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Abstract. By introducing two adjusting parameters, we investigate some new nonlinear integral
inequalities on time scales, which provide explicit bounds on unknown functions, and can be
used as tools in the qualitative theory of certain classes of dynamic equations on time scales.

1. Introduction

Following Hilger’s landmark paper [1], there have been plenty of references fo-
cused on theory of time scales in order to unify continuous and discrete analysis, where
a time scale is an arbitrary closed subset of the reals, and the cases when this time
scale is equal to the reals or to the integers represent the classical theories of dif-
ferential and of difference equations. Many other interesting time scales exist, e.g.,
T = qN0 = {qt : t ∈ N0} for q > 1 (which has important applications in quantum the-
ory), T = hN with h > 0, T = N

2 and T = Tn the space of the harmonic numbers.
Recently, many authors have extended some continuous and discrete integral in-

equalities to arbitrary time scales. For example, see [2-14] and the references cited
therein. However, all the integral inequalities in the literature only involved the un-
known function x(t) but not xσ (t) , where σ is the forward jump operator defined in
the next section. Thus, the results in the literature can not be applied to the qualitative
theory of the dynamic equation of the form xΔ(t) = f (t,x(t),xσ (t)) .

The purpose of this paper is to investigate some nonlinear integral inequalities on
time scales that involves both the unknown functions x(t) and xσ (t) . By introducing
two adjusting parameters α and β , we first generalize a basic inequality that plays a
fundamental role in the proofs of some existing results in [6, 9, 17, 18]. Then we pro-
vide explicit bounds on unknown functions for a class of nonlinear integral inequalities
involving xσ (t) , which can be used as tools in the qualitative theory of certain classes
of dynamic equations on time scales such as xΔ(t) = f (t,x(t),xσ (t)) .
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2. Time scale essentials

The definitions below merely serve as a preliminary introduction to the time-scale
calculus; they can be found in the context of a much more robust treatment than is
allowed here in the text [15] and [16] and the references therein.

DEFINITION 1. Define the forward (backward) jump operator σ(t) at t for t <
supT (respectively ρ(t) at t for t > infT) by

σ(t) = inf{s > t : s ∈ T}, (ρ(t) = sup{s < t : t ∈ T}), t ∈ T.

Also define σ(supT) = supT , if supT < ∞ , and ρ(infT) = infT , if infT > −∞ . The
graininess functions are given by μ(t) = σ(t)− t and v(t) = t −ρ(t) . The set Tκ is
derived from T as follows: If T has a left-scattered maximum m , then Tκ = T−{m} ;
otherwise, Tκ = T .

Throughout this paper, the assumption is made that T inherits from the standard
topology on the real numbers R . The jump operators σ and ρ allow the classification
of points in a time scale in the following way: If σ(t) > t the point t is right-scattered,
while if ρ(t)< t then t is left-scattered. Points that are right-scattered and left-scattered
at the same time are called isolated. If t < supT and σ(t) = (t) the point t is right-
dense; if t > infT and ρ(t) = t then t is left-dense. Points that are right-dense and
left-dense at the same time are called dense. The composition f ◦σ is often denoted
f σ .

DEFINITION 2. A function f : T → R is said to be rd-continuous (denoted f ∈
Crd(T,R)) if it is continuous at each right-dense point and if there exists a finite left
limit in all left-dense points.

Every right-dense continuous function has a delta antiderivative [15, Theorem
1.74]. This implies that the delta definite integral of any right-dense continuous func-
tion exists. Likewise every left-dense continuous function f on the time scale, denoted
f ∈Cld(T,R) , has a nabla antiderivative [15, Theorem 8.45]

DEFINITION 3. Fix t ∈ T and let y : Tκ → R . Define yΔ(t) to be the number (if
it exists) with the property that given ε > 0 there is a neighborhood U of t such that,
for all s ∈U ,

|[y(σ(t))− y(s)]− yΔ(t)[σ(t)− s]|� ε|σ(t)− s|.
Call yΔ(t) the (delta) derivative of y at t . It is easy to see that f Δ is the usual derivative
f ′ for T = R and the usual forward difference Δ f for T = Z .

DEFINITION 4. If FΔ(t) = f (t) then define the (Cauchy) delta integral by

∫ b

a
f (s)Δs = F(b)−F(a).
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DEFINITION 5. Say p : T → R is regressive provided that 1+ μ(t)p(t) �= 0 for
all t ∈ T . For h > 0, define the cylinder transformation ξh : Ch → Zh by ξh(z) =
1
hLog(1+zh) , where Log is the principal logarithm function, Ch = {z∈C : z �=−1/h} ,
and Zh = {z ∈ C : −π/h < Im(z) � π/h} . For h = 0, define ξ0(z) = z . Define the
exponential function by

ep(t,s) = exp

(∫ t

s
ξμ(τ)(p(τ))Δτ

)
, t,s ∈ T.

3. Problem statements

In the sequel, we always assume that 0 < λ < 1 is a constant, T is a time scale with
t0 ∈ T . The following nonlinear integral inequalities on time scales will be considered.

x(t) � a(t)+b(t)
∫ t

t0
[g(s)x(s)+h(s)(xσ (s))λ ]Δs, t ∈ T

κ , (I)

x(t) � a(t)+b(t)
∫ t

t0
w(t,s)[g(s)x(s)+h(s)(xσ (s))λ ]Δs, t ∈ T

κ , (II)

x(t) � a(t)+b(t)
∫ t

t0
f (s,(xσ (s))λ )Δs, t ∈ T

κ , (III)

where a,b,g,h,x : Tκ → R+ = [0,∞) are rd-continuous functions, w : T×Tκ →R+ is
continuous, and f : Tκ → R+ is continuous.

If we let x(t) = up(t) , σ(t) = t and λ p = q , then inequalities (I)-(III) reduce
to those inequalities studied in [6]. We say inequalities (I)-(III) are sublinear since
0 < λ < 1.

The reason for studying inequalities of type (I)-(III) is that sometimes we may
need to estimate the solutions of the following dynamic equations

xΔ(t) = f (t,(xσ (t))λ ) (1)

and
xΔΔ(t) = g(t)x(t)+h(t)(xσ(t))λ (2)

with the initial condition x(t0) = x0 and xΔ(t0) = x′0 . Integrating (1) and (2) from t0 to
t , we get

x(t) = x0 +
∫ t

t0
f (s,(xσ (s))λ )Δs (3)

and

x(t) = x0 + x′0(t− t0)+
∫ t

t0
(t − s)[g(s)x(s)+h(s)(xσ (s))λ ]Δs. (4)

It is obvious that inequalities (3) and (4) are special cases of (II) and (III). Thus, it
is necessary and significant to provide explicit bounds on x(t) satisfying inequalities
(I)-(III).
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To the best of our knowledge, inequalities (I)-(III) receive less attention at present.
Most of existing results in the literature are focused on the case σ(t) = t . Generally
speaking, those results can only be extended to inequalities involving xσ (t) by impos-
ing additional conditions. For example, consider the following Gronwall’s inequality

x(t) � a(t)+
∫ t

t0
b(s)xσ (s)Δs, t ∈ T

κ .

As usual, let y(t) =
∫ t
t0

b(s)xσ (s)Δs . Noticing that x(t) � a(t)+ y(t) , we have

yΔ(t) = b(t)xσ (t) � b(t)[aσ (t)+ yσ(t)] = aσ (t)b(t)+b(t)y(t)+ μ(t)b(t)yΔ(t),

i.e.,
(1− μ(t)b(t))yΔ(t) � aσ (t)b(t)+b(t)y(t).

In the general case, explicit bounds of y(t) satisfying the above inequality can not be
given by the following well-known Lemma 1 until an additional assumption μ(t)b(t) <
1 is imposed. However, for sublinear inequalities (I)-(III), we will show that explicit
bounds of x(t) can be obtained without imposing such additional assumptions.

Before establishing our main results, we need the following lemmas.

LEMMA 1. [15, Th. 6.1, p. 255] Let y, p and q be rd-continuous on T with
p(t) � 0 for t ∈ T . Then

yΔ(t) � p(t)y(t)+q(t), t ∈ T

implies

y(t) � y(t0)ep(t,t0)+
∫ t

t0
ep(t,σ(s))q(s)Δs, t ∈ T.

LEMMA 2. Let y, p1, p2 and q be rd-continuous on T with pi(t) � 0 for i = 1,2
and t ∈ T . Then

yΔ(t) � p1(t)y(t)+
p2(t)

1+ μ(t)p2(t)
yσ (t)+q(t), t ∈ T (5)

implies

y(t) � y(t0)ep̃(t,t0)+
∫ t

t0
ep̃(t,σ(s))q̃(s)Δs, t ∈ T, (6)

where

p̃(t)= p1(t)⊕ p2(t)= p1(t)+ p2(t)+μ(t)p1(t)p2(t) and q̃(t)= [1+μ(t)p2(t)]q(t).

Proof. From (5), we have

yΔ(t) � p1(t)y(t)+
p2(t)

1+ μ(t)p2(t)
[y(t)+ μ(t)yΔ(t)]+q(t).

That is
yΔ(t) � p̃(t)y(t)+ q̃(t).

By Lemma 1, we get (6). �
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LEMMA 3. Let c � 0 , x � 0 and 0 < λ < 1 . Then for any k > 0

cxλ � λkλ−1cαx+(1−λ )kλcβ (7)

holds, where α and β are nonnegative constants satisfying λ α +(1−λ )β = 1 .

Proof. For nonnegative constants a and b , positive constants p and q with 1/p+
1/q = 1, the basic inequality

a
p

+
b
q

� a1/pb1/q

holds. Let 1/p = λ , 1/q = 1−λ , a = kλ−1cα and b = kλ cβ . Then inequality (7) is
met. �

REMARK 1. When c = 1, Lemma 2 reduces to Lemma 3.1 with λ = q/p in [6,
9, 17, 18].

LEMMA 4. [15, Th. 1.117, p. 46] Suppose that for each ε > 0 there exists a neigh-
borhood U of t , independent of τ ∈ [t0,σ(t)] , such that

|w(σ(t),τ)−w(s,τ)−wΔ
1 (t,τ)(σ(t)− s)| � ε|σ(t)− s|, s ∈U, (8)

where w : T×Tκ → R+ is continuous at (t,t) , t ∈ Tκ with t > t0 , and wΔ
1 (t, ·) (the

derivative of w with respect to the first variable) is rd-continuous on [t0,σ(t)] . Then

v(t) :=
∫ t

t0
w(t,τ)Δτ

implies

vΔ(t) =
∫ t

t0
wΔ

1 (t,τ)Δτ +w(σ(t), t).

4. Main results

Now, let’s give the main results of this paper.

THEOREM 1. Assume that a,b,g,h,x : Tκ → R+ are rd-continuous functions.
Then for any nonnegative constants α and β satisfying λ α +(1−λ )β = 1 , inequality
(I) implies

x(t) � a(t)+b(t)
∫ t

t0
eP(t,σ(s))Q(s)Δs, t ∈ T

κ , (9)

where
P(t) = P1(t)+P2(t)+ μ(t)P1(t)P2(t),

P1(t) = g(t)b(t), P2(t) = λhα(t)bσ (t), Q(t) = [1+ μ(t)P2(t)]Q1(t)

Q1(t) = g(t)a(t)+
λhα(t)aσ (t)
1+ μ(t)P2(t)

+ (1−λ )[1+ μ(t)P2(t)]λ/(1−λ )hβ (t).
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Proof. Set

y(t) =
∫ t

t0
[g(s)x(s)+h(s)(xσ (s))λ ]Δs, t ∈ T

κ .

Then y(t0) = 0 and (I) can be restated as

x(t) � a(t)+b(t)y(t), t ∈ T
κ . (10)

Based on the straightforward computation and Lemma 3, for any rd-continuous function
k(t) > 0 we have

yΔ(t) = g(t)x(t)+h(t)(xσ(t))λ

� g(t)x(t)+ λkλ−1(t)hα(t)xσ (t)+ (1−λ )kλ(t)hβ (t), t ∈ Tκ .
(11)

Combining (10) and (11) yields

yΔ(t) � g(t)b(t)y(t)+ λkλ−1(t)hα(t)bσ (t)yσ (t)

+g(t)a(t)+ λkλ−1(t)hα(t)aσ (t)+ (1−λ )kλ(t)hβ (t), t ∈ Tκ .
(12)

Let k(t) = [1+ λ μ(t)hα(t)bσ (t)]1/(1−λ ) . Then (12) reduces to

yΔ(t) � P1(t)y(t)+
P2(t)

1+ μ(t)P2(t)
yσ (t)+Q1(t).

This together with Lemma 2 yield

y(t) �
∫ t

t0
eP(t,σ(s))Q(s)Δs, t ∈ T

κ .

Thus, from (10) we get (9). �

REMARK 2. By choosing different α and β , some improved bounds on x(t) can
be obtained. For example, when h(t) is sufficiently large, we may remove h(t) out of
P(t) (i.e., set α = 0) since the value of eP(t,s) usually changes in a big way. When
h(t) is sufficiently small, we may remove h(t) out of Q(t) , i.e., set β = 0.

THEOREM 2. Assume that a,b,g,h,x : Tκ →R+ are rd-continuous functions. Let
w : T×Tκ → R+ be continuous such that wΔ

1 (t,s) � 0 for t � s and (8) holds. Sup-
pose also that there exist rd-continuous functions k1(t) > 0 and k2(t) > 0 such that
μ(t)W (t) < 1 for t ∈ Tκ , where

W (t) = λ
[
w(σ(t),t)kλ−1

1 (t)hα(t)bσ (t)+
∫ t

t0
wΔ

1 (t,s)kλ−1
2 (s)hα(s)bσ (s)Δs

]
.

Then for any nonnegative constants α and β satisfying λ α +(1−λ )β = 1 , inequality
(II) implies

x(t) � a(t)+b(t)
∫ t

t0
eA(t,σ(s))B(s)Δs, t ∈ T

κ , (13)
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where
A(t) = A1(t)+A2(t)+ μ(t)A1(t)A2(t),

A1(t) = w(σ(t),t)g(t)b(t)+
∫ t

t0
wΔ

1 (t,s)g(s)b(s)Δs,

A2(t) =
W (t)

1− μ(t)W(t)
, B(t) = [1+ μ(t)A2(t)]B1(t),

B1(t) =
[
w(σ(t),t)Q̃1(t)+

∫ t

t0
wΔ

1 (t,s)Q̃2(s)Δs

]
,

and

Qi(t) = g(t)a(t)+ λkλ−1
i (t)hα(t)aσ (t)+ (1−λ )kλ

i (t)hβ (t), i = 1,2.

Proof. Define a function

z(t) =
∫ t

t0
k(t,s)Δs, t ∈ T

κ ,

where
k(t,s) = w(t,s)[g(s)x(s)+h(s)(xσ (s))λ ].

Then z(t0) = 0, z(t) is nondecreasing, and

x(t) � a(t)+b(t)z(t), t ∈ T
κ .

Similar to the arguments in Theorem 1, by Lemma 3 and Lemma 4, we have

zΔ(t) = k(σ(t),t)+
∫ t

t0
kΔ
1 (t,s)Δs

= w(σ(t),t)[g(t)x(t)+h(t)(xσ(t))λ ]

+
∫ t

t0
wΔ

1 (t,s)[g(s)x(s)+h(s)(xσ (s))λ ]Δs

� w(σ(t),t)
[
g(t)b(t)z(t)+ λkλ−1

1 (t)hα(t)bσ (t)zσ (t)+ Q̃1(t)
]

+
∫ t

t0
wΔ

1 (t,s)
[
g(s)b(s)z(s)+ λkλ−1

2 (s)hα(s)bσ (s)zσ (s)+ Q̃2(s)
]

Δs

� A1(t)z(t)+W(t)zσ (t)+B1(t)

= A1(t)z(t)+
A2(t)

1+ μ(t)A2(t)
zσ (t)+B1(t), t ∈ T

κ ,

which implies (13) by Lemma 2. �

REMARK 3. In theorem 2, we need to guarantee that μ(t)W (t) < 1 on Tκ for
appropriate rd-continuous functions k1(t) > 0 and k2(t) > 0. It is not difficult to verify
that such a condition holds for sufficiently small k1(t) and k2(t) for given λ ,w,h and
b .
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THEOREM 3. Assume a,b,x are nonnegative rd-continuous functions defined on
Tκ . Let f : Tκ ×R+ → R+ be a continuous function satisfying

0 � f (t,x)− f (t,y) � φ(t,y)(x− y) (14)

for t ∈ Tκ and x � y � 0 , where φ : Tκ ×R+ → R+ is a continuous function. Suppose
also that there exists a rd-continuous function k(t) > 0 such that μ(t)Φ(t) < 1 on Tκ ,
where

Φ(t) = λkλ−1(t)hα(t)φ [t,(1−λ )kλ (t)hβ (t)]bσ (t).

Then for any nonnegative constants α and β satisfying λ α +(1−λ )β = 1 , inequality
(III) implies

x(t) � a(t)+b(t)
∫ t

t0
eM(t,σ(s))N(s)Δs, t ∈ T

κ , (15)

where

M(t) =
Φ(t)

1− μ(t)Φ(t)
, N(t) = [1+ μ(t)M(t)]N1(t),

and

N1(t) = λkλ−1(t)hα(t)φ [t,(1−λ )kλ (t)hβ (t)]aσ (t)+ f [t,(1−λ )kλ(t)hβ (t)].

Proof. Define a function u(t) by

u(t) =
∫ t

t0
f [s,(xσ (s))λ ]Δs.

Then u(t0) = 0 and x(t) � a(t)+b(t)u(t) . Based on the straightforward computation,
from (14) and Lemma 3 we get

uΔ(t) = f [t,(xσ (t))λ ]

� f [t,λkλ−1(t)hα(t)xσ (t)+ (1−λ )kλ(t)hβ (t)]

� λkλ−1(t)hα(t)φ [t,(1−λ )kλ (t)hβ (t)]xσ (t)+ f [t,(1−λ )kλ(t)hβ (t)]

� Φ(t)uσ (t)+N1(t)

=
M(t)

1+ μ(t)M(t)
uσ (t)+N1(t), t ∈ T

κ .

This together with Lemma 2 imply (15). �

REMARK 4. For some particular cases of T , α and β , Theorems 1-3 include
some results in [14] as special cases.
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5. Applications

To illustrate the usefulness of the results we state the corresponding theorems in
the previous section for the special case T = Z . It is not difficult to provide similar
results for other specific time scales of interest.

COROLLARY 1. Let T = Z and a,b,g,h,x : N0 = {t0,t0 + 1, · · ·} → R+ be con-
tinuous. Then for any nonnegative constants α and β satisfying λ α +(1−λ )β = 1 ,
inequality (I) implies

x(t) � a(t)+b(t)
t−1

∑
s=t0

(
t−1

∏
τ=s+1

(1+P(τ))

)
Q(s), t ∈ N0,

where P(t) and Q(t) are defined as in Theorem 1 with μ(t) = 1 .

COROLLARY 2. Assume T = Z , a,b,g,h,x : N0 → R+ , and w(t,s) is a nonneg-
ative function on N0 such that wΔ

1 (t,s) � 0 for t � s and (8) holds. Suppose also that
there exist rd-continuous functions k1(t) > 0 and k2(t) > 0 such that W (t) < 1 for
t ∈ N0 . Then for any nonnegative constants α and β satisfying λ α +(1−λ )β = 1 ,
inequality (II) implies

x(t) � a(t)+b(t)
t−1

∑
s=t0

(
t−1

∏
τ=s+1

(1+A(τ))

)
B(s), t ∈ N0,

where W (t) , A(t) and B(t) are the same as in Theorem 2 with μ(t) = 1 .

COROLLARY 3. Assume T = Z and a,b,x are nonnegative functions on N0 . Let
f : N0 ×R+ → R+ be a function satisfying (14). Suppose also that there exists a rd-
continuous function k(t) > 0 such that Φ(t) < 1 on N0 . Then for any nonnegative
constants α and β satisfying λ α +(1−λ )β = 1 , inequality (III) implies

x(t) � a(t)+b(t)
t−1

∑
s=t0

(
t−1

∏
τ=s+1

(1+M(τ))

)
N(s), t ∈ N0,

where Φ(t) , M(t) and N(t) are defined as in Theorem 3 with μ(t) = 1 .

In this paper, we have presented a method to study certain class of nonlinear in-
tegral inequalities involving xσ (t) . Based on this method, some other results can be
similarly obtained when a(t) and b(t) satisfy additional assumptions such as mono-
tonicity. We here do not enumerate them in detail. At the end of this paper, we apply
this method to a numerical example. Consider the following initial value problem on
time scales

xΔ(t) = H(t,x(t),(xσ (t))λ ), x(t0) = x0, t ∈ T
κ , (16)

where H : Tκ ×R×R→ R is a continuous function satisfying

|H(t,x(t),(xσ (t))λ )| � g(t)|x(t)|+h(t)|(xσ(t))λ |, t ∈ T
κ ,
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g(t) and h(t) are nonnegative rd-continuous functions on Tκ . The solution of (16)
satisfies the following integral inequality

x(t) = x0 +
∫ t

t0
H(s,x(s),(xσ (s))λ )Δs, t ∈ T

κ .

It yields

|x(t)| � |x0|+
∫ t

t0
[g(s)|x(s)|+h(s)|xσ (s)|λ ]Δs, t ∈ T

κ . (17)

Denote the right-hand side of (17) by y(t) . Then |x(t)| � y(t) , y(t0) = x0 , and for any
rd-continuous function k(t) > 0

yΔ(t) = g(t)|x(t)|+h(t)|xσ(t)|λ
� g(t)y(t)+ λkλ−1(t)hα(t)yσ (t)+ (1−λ )kλ(t)hβ (t), t ∈ Tκ .

Let k(t) = [1+ λ μ(t)hα(t)]1/(1−λ ) . Then, for t ∈ Tκ we have

yΔ(t) � g(t)y(t)+
λhα(t)

1+ λ μ(t)hα(t)
yσ (t)+ (1−λ )[1+ λ μ(t)hα(t)]λ/(1−λ )hβ (t).

By Lemma 2, it yields

x(t) � |x0|ep(t,t0)+
∫ t

t0
ep(t,σ(s))q(s)ds, t ∈ T

κ ,

where
p(t) = g(t)+ λhα(t)+ λ μ(t)g(t)hα(t),

and
q(t) = (1−λ )[1+ λ μ(t)hα(t)]1/(1−λ )hβ (t).
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Boston, 2003.

[17] F. W. MENG, D. JI, On some new nonlinear discrete inequalities and their applications, J. Comput.
Appl. Math. 208 (2007), 425–433.

[18] F. W. MENG, W. N. LI, On some new nonlinear discrete inequalities and their applications, J. Com-
put. Appl. Math. 158 (2003), 407–417.

(Received August 30, 2010) Yuangong Sun
School of Mathematics

University of Jinan
Jinan, Shandong 250022

China
e-mail: sunyuangong@yahoo.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


