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ON STRONG (α,F)–CONVEXITY

JUDIT MAKÓ, KAZIMIERZ NIKODEM AND ZSOLT PÁLES

(Communicated by C. Niculescu)

Abstract. In this paper, strongly (α ,T ) -convex functions, i.e., functions f : D → R satisfying
the functional inequality

f (tx+(1− t)y) � t f (x)+(1− t) f (y)− tα
(
(1− t)(x− y)

)− (1− t)α
(
t(y− x)

)
for x,y ∈ D and t ∈ T ∩ [0,1] are investigated. Here D is a convex set in a linear space, α is a
nonnegative function on D−D , and T ⊆ R is a nonempty set. The main results provide various
characterizations of strong (α ,T ) -convexity in the case when T is a subfield of R .

1. Introduction

Let I ⊂ R be an interval and c be a positive number. A function f : I → R is
called strongly convex with modulus c if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)(x− y)2,

for all x,y∈ I and t ∈ [0,1] . Strongly convex functions have been introduced by Polyak
[14] and they play an important role in optimization theory and mathematical eco-
nomics. Many properties of them can be found in the literature (see, e.g. [13], [15],
[22], [8]). It is known, for instance, that a function f : I → R is strongly convex with
modulus c if and only if for every x0 ∈ int I there exists an a ∈ R such that

f (x) � c(x− x0)2 +a(x− x0)+ f (x0), x ∈ I,

i.e., f has a quadratic support at x0 . If f is differentiable and strongly convex with
modulus c then its derivative f ′ is ”strongly monotone” in the sense: ( f ′(x)− f ′(y))(x−
y) � 2c(x− y)2 , x,y ∈ I (cf. [15, p. 268]).

In this paper we introduce the class of strongly (α,T )-convex functions (which
is much wider then the class of strongly convex functions) and present, among other,
some generalizations of the results mentioned above.
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Let X be a real linear space. For a nonempty convex subset D ⊆ X , denote

D∗ := D−D := {x− y : x,y ∈ D}.

Given a nonnegative even function α : D∗ → R+ and a nonempty set T ⊆ R such that
T ∩ [0,1] is nonempty, we say that a map f : D → R is strongly (α,T )-convex, if for
all x,y ∈ D and t ∈ T ∩ [0,1] ,

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− tα
(
(1− t)(x− y)

)− (1− t)α
(
t(y− x)

)
(1)

holds. If (1) holds with T = {1/2}, i.e., for all x,y ∈ D,

f
( x+y

2

)
� f (x)+ f (y)

2 −α
( x−y

2

)
, (2)

then the function f is called strongly α -Jensen convex. If T ⊇ [0,1] , then the function
f is termed strongly α -convex. By the nonnegativity of α , we have that strongly α -
Jensen convex, strongly (α,T )-convex, and strongly α -convex functions are always
convex in the same sense, respectively. More generally, if α,β : D∗ → R+ and α � β ,
then strong convexity with respect to α in some sense implies strong convexity with
respect to β in the same sense. Note also that for α(x) = cx2 strong α -convexity
coincides with strong convexity with modulus c .

2. Strengthening the strong Jensen convexity

In the next theorem and corollary, which are particular cases of the theorem in [6],
the strong α -Jensen convexity property will be strengthened. We provide their proof
here because it is much simpler and more transparent than in the general case.

THEOREM 1. Let f : D → R be a strongly α -Jensen convex function. Then f is
strongly α̃ -Jensen convex on D, where

α̃(u) := sup
{
n2α

(
u
n

) | n ∈ N
}

(u ∈ D∗). (3)

Proof. Assume that f : D → R is strongly α -Jensen convex and let n ∈ N. Let
x,y ∈D. Consider the segment [x,y] and divide it into 2n pieces of equal subsegments.
For this, we define the system of points x0 = x , x1, . . . ,x2n−1 , x2n = y in the following
way

xi := x+ i
2n(y− x) (i ∈ {0, . . . ,2n}). (4)

We have the following two obvious identities:

xi+1− xi−1 = y−x
n and xi = xi−1+xi+1

2 . (i ∈ {1, . . . ,2n−1}).

Therefore, by the strong α -Jensen convexity of f , we get

f (xi) � f (xi−1)+ f (xi+1)
2 −α

( x−y
2n

)
(5)
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for all i ∈ {1, . . . ,2n−1}. Multiplying (5) by

i, if i ∈ {1, . . . ,n}
2n− i, if i ∈ {n+1, . . . ,2n−1}

and adding the inequalities so obtained, we get that

n

∑
i=1

i f (xi)+
2n−1

∑
i=n+1

(2n− i) f (xi)

�
n

∑
i=1

i
2 ( f (xi−1)+ f (xi+1))+

2n−1

∑
i=n+1

2n−i
2 ( f (xi−1)+ f (xi+1))

−
( n

∑
i=1

i+
2n−1

∑
i=n+1

(2n− i)
)

α
( x−y

2n

)
.

(6)

The coefficient of f (xi) in inequality (6) is the following:

i− i+1
2 − i−1

2 = 0, if 1 � i � n−1,

n− n−1
2 − 2n−(n+1)

2 = 1, if i = n,

(2n− i)− 2n−i−1
2 − 2n−i+1

2 = 0, if n+1 � i � 2n−1.

The terms f (x0) = f (x) and f (x2n) = f (y) appear only on the right hand side of (6)
with coefficients

1
2 and 2n−(2n−1)

2 = 1
2 ,

respectively. Finally, the coefficient of the error function is

n

∑
i=1

i+
2n−1

∑
i=n+1

(2n− i) = n(n+1)
2 + (n−1)n

2 = n2.

Thus, (6) reduces to,

f
( x+y

2

)
= f (xn) � f (x0)+ f (x2n)

2 −n2α
( x−y

2n

)
= f (x)+ f (y)

2 −n2α
( x−y

2n

)
.

Therefore, we get that f is strongly α̃ -Jensen convex, where α̃ is defined by (3). This
completes the proof.

EXAMPLE 2. Assume that a function f : I → R is strongly sin2 -Jensen convex,
i.e.,

f
( x+y

2

)
� f (x)+ f (y)

2 − sin2 ( x−y
2

)
(x,y ∈ I),

then, by Theorem 1, f is also s̃in2 -Jensen convex, where, for u ∈ R ,

s̃in2(u) = sup{n2 sin2( u
n ) | n ∈ N}

= u2 sup{ n2

u2 sin2( u
n) | n ∈ N} = u2 lim

n→∞

sin2
(

u
n

)(
u
n

)2 = u2.



292 JUDIT MAKÓ, KAZIMIERZ NIKODEM AND ZSOLT PÁLES

This means that f is also strongly Jensen convex with modulus 1, i.e.,

f
( x+y

2

)
� f (x)+ f (y)

2 − ( x−y
2

)2 (x,y ∈ I).

COROLLARY 3. Assume that there exists u ∈ 1
2D∗ \ {0} such that

limsup
n→∞

n2α
(

u
n

)
= ∞. (7)

Then there is no strongly α -Jensen convex function on D.

Proof. Assume that there exists a strongly α -Jensen convex function f : D → R

and let u ∈ 1
2D∗ \ {0} such that (7) holds. By Theorem 1, we get that f is α̃ -Jensen

convex on D . The definition of α̃ implies that,

α̃(u) � limsup
n→∞

n2α
(

u
n

)
= ∞. (8)

Hence, we get that −α̃(u) = −∞, which means that the error term in (2) is equal to
−∞ for some x,y ∈ D . This is a contradiction resulting the statement.

REMARK 4. If X is a normed space, ε , p are positive constants, and α(u) :=
ε‖u‖p for u ∈ D∗ , then condition (7) holds if and only if p < 2.

3. On strong (α,F)-convexity

Let F be a subfield of R . Given a real linear space X , a function ϕ : X → R is
called F-linear, if it is additive, i.e., for all x,y ∈ X ,

ϕ(x+ y) = ϕ(x)+ ϕ(y),

and it is F-homogeneous, i.e., for all x ∈ X and for all λ ∈ F,

ϕ(λx) = λ ϕ(x).

A function ψ : X → R is called F-sublinear, if it is subadditive, i.e., for all x,y ∈
X ,

ψ(x+ y) � ψ(x)+ ψ(y),

and it is positively F-homogeneous, i.e., for all x ∈ X and for all λ ∈ F∩R+,

ψ(λx) = λ ψ(x).

The F(-algebraic) dual X ′
F of the space X is defined by

X ′
F := {ϕ : X → R | ϕ is F-linear}.

As it is well-known, additive functions are automatically Q -linear, therefore we always
have the inclusion X ′

F ⊆ X ′
Q .

The following result is a consequence of the standard separation/sandwich the-
orems (cf. Mazur–Orlicz [7], Holmes [4], Nikodem–Páles–Wa̧sowicz [12]) or of the
Rodé theorem ([19]).
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THEOREM 5. Let ψ : X → R be an F-sublinear function, then there exists a ϕ ∈
X ′

F, such that ϕ � ψ .

Let D ⊆ X be a nonempty set. We say that D is F-algebraically open if, for
all x0 ∈ D and h ∈ X , there exits an ε ∈]0,+∞[ such that [x0,x0 + th] ⊂ D for all
t ∈ [0,ε]∩F. In what follows, assume that D ⊆ X is a nonempty F-algebraically open
convex set. In the sequel, strongly (0,F)-convex functions are simply called F-convex.

PROPOSITION 6. [Cf. [2]] Let f : D → R be an F-convex function, x0 ∈ D and
h ∈ X , then the mapping

t �→ f (x0 + th)− f (x0)
t

is nondecreasing on the set {t ∈ F\ {0} | x0 + th ∈ D} .

The generalized F-directional derivative of an F-convex function f : D → R at
x0 ∈ D in a direction h ∈ X , denoted by f ′F(x0,h) , is defined as follows

f ′F(x0,h) := lim
t → 0+

t ∈ F

f (x0 + th)− f (x0)
t

.

Note that this generalized F-directional derivative has similar properties as the standard
directional derivative.

PROPOSITION 7. [Cf. [2]] Let f : D → R be an F-convex function and x0 ∈ D
be an arbitrary element of D, then the mapping h �→ f ′F(x0,h) is F-sublinear.

Our main result is contained in the following theorem.

THEOREM 8. For any function f : D → R , the following conditions are equiva-
lent:

(i) f is strongly (α,F)-convex.

(ii) f is F-directionally differentiable at every point of D, and for all x0 ∈ D, the
map h �→ f ′F(x0,h) is F-sublinear on X , furthermore for all x0,x ∈ D,

f (x) � f (x0)+ f ′F(x0,x− x0)+ α(x− x0). (9)

(iii) For all x0 ∈ D, there exits an element ϕ ∈ X ′
F such that

f (x) � f (x0)+ ϕ(x− x0)+ α(x− x0) for all x ∈ D. (10)

Proof. (i) ⇒ (ii) It is evident that f is F-convex, which implies that f is F-
directionally differentiable at every point of D , moreover for all x0 ∈ D the map h �→
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f ′F(x0,h) is F-sublinear on X . To prove (9), let x0,x ∈ D be arbitrary. Since D is F-
algebraically open, there exists an ε ∈]0,1[ such that x+ t

1−t (x− x0) = x0 + x−x0
1−t ∈ D

for all t ∈ [0,ε]∩F . Let h := x−x0
1−t . By the strong (F,α)-convexity of f , we get that

f (x0 + th) � (1− t) f (x0)+ t f (x0 +h)− tα
(
(1− t)h

)− (1− t)α(−th)
for all t ∈ [0,ε]∩F.

Rearranging the above inequality, we have that

f (x0 +h) � f (x0)+
f (x0 + th)− f (x0)

t
+ α

(
(1− t)h

)
+

1− t
t

α(−th)

for all t ∈]0,ε]∩F.

By the nonnegativity of α,

f (x0 +h) � f (x0)+
f (x0 + th)− f (x0)

t
+ α

(
(1− t)h

)
for all t ∈]0,ε]∩F.

Substituting h = x−x0
1−t , we obtain that, for all t ∈]0,ε]∩F ,

f
(
x0 +

x− x0

1− t

)
� f (x0)+

1
1− t

f
(
x0 + t

1−t (x− x0)
)− f (x0)

t/(1− t)
+ α(x− x0) (11)

holds. By the F-convexity of f , the mapping s �→ f
(
x0 + s(x− x0)

)
is continuous on

[0,ε]∩F , whence we get

lim
t → 0+

t ∈ F

f
(
x0 +

x− x0

1− t

)
= f (x),

furthermore, the limit

lim
t → 0+

t ∈ F

f
(
x0 + t

1−t (x− x0)
)− f (x0)

t/(1− t)

exists and equals f ′F(x0,x−x0). Thus, taking the limit t → 0+ for t ∈ F in (11), we get
(9), which completes the proof of (ii).

(ii)⇒ (iii) Assume that f is F-directionally differentiable at every point of D and
for all x0 ∈ D, h �→ f ′F(x0,h) is F-sublinear. By Theorem 5, there exists an element
ϕ ∈ X ′

F, such that
f ′F(x0,h) � ϕ(h) for all h ∈ X .

This and (9) implies that (10) holds.
(iii) ⇒ (i) Let x,y ∈ D, t ∈ [0,1]∩F , and set x0 := tx+(1− t)y . Then, by (iii) ,

we have

f (x) � f (tx+(1− t)y)+ ϕ
(
(1− t)(x− y)

)
+ α

(
(1− t)(x− y)

)
,

f (y) � f (tx+(1− t)y)+ ϕ
(
t(y− x)

)
+ α

(
t(y− x)

)
.

Multiplying the first inequality by t and the second inequality by 1− t and adding up
the inequalities so obtained, we get (1).
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COROLLARY 9. Let f : D→R be a strongly (α,F)-convex function. Then α(0)=
0 , α is F-directionally differentiable at 0 and

α ′
F(0,h) = 0 (h ∈ X).

Proof. If f is strongly (α,F)-convex then property (ii) of Theorem 8 holds. Let
x0 ∈D be fixed and h∈X . Since D is F-algebraically open, there exists an ε ∈]0,1[∩F

such that x0 + εh ∈ D . Then, substituting x = x0 + th into (9) (where t ∈]0,ε[∩F), we
get

f (x0 + th) � f (x0)+ f ′F(x0,th)+ α(th). (12)

Taking h = 0, by the nonnegativity of α , it follows that α(0) = 0. On the other hand,
rearranging the above inequality,

f (x0 + th)− f (x0)
t

� f ′F(x0,h)+
α(th)

t
.

By taking the limit t → 0+ and using the nonnegativity of α again, it follows that

lim
t → 0+

t ∈ F

α(th)
t

= 0. (13)

Therefore, α ′
F(0,h) = 0, proving that the F-directional derivative of α at the origin is

zero.
In the following result, we strengthen (α,F)-convexity.

COROLLARY 10. Let f : D→ R be a strongly (α,F)-convex function. Then f is
strongly (α̂ ,F)-convex, where α̂ : D∗ → R is defined by

α̂(u) := sup
{α(tu)

t | t ∈]0,1]∩F
}
. (14)

Proof. Let f : D → R be a strongly (α,F)-convex function and x0,x be arbitrary

elements of D . By Proposition 6, the mapping t �→ f (x0+t(x−x0))− f (x0)
t is nondecreasing

on ]0,1]∩F . Thus, for all t ∈]0,1]∩F, we have that

f (x)− f (x0) � f (x0 + t(x− x0))− f (x0)
t

.

By Theorem 8, we get that

f (x0 + t(x− x0))− f (x0) � f ′F(x0,t(x− x0))+ α(t(x− x0)) (t ∈]0,1]∩F).

Combining the above inequalities, we obtain

f (x)− f (x0) � f ′F(x0,x− x0)+ α(t(x−x0))
t (t ∈]0,1]∩F).

Using Theorem 8, this means that the function f is also strongly (α̂ ,F)-convex, which
completes the proof.
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4. The F-subdifferential of (α,F)-convex functions

For any f : D → R function and x0 ∈ D , define the F-subdifferential of f at x0

by
∂F f (x0) := {ϕ ∈ X ′

F | f (x) � f (x0)+ ϕ(x− x0) for all x ∈ D}. (15)

Obviously, ∂F f (·) can be considered as a set-valued mapping defined on D with values
in 2X ′

F .
For F-convex functions, the F-subdifferential ∂F f (x0) can also be expressed in

terms of the F-directional derivative of f at x0 .

PROPOSITION 11. [Cf. [2]] Let f : D → R be an F-convex function. Then, for
all x0 ∈ D,

∂F f (x0) = {ϕ ∈ X ′
F | f ′F(x0,h) � ϕ(h) for all h ∈ X}. (16)

To describe the properties of the F-subdifferential of strongly (α,F)-convex func-
tions, we need to recall and define certain generalized monotonicity concepts whose
original versions were introduced by Minty [9] and R. T. Rockafellar ([16], [18], [17])
in order to characterize the subdifferentials of convex functions.

We say that a set-valued mapping Φ : D → 2X ′
Q is α -monotone if

ϕ(y− x)+ α(y− x)+ ψ(x− y)+α(x− y)� 0 (17)

holds for every x,y ∈ D , ϕ ∈ Φ(x) , and ψ ∈ Φ(y) . We call a set-valued mapping

Φ : D → 2X ′
Q α -cyclically monotone if the inequality

n

∑
j=0

(
ϕ j(x j+1− x j)+ α(x j+1− x j)

)
� 0 (18)

is fulfilled for every n ∈ N , x j ∈ D ( j ∈ {0,1, . . . ,n,n+1}) with xn+1 = x0 , and ϕ j ∈
Φ(x j) ( j ∈ {0,1, . . . ,n}) . Obviously, by taking n = 2 in the above definition, α -
cyclical monotonicity implies α -monotonicity, however, the reversed implication may
not be valid. In the particular case when α is identically zero, we simply speak about
monotone and cyclically monotone set-valued maps. Observe that, by the nonnegativity
of α , the properties α -monotonicity and α -cyclical monotonicity imply monotonicity
and cyclical monotonicity, respectively.

We say that a mapping Φ : D → 2X ′
F is F-maximal monotone if Φ is monotone

and, for any monotone mapping Ψ : D→ 2X ′
F fulfilling Φ(x)⊆Ψ(x) for all x∈D , also

Φ(x) = Ψ(x) holds for every x ∈ D . In particular, Q -maximal monotone mappings are
called maximal monotone.

In the next result we summarize the properties of the F-subdifferential of strongly
(α,F)-convex functions.

THEOREM 12. Let f : D → R be an (α,F)-convex function. Then, for every
x0 ∈ D, ∂F f (x0) is a nonempty convex subset in X ′

F which is closed with respect to the
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pointwise convergence and

∂F f (x0) = {ϕ ∈ X ′
F | f (x) � f (x0)+ ϕ(x− x0)+ α(x− x0) for all x ∈ D}. (19)

Furthermore, the map ∂F f : D→ 2X ′
F is F-maximal monotone and α -cyclically mono-

tone.

Proof. The convexity and closedness (with respect to the pointwise convergence)
of ∂F f (x0) directly follows from its definition. The inclusion ⊇ in (19) is a conse-
quence of the definition (15). To prove the reversed inclusion, let ϕ ∈ ∂F f (x0) be
arbitrary. Then, by Proposition 11, f ′F(x0,h) � ϕ(h) holds for all h ∈ X . On the other
hand, by the second assertion of Theorem 8, for all x ∈ D , we have

f (x) � f (x0)+ f ′F(x0,x− x0)+ α(x− x0).

Hence, for all x ∈ D ,

f (x) � f (x0)+ ϕ(x− x0)+ α(x− x0).

This proves that ϕ also belongs to the right hand side of (19) and hence (19) holds with
equality.

By the third assertion of Theorem 8, the right hand side of (19) is nonempty, which
yields the nonemptiness of ∂F f (x0) .

The F-maximal monotonicity is a consequence of [2, Theorem 5.4].
To prove the α -cyclic monotonicity of f , let n∈N , x j ∈D for j∈{0,1, . . . ,n,n+

1} with xn+1 = x0 , and ϕ j ∈ ∂F f (x j) for j ∈ {0,1, . . . ,n} . Then, by the third assertion
of Theorem 8,

f (x j+1) � f (x j)+ ϕ(x j+1− x j)+ α(x j+1− x j) ( j ∈ {0,1, . . . ,n}).
Adding up these inequalities for j ∈ {0,1, . . . ,n} and using xn+1 = x0 , the inequality
(18) follows immediately proving the α -cyclic monotonicity of f .

The following statement is analogous to [16, Theorem 1].

THEOREM 13. If Φ : D → 2X ′
F is a nonempty-valued α -cyclically monotone set-

valued map, then there exists a strongly (α,F)-convex function f : D → R such that
Φ(x) ⊆ ∂F f (x) for every x ∈ D.

Proof. Let x0 ∈ D be fixed. For each x ∈ D , let S(x) denote the set of all finite
sums of the form

n−1

∑
j=0

(
ϕ j(x j+1− x j)+ α(x j+1− x j)

)
,

where n ∈ N , x j ∈ D ( j ∈ {1, . . . ,n}) such that xn = x , and ϕ j ∈ Φ(x j) for j ∈
{0,1, . . . ,n−1} .

For any ϕ ∈ Φ(x) , the α -cyclical monotonicity of Φ yields

n−1

∑
j=0

(
ϕ j(x j+1− x j)+ α(x j+1− x j)

)
+ ϕ(x0− x)+ α(x0− x) � 0.
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Thus −(ϕ(x0 − x)+ α(x0 − x)) is an upper bound for S(x) . Hence, we may define a
function f : D → R by

f (x) = supS(x) (x ∈ D).

In order to prove the desired inclusion Φ(x)⊆ ∂F f (x) , consider arbitrary elements
x,y ∈ D , ϕ ∈ Φ(x) , and ε > 0. Then there exist n ∈ N , x j ∈ D ( j ∈ {1, . . . ,n}) with
xn = x , and ϕ j ∈ Φ(x j) ( j ∈ {0,1, . . . ,n−1}) such that

n−1

∑
j=0

(
ϕ j(x j+1− x j)+ α(x j+1− x j)

)
> f (x)− ε.

The definition of f (y) and the above inequality yields

f (y) �
n−1

∑
j=0

(
ϕ j(x j+1− x j)+ α(x j+1− x j)

)
+ ϕ(y− x)+ α(y− x)

� f (x)− ε + ϕ(y− x)+ α(y− x).

Letting ε tend to 0, we get

f (y) � f (x)+ ϕ(y− x)+ α(y− x). (20)

Hence, ϕ ∈ ∂F f (x) which proves the inclusion Φ(x) ⊆ ∂F f (x) . In particular, for every
x ∈ D , by the nonemptiness of Φ(x) , there exists an element ϕ ∈ X ′

F such that (20)
holds for all y ∈ D showing that the third assertion of Theorem 8 is valid. Thus, by
Theorem 8, we obtain that f is strongly (α,F)-convex.

An immediate consequence of Theorem 13 is the following result.

COROLLARY 14. If Φ : D → 2X ′
F is an F-maximal α -cyclically monotone map-

ping, then there exists a strongly (α,F)-convex function f : D → R such that Φ(x) =
∂F f (x) for every x ∈ D.
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[2] Z. BOROS AND ZS. PÁLES, Q -subdifferential of Jensen-convex functions, J. Math. Anal. Appl. 321,
no. 1 (2006), 99–113. MR 2007c:49017

[3] R. GER, Almost approximately convex functions, Math. Slovaca 38, no. 1 (1988), 61–78. MR
89m:26020a

[4] R. B. HOLMES, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics,
vol. 24, Springer-Verlag, Berlin–Heidelberg–New York, 1975. MR 53 #14085

[5] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe
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Śla̧ski, Warszawa–Kraków–Katowice, 1985. MR 86i:39008
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