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STABILITY PROPERTIES OF THE

GENERALIZED CHERNOFF INEQUALITY

LI GAO AND YILING WANG

(Communicated by J. Pečarić)

Abstract. In this short note we will present two stability properties of the Chernoff-Ou-Pan in-
equality, newly obtained in [6], which states that if K is a convex domain in the plane R

2 with
area a(K) , then one gets

a(K) � 1
k

∫ π
k

0
ωk(θ )wk

(
θ +

π
k

)
dθ ,

where wk(θ ) is defined in [6] (see also §3 below), and the equality holds if and only if K is a
circular disc.

1. Introduction

The study of stability properties of geometric inequalities has received a lot of
attention in convex geometry, see, for example, Fuglede [2], Groemer [3], [4], and
Pan-Xu [7], etc.. Let C n denote the class of all n -dimensional convex bodies in the
Euclidean space R

n . If n = 2, a 2-dimensional convex body is usually called a convex
domain in the Euclidean plane R

2 . An inequality in convex geometry can be written

Φ(K) � 0, (1.1)

where Φ : C n →R is a real valued function and (1.1) is supposed to hold for all K ∈C n .
Let C n

Φ denote those elements K ∈ C n for which the equality sign in (1.1) holds, i.e.,
Φ(K) = 0 for all K ∈ C n

Φ . For example, if n = 2, p(K) denotes the perimeter of K
and a(K) its area, Φ(K) = p(K)2 − 4πa(K) , (1.1) is then the classical isoperimetric
inequality in the Euclidean plane R

2 , and in this case C 2
Φ is known to consist of all

circular discs.
We are interested in the stability problem associated with geometric inequalities of

type (1.1). That means, we ask if K must be close to a member of C n
Φ whenever Φ(K)

is close to zero. In order to give a precise formulation of this problem, it is necessary for
us to be given a measurement function g : C n ×C n → R that describes in some sense
the deviation between two convex bodies. g should satisfy the following conditions:

(i). g(K,L) � 0 for all K, L ∈ C n ;

Mathematics subject classification (2010): 52A38,52A40.
Keywords and phrases: Stability, convex domains, Chernoff-Ou-Pan inequality, Fourier series.
This work is supported by the National Science Foundation of China (No. 10871070).

c© � � , Zagreb
Paper MIA-15-23

281



282 LI GAO AND YILING WANG

(ii). g(K,L) = 0 if and only if K = L .
If Φ, C n

Φ and g are given, the stability problem associated with the geometric
inequality (1.1) can now be formulated as follows:

Find positive constants c,α with property that whenever

Φ(K) � ε, (1.2)

(for some ε � 0 ), then there exists an L ∈ C n
Φ such that

g(K,L) � cεα . (1.3)

Or equivalently,
Find positive constants c,α with property that for each K ∈ C n , there exists an

L ∈ C n
Φ (L may depend on K ) such that

Φ(K) � cg(K,L)α . (1.4)

In this note we will focus our attention on the stability properties of a generalized
Chernoff inequality in the plane R

2 , newly obtained by Ou-Pan [6], which states that
if K is a convex domain with area a(K) , then one gets

a(K) � 1
k

∫ π
k

0
wk(θ )wk

(
θ +

π
k

)
dθ , (1.5)

where wk(θ )(k � 2 is an integer) is defined in §3 below (wk(θ ) is first introduced by
Ou and Pan in [6]) and the equality in (1.5) holds if and only if K is a circular disc.
We will prove in §3 that this inequality has stability properties with respect to both the
Hausdorff distance and the L2 -metric on C 2 .

2. Preliminaries

We will first recall some basic facts about plane convex geometry which will be
used later on. Firstly, let K ∈ C 2 be a convex domain and assume that the origin O
of R

2 lies in the interior of K , and let �u be a unit vector in R
2 and L(�u) denote the

supporting line of K that is perpendicular to �u and on the same side of the origin. The
oriented distance from O to L(�u) , denoted by H(�u) , is called the Minkowski support
function of K . Since �u is usually determined by the oriented angle, say θ , from the
positive x -axis to �u , one also writes H(θ ) instead of H(�u) . It is clear that H(θ ) is a
continuous 2π -periodic function.

Let p(K) denote the perimeter and a(K) the area of K , one can find (see, for
example, [3] or [5])

p(K) =
∫ 2π

0
H(θ )dθ , (2.1)



STABILITY PROPERTIES OF THE GENERALIZED CHERNOFF INEQUALITY 283

and if H is sufficiently smooth, then

a(K) =
1
2

∫ 2π

0

(
H2(θ )−H ′2(θ )

)
dθ , (2.2)

where ′ denotes the derivative with respect to θ .
The Steiner disc of K , denoted by S(K) , is the circular disc with radius p(K)/2π

and center at the Steiner point which can be defined in terms of the Minkowski support
function

�s(K) =
1
π

∫ 2π

0
�u(θ )H(θ )dθ . (2.3)

The Steiner disc S(K) of K will play a role in our stability statement in §3 below.
The width of K in a direction �u(θ ) = (cos(θ ),sin(θ )), denoted by w(θ ) , is de-

fined to be the distance between two tangents to a perpendicular to �u(θ ) . It is clear
that

w(θ ) = H(θ )+H(θ + π). (2.4)

The closed convex curve K is said to be of constant width if its width in any direction
is a positive constant w0 , then w(θ ) = H(θ )+H(θ + π) = w0 for any θ ∈ [0,2π ] .

Secondly, we wish to express p(K),�s(K),a(K) in terms of the Fourier coeffi-
cients of H(θ ) . Since the support function of a given domain K is always continuous,
bounded and 2π -periodic, it has a Fourier series of the form

H(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ).

Differentiation of this with respect to θ gives us

H ′(θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ).

From (2.1) and (2.3), it follows immediately that

p(K) = 2πa0, (2.5)

�s(K) = (a1,b1). (2.6)

By the Parseval equality, one can get

∫ 2π

0
H2(θ )dθ = π(2a2

0 +
∞

∑
n=1

(a2
n +b2

n)),
∫ 2π

0
H ′2(θ )dθ = π

∞

∑
n=1

n2(a2
n +b2

n),

which together with (2.2) give us

a(K) = πa2
0−

π
2

∞

∑
n=2

(n2−1)(a2
n +b2

n). (2.7)
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Finally, let K and L be two convex domains with respective support functions HK

and HL . The most frequently used function to measure the deviation between L and K
is the Hausdorff distance,

h(K,L) = max
�u

∣∣HL(�u)−HK(�u)
∣∣.

Another such measure which appears to be of particular value with respect to stability
problems is the measure that corresponds to the L2 -metric in function space. It is
defined by

h2(K,L) =
(∫ 2π

0

∣∣HL(θ )−HK(θ )
∣∣2dθ

)1/2
.

It is obvious that h(K,L) = 0 (or h2(K,L) = 0) if and only if K = L .

3. The Main Results

For an integer k � 2, Ou-Pan[6] has introduced for a convex domain K a function
ωk(θ ) as follows

wk(θ ) = H(θ )+H
(

θ +
2π
k

)
+ · · ·+H

(
θ +

2(k−1)π
k

)
.

It is clear that wk(θ ) is a periodic function with period 2π
k . If k = 2, ω2(θ ) is the usual

width w(θ ) (see (2.4) above) of a convex domain.
In [6], Ou and Pan have got the inequality (1.5) which involves the area a(K) of K

and the function wk(θ ) and generalizes the Chernoff inequality (see [1], the Chernoff
inequality corresponds to the case of k = 2). We consider now the stability properties of
the so-called Chernoff-Ou-Pan inequality (1.5) with respect to the deviation measures
h2 and h .

THEOREM 3.1. Let K be convex domain in the plane with smooth boundary, de-
note a(K) the area of K , then

1
k

∫ π
k

0
wk(θ )wk

(
θ +

π
k

)
dθ −a(K) �

⎧⎨
⎩

h2(K,S(K))2, when k = 2,

3
2
h2(K,S(K))2, when k � 3.

(3.1)

Equality sign in (3.1) holds if and only if the support function of K is of the form

H(θ ) = a0 +a1 cosθ +a2 cos2θ +b1 sinθ +b2 sin2θ ,

where a0 = p(K)/2π .

Proof. We may assume that �s(K) = O , then because of (2.5) and (2.6), the support
functions HK and HS(K) have the following Fourier series

HK(θ ) = p(K)/2π +
∞
∑

n=2
(an cosnθ +bn sinnθ), HS(K) = p(K)/2π.
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By using Parseval’s equality one can obtain

h2(K,S(K))2 =
∫ 2π

0
|HK(θ )−HS(K)|2dθ = π

∞

∑
n=2

(a2
n +b2

n).

In Ou-Pan[6] it has proved that (see (3.10) of Ou-Pan[6])

1
k

∫ π
k

0
wk(θ )wk

(
θ +

π
k

)
dθ −a(K) =

π
2

[ ∞

∑
n=2

(a2
n +b2

n)(n
2 −1)+

∞

∑
l=1

(−1)l(a2
kl +b2

kl)
]
.

(3.2)
Therefore we get

1
k

∫ π
k

0 wk(θ )wk

(
θ + π

k

)
dθ −a(K) �

⎧⎪⎪⎨
⎪⎪⎩

π
∞
∑

n=2
(a2

n +b2
n), k = 2,

3
2

π
∞
∑

n=2
(a2

n +b2
n), k � 3.

�

⎧⎨
⎩

h2(K,S(K))2, k = 2,

3
2
h2(K,S(K))2, k � 3.

And furthermore, it is easy to see that the equality holds if and only if

HK(θ ) = a0 +a1 cosθ +a2 cos2θ +b1 sinθ +b2 sin2θ ,

where a2,b2 are small in comparison with a0 . �

To obtain a stability statement in terms of the Hausdorff metric, one can observe

that (3.2) gives an explicit expression for the quantity 1
k

∫ π
k

0 wk(θ )wk(θ + π
k )dθ −a(K) .

Since it is easily seen that

|an cosnθ +bn sinnθ | �
√

a2
n +b2

n,

one can get

|HK(θ )−HS(K)(θ )| = |a0 +
∞
∑

n=1
(an cosnθ +bn sinnθ)− (a0 +a1 cosθ +b1 sinθ )|

�
∞
∑

n=2
|an cosnθ +bn sinnθ | �

∞
∑

n=2

√
a2

n +b2
n.

Using Hölder’s inequality, one finds

h(K,S(K)) �
∞

∑
n=2

√
a2

n +b2
n �

( ∞

∑
n=2

1
n2−2

)1/2( ∞

∑
n=2

(n2−2)(a2
n +b2

n)
)1/2

.
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One can calculate

∞

∑
n=2

1
n2−2

<
1
2

+
1
7

+
∞

∑
n=4

1
n2−4

=
1619
1680

< 1

which together with (3.2) implies that

h(K,S(K))2 �
∞
∑

n=2

1
n2−2

∞
∑

n=2
(n2−2)(a2

n +b2
n)

<
∞
∑

n=2
(n2 −2)(a2

n +b2
n)

�
∞
∑

n=2
(a2

n +b2
n)(n2−1)+

∞
∑
l=1

(−1)l(a2
kl +b2

kl)

= 2
π
[ 1

k

∫ π
k

0 wk(θ )wk(θ + π
k )dθ −a(K)

]
,

where k ∈ N and thus one has arrived at the following result:

THEOREM 3.2. Under the same assumptions of Theorem 3.1, one gets

1
k

∫ π
k

0
wk(θ )wk

(
θ +

π
k

)
dθ −a(K) >

π
2

h(K,S(K))2. (3.3)

REMARKS. (i). Theorems 3.1 and 3.2 can be looked upon as strengthened forms
of the generalized Chernoff inequality (1.5).

(ii). Observe that although (3.1) can not be improved for all K ∈ C 2 , it is possible
to prove stronger inequalities for particular kinds of convex domains. For example, if
K is of constant width, the Fourier expression of the support function of K has the
property that a2n = b2n = 0 for all n ∈ N . Checking the proof of (3.1),

h2(K,S(K))2 = π
∞

∑
n=1

(a2
2n+1 +b2

2n+1),

1
k

∫ π
k

0
wk(θ )wk

(
θ +

π
k

)
dθ −a(K)

=
π
2

[
4

∞
∑

n=1
n(n+1)(a2

2n+1 +b2
2n+1)+

∞
∑
l=1

kl=2m+1,m∈N

(−1)l(a2
kl +b2

kl)
]

�

⎧⎪⎪⎨
⎪⎪⎩

7π
2

∞
∑

n=1
(a2

2n+1 +b2
2n+1), k = 3,

4π
∞
∑

n=1
(a2

2n+1 +b2
2n+1), k �= 3.

=

⎧⎨
⎩

7
2
h2(K,S(K))2, k = 3,

4h2(K,S(K))2, k �= 3.
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where the equality sign holds if and only if

HK(θ ) = a0 +a1 cosθ +b1 sinθ +a3 cos3θ +b3 sin3θ .

Similarly, (3.3) can also be strengthened in this case. Since

|HK(θ )−HS(K)(θ )| �
∞

∑
n=1

√
a2

2n+1 +b2
2n+1

�
( ∞

∑
n=1

1
(2n+1)2−2

)1/2[ ∞

∑
n=1

(
(2n+1)2−2

)2(a2
2n+1 +b2

2n+1)
]1/2

<
( ∞

∑
n=1

1
4n2 +4n−3

)1/2[ ∞

∑
n=1

(
(2n+1)2−2

)2(a2
2n+1 +b2

2n+1)
]1/2

=

√
1
3

[ ∞

∑
n=1

(
(2n+1)2−2

)2(a2
2n+1 +b2

2n+1)
]1/2

,

one can obtain

1
k

∫ π
k

0
wk(θ )wk

(
θ +

π
k

)
dθ −a(K) >

3π
2

h(K,S(K))2.
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