(m′) = 1, which contradicts to the fact that ‖Δrx̃‖∞ � ‖Δrx‖∞ � 1 =
‖Δrϕa,h‖∞ . This contradiction shows that ‖x‖∞ � ‖ϕa,h‖∞ . �

The following statement proves relation (7) of Theorem 1 in the case q = ∞ .

COROLLARY 1. Given integers 0 < k < r , real numbers p∈ [1,∞] and δ � ε > 0 ,
let a ∈ M and h ∈ [0,1) be such that ‖ϕa,h‖p = δ/ε . Then

ωk,r−2,r
p,∞ (δ ,ε) = ε

∥∥∥Δkϕa,h

∥∥∥
∞

. (19)

Proof. Let x∈ lr−2
p (M) be any sequence such that ‖x‖p = δ and ‖Δrx‖∞ = ε . Let

a ∈ M and h ∈ [0,1) be such that ‖ϕa,h‖p = δ/ε . Then a � −1 and ‖Δr 1
ε x‖∞ = 1 =

‖Δrϕa,h‖∞ and ‖ 1
ε x‖p = ‖ϕa,h‖p . In view of Lemma 3, we have ‖ 1

ε x‖∞ � ‖ϕa,h‖∞ .
Since x ∈ lr−2

p (M) , we have 1
ε x ∈ lr−2

∞ (M) , and by Theorem 3, we have ‖Δkx‖∞ �
ε‖Δkϕa,h‖∞ , which implies that ωk,r−2,r

p,∞ (δ ,ε) � ε‖Δkϕa,h‖∞ . Since the sequence εϕa,h

belongs to the set defining the modulus of continuity, we have equality in (19). Corol-
lary 1 is proved. �

6. Results involving rearrangements of infinite sequences

Following [11], we say that a vector y = (y1, . . . ,yn) ∈ Rn is a majorization of a
vector x = (x1, . . . ,xn) ∈ Rn and we write x ≺ y if

k

∑
i=1

xi �
k

∑
i=1

yi, k = 1, . . . ,n−1, and
n

∑
i=1

xi =
n

∑
i=1

yi.

The result we cite below is a partial case of the theorem proved by Schur (1923) and
Hardy, Littlewood, and Polya (1929). Its proof is given, for example, in [11, p. 73] in
greater generality. For completeness, we present the proof of the Theorem in necessary
for us form in the Appendix.

THEOREM 4. Let I ⊂ R be an interval, x,y ∈ In be such that x ≺ y and x1 �
. . . � xn , and g : I → R be a convex function. Then

n

∑
i=1

g(xi) �
n

∑
i=1

g(yi).

Let x = {xm}m∈M be an arbitrary non-negative sequence, which has a zero limit
as m → ∞ . Let x[M] be the set of all non-zero values of x . Denote by zk the k -
th largest element from x[M] and let αk = #{m ∈ M : x(m) = zk} . The (decreasing)
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rearrangement of the sequence x is the sequence {r(x,m)}m∈M defined in the following

way: if
l−1
∑
i=1

αi < 1−m�
l
∑
i=1

αi , then r(x,m) = zl . If the set x[M] is finite, then r(x,m) =

0 whenever 1−m >
#x[M]

∑
i=1

αi . Value r(x,m) can be interpreted as the (1−m)-th largest

element of x counting the multiplicity of every value of x .
The following statement is a discrete analogue of a special case of the theorem by

Hardy, Littlewood, and Polya (see for example [7, Theorem 1.3.11]).

THEOREM 5. Let q∈ [1,∞) , f and g be non-negative sequences from lq(M) and
for every n ∈ M,

0

∑
k=n

r(g,k) �
0

∑
k=n

r( f ,k).

Then ‖g‖q � ‖ f‖q .

Proof. Let m ∈ M . Denote

x = (r(g,0),r(g,−1), . . . ,r(g,m)), y = (r( f ,0),r( f ,−1), . . . ,r( f ,m)),

and let

b =
0

∑
k=m

r( f ,k)−
0

∑
k=m

r(g,k),

If b = 0 we have x ≺ y and we let y′ := y . If b > 0 let l ∈ M be the maximal index
such that

0

∑
k=l

r( f ,k) �
0

∑
k=m

r(g,k).

Denote y′ := (r( f ,0), . . . ,r( f , l +1),c,0 . . . ,0) ∈ R−m+1 , where c is chosen so that

0

∑
k=l+1

r( f ,k)+ c =
0

∑
k=m

r(g,k).

Note that 0 � c � r( f , l) . Then x≺ y′ and the coordinates of x are in descending order.
By Theorem 4, we have

0

∑
k=m

r(g,k)q =
−m+1

∑
k=1

(x)q
k �

−m+1

∑
k=1

(y′)q
k �

0

∑
k=m

r( f ,k)q.

Letting m →−∞ we have

‖g‖q
q = ‖r(g, ·)‖q

q =
0

∑
k=−∞

r(g,k)q �
0

∑
k=−∞

r( f ,k)q = ‖r( f , ·)‖q
q = ‖ f‖q

q

and assertion of Theorem 5 follows. �
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7. Results involving the lq -norm of the k -th difference

Denote by

i[k] :=

{
r−2, 1 � k � r−2,

r−1, k = r−1.

The statement given below is a comparison theorem for the case of lq -norm.

LEMMA 4. Let k,r ∈ N , 1 � k � r− 1 , x ∈ li[k]∞ (M) , and a ∈ M, h ∈ [0,1) be
such that

‖Δrx‖∞ � ‖Δrϕa,h‖∞, (20)

and
‖x‖∞ � ‖ϕa,h‖∞. (21)

Then for every number q ∈ [1,∞) ,

‖Δkx‖q � ‖Δkϕa,h‖q. (22)

Proof. If a = 0, then Δlϕ0,h(0) = h and Δlϕ0,h(n) = 0, n � −1, for all 0 � l � r .
In view of relation (13) from Proposition 6, we have ‖Δkx‖q � ‖x‖∞ � ‖ϕ0,h‖∞ = h =
‖Δkϕ0,h‖q .

Let a �−1. For every integer 2 � k � r−1, by Theorem 3, and for k = 1 in view
of assumption (21), we have

‖Δkϕa,h‖1 = Δk−1ϕa,h(0) = ‖Δk−1ϕa,h‖∞
� ‖Δk−1x‖∞ � Δk−1x(0) � ‖Δkx‖1,

(23)

which proves (22) in the case q = 1.
To further proceed with the proof for 1 < q < ∞ we assume that 1 � k � r− 3.

Let us show that for every n ∈ M , there holds

0

∑
j=n

Δkx( j) �
0

∑
j=n

Δkϕa,h( j). (24)

Assume to the contrary that inequality (24) does not hold for some n ∈ M and let n0

be the maximal index such that

0

∑
j=n0

Δkx( j) >
0

∑
j=n0

Δkϕa,h( j). (25)

Since relation (24) holds for n = n0 +1, we conclude that Δkx(n0) > Δkϕa,h(n0) . Note
also that for every n � a , in view of (23), we have

0

∑
j=n

Δkx( j) � ‖Δkx‖1 � ‖Δkϕa,h‖1 =
0

∑
j=a

Δkϕa,h( j) =
0

∑
j=n

Δkϕa,h( j).
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Hence, n0 > a . There exists n1 ∈ M , a � n1 < n0 , such that Δkx(n1) < Δkϕa,h(n1) .
Indeed, if this were not true, for every a � j < n0 , we would have Δkx( j) � Δkϕa,h( j) .
Then in view of (25), we would obtain

‖Δkx‖1 �
n0−1

∑
j=a

Δkx( j)+
0

∑
j=n0

Δkx( j)

>
n0−1

∑
j=a

Δkϕa,h( j)+
0

∑
j=n0

Δkϕa,h( j) = ‖Δkϕa,h‖1,

which contradicts (23). Denote u(n) = Δkϕa,h(n)−Δkx(n) , n ∈ M . Then u(n0) < 0,
u(n1) > 0, where a � n1 < n0 , and Δlu(a−1) � 0, l = 0,1, . . . ,r− k−2. By Lemma
1, there is a < m′ � 0 such that

0 > Δr−ku(m′) = Δrϕa,h(m′)−Δrx(m′) = 1−Δrx(m′).

Hence, ‖Δrx‖∞ > 1 = ‖Δrϕa,h‖∞ , which contradicts to (20). Inequality (24) is proved.
Since in the case 1 � k � r−3, both Δkx and Δkϕa,h are monotone, from (24) we

immediately have
0

∑
j=n

r(Δkx, j) �
0

∑
j=n

r(Δkϕa,h, j), n ∈ M. (26)

Let now k = r − 2 or r − 1. In this case sequence Δkx is non-negative but is not
monotone and relation (26) must be shown in a different way. Assume the contrary,
and let m ∈ M be the maximal number such that

0

∑
j=m

r(Δkx, j) >
0

∑
j=m

r(Δkϕa,h, j). (27)

In view of Theorem 3, and definition of rearrangement

r(Δkϕa,h,0) = ‖Δkϕa,h‖∞ � ‖Δkx‖∞ = r(Δkx,0). (28)

In view of (23), for every n � a , we have

0

∑
j=n

r(Δkϕa,h, j) = ‖Δkϕa,h‖1 � ‖Δkx‖1 �
0

∑
j=n

r(Δkx, j).

Hence, a < m < 0. By the choice of m ,

0

∑
j=m+1

r(Δkx, j) �
0

∑
j=m+1

r(Δkϕa,h, j)

and in view of (27), we have

r(Δkx,m) > r(Δkϕa,h,m) = Δkϕa,h(m) > 0.
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Let v ∈ M be the minimal number such that Δkx(v) � r(Δkx,m) . Then

Δkx(v) > Δkϕa,h(m). (29)

We claim that

Δkx( j + v) � Δkϕa,h( j +m), j = 0,−1, . . . ,a−m. (30)

Indeed, if it were that

Δkx(u0 + v) < Δkϕa,h(u0 +m), for some a−m � u0 � 0, (31)

then for the sequence Θ(n) := Δkx(n + v)−Δkϕa,h(n + m) , n ∈ M , we would have
Θ(u0) < 0. Relation (29) would imply that Θ(0) > 0 and since Δkϕa,h(a−1) = 0, we
would have Θ(a−m− 1) � 0. Hence, we would have ΔΘ(n2) < 0 and ΔΘ(n1) > 0
for some a−m � n2 � u0 < n1 � 0.

In the case k = r− 1, since ΔΘ(n1) = Δrx(n1 + v)−Δrϕa,h(n1 +m) = Δrx(n1 +
v)−1 > 0, we have ‖Δrx‖∞ > 1, which contradicts assumption (20) of the lemma. In
the case k = r− 2, we would have Δ2Θ(n3) > 0 for some a−m � n2 < n3 � n1 , i.e.
Δrx(n3 + v) > Δrϕa,h(n3 +m) = 1, which again would contradict assumption (20) of
the lemma. This contradiction proves (30).

By (30) and the choice of v , it is not difficult to see that

m−1
∑

j=−∞
r(Δkx, j) �

−1
∑

j=a−m
Δkx( j + v)

�
−1
∑

j=a−m
Δkϕa,h( j +m) =

m−1
∑
j=a

Δkϕa,h( j).

Then in view of our assumption (27), we will have

‖Δkx‖1 =
0

∑
j=m

r(Δkx, j)+
m−1

∑
j=−∞

r(Δkx, j) >
0

∑
j=m

r(Δkϕa,h, j)

+
m−1

∑
j=a

Δkϕa,h( j) =
0

∑
j=a

Δkϕa,h( j) = ‖Δkϕa,h‖1,

which contradicts (23). This contradiction proves (26) in the case k = r−2 or r−1.
By Proposition 1 non-negative sequences Δkx and Δkϕa,h belong to lq(M) . In

view of (26) and Theorem 5, we have ‖Δkx‖q � ‖Δkϕa,h‖q . Lemma 4 is proved. �
The following statement proves relation (7) of Theorem 1 in the case 1 � q < ∞

as well as relation (8), which completes the proof of Theorem 1. �

COROLLARY 2. Given integers 0 < k < r , numbers p ∈ [1,∞] , q ∈ [1,∞) , and
δ � ε > 0 , let a ∈ M and h ∈ [0,1) be such that ‖ϕa,h‖p = δ/ε . Then

ωk,i[k],r
p,q (δ ,ε) = ε

∥∥∥Δkϕa,h

∥∥∥
q
.

Proof. The argument is analogous to the proof of Corollary 1, where instead of
Theorem 3 one uses Lemma 4. �
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8. Proof of Theorem 2

Proof of the general inequality (10). If finiteness of the constant Dk,r
p,q is proved,

then inequality (10) is shown in the following way. In the case when Δrx is identically
zero, the k -th difference of x ∈ lr−2

p (M) will be zero as well. In the case r = 2 and
q = ∞ this follows from the fact that x has to be a bounded sequence. In all other cases,
this follows from the fact that in view of Proposition 1, every difference of the sequence
x will have a zero limit as n →−∞ . Hence, the required inequality will hold trivially.
Assume now that Δrx has a non-zero value at some point. Denote by y := x/‖Δrx‖∞ .
Let a ∈ M and h ∈ [0,1) be such that ‖ϕa,h‖p = ‖y‖p .

If ‖ϕa,h‖p = ‖y‖p < 1, there holds ϕa,h(0) < 1, and in view of Proposition 7, we
have a = 0. In view of Proposition 6, we have

‖Δky‖q � ‖y‖∞ � ‖y‖p � ‖y‖α
p ,

where α = r−k+1/q
r+1/p , and hence 0 < α � 1. Multiplying both sides by ‖Δrx‖∞ we

obtain
‖Δkx‖q � ‖x‖α

p‖Δrx‖1−α
∞ .

Since

Dk,r
p,q � ‖Δkϕ−1,0‖q

‖ϕ−1,0‖α
p

= 1,

we obtain (10) in the case ‖y‖p < 1.
Let us assume now that ‖ϕa,h‖p = ‖y‖p � 1. Let δ = ‖y‖p and ε = ‖Δry‖∞ = 1.

Then ‖ϕa,h‖p = δ/ε and in view of Theorem 1, we have

‖Δky‖q � ‖Δkϕa,h‖q =
‖Δkϕa,h‖q

‖ϕa,h‖α
p

‖y‖α
p � Dk,r

p,q‖y‖α
p .

Since x = ‖Δrx‖∞ · y , we can write

‖Δkx‖q � Dk,r
p,q‖x‖α

p‖Δrx‖1−α
∞ .

To show that we cannot make the constant Dk,r
p,q smaller, for every 0 < ε < Dk,r

p,q , choose
parameters a ∈ M and h ∈ [0,1) so that

‖Δkϕa,h‖q

‖ϕa,h‖α
p

> Dk,r
p,q− ε.

Then
‖Δkϕa,h‖q > (Dk,r

p,q− ε)‖ϕa,h‖α
p � (Dk,r

p,q− ε)‖ϕa,h‖α
p‖Δrϕa,h‖1−α

∞ .

Since ϕa,h belongs to the class lr−1
p (M) (or lr−2

p (M)), we conclude that constant Dk,r
p,q

is the best possible on this class.
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Proof of finiteness of the constant Dk,r
p,q . Assume first that p < ∞ . From (14) in

the case a � −1 we have

ϕa,h(0) = ‖ϕa,h‖∞ =
(r−a−1)!
r!(−a−1)!

+h
(r−a−1)!

(r−1)!(−a)!

=
1
r!

(−a+1) · . . . · (−a+ r−1)(−a+hr).
(32)

Denote

Tγ(m) :=
m

∑
n=1

nγ , m ∈ N, γ > 0.

Using Riemann sums representation it is not difficult to show that

Tγ(m) =
mγ+1

γ +1
(1+o(1)), m → ∞. (33)

For every 1 � p < ∞ , a � −1, and h ∈ [0,1) , taking into account (32) we have

‖ϕa,h‖p
p =

0
∑

n=a

(
ϕa,h(n)

)p =
0
∑

n=a

(
ϕa−n,h(0)

)p

= 1
(r!)p

0
∑

n=a
(−a+n+1)p · . . . · (−a+n+ r−1)p(−a+n+hr)p

� 1
(r!)p

0
∑

n=a
(−a+n+ r)rp = 1

(r!)p

−a+r
∑

n=r
nrp � 1

(r!)p Trp(−a+ r).

On the other hand,

‖ϕa,h‖p
p � 1

(r!)p

0

∑
n=a

(−a+n)rp =
1

(r!)p

−a

∑
n=0

nrp =
1

(r!)p Trp(−a).

Hence,
1
r!

(Trp(−a))1/p � ‖ϕa,h‖p � 1
r!

(Trp(−a+ r))1/p . (34)

From (32) we also have

1
r!

(−a)r � ‖ϕa,h‖∞ � 1
r!

(−a+ r)r. (35)

From estimates (34) and relation (33), for 1 � p,q < ∞ , we obtain

fa(h) :=
‖Δkϕa,h‖q

‖ϕa,h‖α
p

� βa :=

(
T(r−k)q(−a+ r− k)

)1/q (r!)α

(r− k)!(Trp(−a))α/p
, a � −1.

Using asymptotic estimate (33) it is not difficult to see that

lim
a→−∞

βa = lim
a→−∞

(T(r−k)q(−a))1/q(r!)α

(r−k)!(Trp(−a))α/p

= lim
a→−∞

(−a)r−k+ 1
q (r!)α (rp+1)

α
p

(r−k)!((r−k)q+1)
1
q (−a)(r+

1
p )α

= (r!)α (rp+1)
α
p

(r−k)!((r−k)q+1)
1
q
.
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This implies that βα , a � −1, is a bounded sequence (whenever p < ∞ and q <
∞), and hence, { fa}a�−1 is a uniformly bounded family of functions on [0,1) . It
remains to check whether f0(h) is bounded. We have

f0(h) =
‖Δkϕ0,h‖q

‖ϕ0,h‖α
p

=
h
hα = h1−α � 1, h ∈ (0,1).

In the case p = ∞ , q < ∞ and p < ∞ , q = ∞ using relations (34), (35), and (33), one
can show analogously that family of functions { fa}a∈M is uniformly bounded.

Hence, quantity Dk,r
p,q is finite in the case when p or q is finite.

In the case p = q = ∞ we prove the following statement.

PROPOSITION 8. For all integers 0 < k < r , there holds

Dk,r
∞,∞ = sup

a∈M, h∈[0,1)
(a,h)�=(0,0)

‖Δkϕa,h‖∞

‖ϕa,h‖1−k/r
∞

=
(r!)1−k/r

(r− k)!
. (36)

The supremum in (36) is not attained for any a and h.

Proof. In view of (32), we obtain

‖Δkϕa,h‖∞

‖ϕa,h‖1−k/r
∞

=

=
(r!)1−k/r

(r− k)!
(−a+1) · . . . · (−a+ r− k−1) · (−a+h(r− k))

((−a+1) · . . . · (−a+ r−1)(−a+hr))1−k/r

= (r!)1− k
r

(r−k)! ·
(−a+h(r−k)

−a+hr

)1− k
r
(

(−a+1)k·...·(−a+r−k−1)k(−a+h(r−k))k

(−a+r−k)r−k·...·(−a+r−1)r−k

) 1
r

(37)

Since in the third factor both the numerator and the denominator contain equal number
of positive factors (k(r− k)) and every factor in the numerator is less than or equal to
any factor in the denominator, we obtain that the third factor is less than or equal to 1.
Moreover, equalities can occur there only if h = 1 but in this case the second factor is
strictly less than 1. Hence,

‖Δkϕa,h‖∞

‖ϕa,h‖1−k/r
∞

<
(r!)1−k/r

(r− k)!
, a � −1. (38)

In the case a = 0 we also have

‖Δkϕ0,h‖∞

‖ϕ0,h‖1−k/r
∞

=
h

h1−k/r
= hk/r < 1 <

(r!)1−k/r

(r− k)!
. (39)

Taking into account (37), it is not difficult to see that for every h ∈ [0,1) fixed, we have

lim
a→−∞

‖Δkϕa,h‖∞

‖ϕa,h‖1−k/r
∞

=
(r!)1−k/r

(r− k)!
,
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which combined with relations (38) and (39) completes the proof of the Proposition
8. �

To compute other explicit values of the constant Dk,r
p,q we use the following state-

ment.

LEMMA 5. For p,q ∈ [1,∞] , we have

Dk,r
p,1 = Dk−1,r

p,∞ , 2 � k � r−1,

and
Dk,r

1,q = Dk+1,r+1
∞,q , 1 � k � r−1.

Proof. Note that α(k,r, p,1)= r−k+1
r+1/p = α(k−1,r, p,∞) . Then with α = α(k,r, p,1)

= r−k+1
r+1/p for 2 � k � r−1, we have

Dk,r
p,1 = sup

a∈M, h∈[0,1)
(a,h)�=(0,0)

‖Δkϕa,h‖1

‖ϕa,h‖α
p

= sup
a∈M, h∈[0,1)
(a,h)�=(0,0)

‖Δk−1ϕa,h‖∞

‖ϕa,h‖α
p

= Dk−1,r
p,∞ .

The second equality can be shown analogously. Lemma 5 is proved. �
In view of Lemma 5, we have

Dk,r
∞,1 = Dk−1,r

∞,∞ =
(r!)

r−k+1
r

(r− k+1)!
, 2 � k � r−1.

In the case k = 1 we have D1,r
∞,1 = 1, since ‖Δϕa,h‖1 = ‖ϕa,h‖∞ and α(1,r,∞,1) = 1.

The remaining equalities can be proved analogously. Theorem 2 is proved. �

9. Appendix

This section contains the proof of Theorem 4 obtained in the works by Schur and
Hardy, Littlewood and Polya (for a citation see [11, p. 73]).

We say that an n× n matrix P with non-negative entries pi j , i = 1, . . . ,n , j =
1, . . . ,n , is called doubly stochastic if for every j = 1, . . . ,n , there holds ∑n

i=1 pi j = 1
and for every i = 1, . . . ,n , we have ∑n

j=1 pi j = 1.
We will use a partial case of the theorem by Hardy, Littlewood, and Polya, obtained

in 1929 and cited, for example, in [11, p. 30].

THEOREM 6. Let x,y ∈ Rn be such that x1 � . . . � xn and x ≺ y (relation ≺ is
defined in Section 6). Then there is a doubly stochastic matrix P such that x = yP.

Proof. For vectors u = (u1, . . . ,un),v = (v1, . . . ,vn) ∈ Rn , denote by d(u,v) the
number of non-zero differences ui−vi , i = 1, . . . ,n . Let In be the n×n identity matrix.
Matrix A of size n× n is called a matrix of a T -transform (or a T -matrix) if A =
λ In +(1−λ )Q for some λ ∈ [0,1] and a permutation matrix Q which can be obtained
from In by switching only two rows.
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LEMMA 6. If x �= y ∈ Rn are such that x1 � . . . � xn and x ≺ y then there is an
n×n T -matrix A such that x ≺ yA and d(x,yA) � d(x,y)−1 .

Proof. Let j be the largest index such that y j > x j and let k be the smallest index
such that yk < xk and k > j (such index k exists since the for the largest index i with
xi �= yi we have yi < xi ). Then y j > x j � xk > yk . Let ε := min{y j − x j,xk − yk} ,
1−λ := ε/(y j − yk) , and

y∗ = (y1, . . . ,y j−1,y j − ε,y j+1, . . . ,yk−1,yk + ε,yk+1, . . . ,yn).

Then 0 < λ < 1 and we have

y∗ = λy+(1−λ )(y1, . . . ,y j−1,yk,y j+1, . . . ,yk−1,y j,yk+1, . . . ,yn).

Hence,
y∗ = y(λ In +(1−λ )Qjk),

where Qjk is the permutation matrix obtained from In by switching the j -th and the
k -th rows. It is not difficult to see that y∗ ≺ y . Let us show that x ≺ y∗ . For every
ν = 1, . . . , j−1 and ν = k, . . . ,n , we have

ν

∑
i=1

y∗i =
ν

∑
i=1

yi �
ν

∑
i=1

xi

(with all three quantities being equal for ν = n ). By the choice of indices j and k , we
have y∗i = xi , i = j+1, . . . ,k−1. Then taking also into account inequality y j −ε � x j ,
for every ν = j, . . . ,k−1, we have

ν

∑
i=1

y∗i =
j−1

∑
i=1

yi + y j − ε +
ν

∑
i= j+1

yi �
j−1

∑
i=1

xi + x j +
ν

∑
i= j+1

xi =
ν

∑
i=1

xi,

which yields the necessary relation between x and y∗ .
Let A = λ In +(1−λ )Qjk . Then A is a T -matrix. Since y∗j = x j if ε = y j − x j

and y∗k = xk if ε = xk − yk , we have d(x,yA) = d(x,y∗) � d(x,y)− 1. Lemma 6 is
proved. �

Under assumptions of Theorem6, applying Lemma 6 appropriate number of times,
we find a finite sequence of T -matrices A1, . . . ,Al such that d(x,yA1 · . . . ·Al) = 0, i.e.

x = yA1 · . . . ·Al. (40)

LEMMA 7. The product of any n×n doubly stochastic matrices is a doubly stochas-
tic matrix.

Proof. Denote e = (1, . . . ,1) ∈ Rn . It is not difficult to see that double stochastic
property of matrix P is equivalent to the fact that P has non-negative entries and eP = e
and PeT = eT , where eT is the transpose of 1×n matrix e .
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Let P1 and P2 be n× n doubly stochastic matrices. Then P1P2 also has non-
negative entries and for vector e = (1, . . . ,1) ∈ Rn , we will have

P1P2e
T = P1e

T = eT and eP1P2 = eP2 = e.

Hence, P1P2 is also doubly stochastic. Lemma 7 is proved. �
Every matrix Ai , i = 1, . . . , l , in (40) is doubly stochastic. Hence, their product is

also doubly stochastic and the assertion of Theorem 6 follows. �

Proof of Theorem 4. By Theorem 6, there is a doubly stochastic matrix P with
entries pi j , i = 1, . . . ,n , j = 1, . . . ,n , such that x = yP . Hence,

x j = y1p1 j + . . .+ ynpn j, j = 1, . . . ,n,

and using convexity of g we obtain

n

∑
j=1

g(x j) =
n

∑
j=1

g

(
n

∑
i=1

pi jyi

)
�

n

∑
j=1

n

∑
i=1

pi jg(yi)

=
n

∑
i=1

n

∑
j=1

pi jg(yi) =
n

∑
i=1

g(yi)
n

∑
j=1

pi j =
n

∑
i=1

g(yi).

Theorem 4 is proved. �
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