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A GEOMETRIC PROOF OF BLUNDON’S INEQUALITIES

DORIN ANDRICA AND CATALIN BARBU

(Communicated by V. Volenec)

Abstract. A geometric approach of Blundon’s inequality is presented. Theorem 2.1 gives the
formula for cos ÎON in terms of the symmetric invariants s , R , r of a triangle, implying Blun-
don’s inequality (Theorem 2.2). A dual formula for cos ̂IaONa is given in Theorem 3.1 and
this implies the dual Blundon’s inequality (Theorem 3.2). As applications, some inequalities
involving the exradii of the triangle are presented in the last section.

1. Introduction

Given a triangle ABC , denote by O the circumcenter, I the incenter , G the cen-
troid, N the Nagel point, s the semiperimeter, R the circumradius, and r the inradius
of ABC . In this note, we present a geometric proof to the so-called fundamental tri-
angle inequality. This relation contains in fact two inequalities and it was first time
proved by E. Rouché in 1851 (see [15]), answering a question of Ramus concerning
the necessary and sufficient conditions for three positive real numbers s , R , r to be
the semiperimeter, circumradius, and inradius of a triangle (see Theorem 2.2). The
standard simple proof was first time given by W. J. Blundon [3] and it is based on the
following algebraic property of the roots of a cubic equation: The roots x1 , x2 , x3 of
the equation

x3 +a1x
2 +a2x+a3 = 0

are the side lengths of a (nondegenerate) triangle if, and only if, the following three
conditions are verified: i) 18a1a2a3 + a2

1a
2
2 − 27a2

3 − 4a3
2 − 4a3

1a3 > 0 ; ii) −a1 > 0,
a2 > 0, −a3 > 0; iii) a3

1 − 4a1a2 + 8a3 > 0. For more details we refer to the mono-
graph of D. Mitrinović, J. Pečarić, V. Volenec [12], and to the papers of C. Niculescu
[13], [14], R. A. Satnoianu [16], and S. Wu [20]. We mention that G. Dospinescu,
M. Lascu, C. Pohoaţă, M. Tetiva [6] have proposed a new algebraic proof to the weaker
Blundon’s inequality s � 2R+(3

√
3−4)r . This inequality is a direct consequence of

the fundamental triangle inequality.
In this paper we present a geometric approach to Blundon’s inequality. In Theorem

2.1 we give the formula for cos ÎON in terms of the symmetric invariants of triangle s ,
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R , r . This formula contains in fact the fundamental triangle inequalities (Theorem 2.2)
and it is connected to the famous Euler’s determination problem. In Section 3 we prove
a dual version of the Blundon’s inequality,derived from Theorem 3.1, which gives a
formula for cos ̂IaONa in terms of α , R , ra , where α = a2+b2+c2

4 . Here we discuss the
possible duality between formulas (5) and (11). We show that it is much more natural
to ask in the initial problem to find necessary and sufficient conditions such that the
positive real numbers α , R , r are the corresponding elements of a triangle. In the last
section, as consequences of the dual Blundon’s inequality, some inequalities for α , R
and the exradii of the triangle are derived.

2. The main result

In order to state our main results we need to recall some important distances in
triangle ABC . The famous formula for the distance OI is called Euler’s relation and it
is given by

OI2 = R2−2Rr (1)

For the standard geometric proof of this relation we refer to the books of H. S. M.
Coxeter and S. L. Greitzer [5, Theorem 2.12, p. 29] or T. Lalescu [11, Section 3.12,
p. 25]. For a proof using complex numbers we mention the book of T. Andreescu and
D. Andrica [1, Theorem 4, pp. 112–113]. The next important distance is ON and it is
given by

ON = R−2r (2)

The relation (2) gives in geometric way the difference between the quantities involved
in the Euler’s inequality R � 2r and it will play an important role in the proof of our
main results. A proof by using complex numbers is given in the book of T. Andreescu
and D. Andrica [1, Theorem 6, pp. 113–114]. Another useful distance is OG and the
following relation holds

OG2 = R2− a2 +b2 + c2

9
, (3)

where a,b, and c are the side lengths of triangle ABC. The standard proof uses Leib-
niz’s relation combined with the median formula (see [1, pp. 142–143]).

The sum a2 +b2 +c2 can be expressed in terms of the symmetric invariants s,R,r
of triangle ABC as follows:

a2 +b2 + c2 = 2(s2− r2−4Rr) (4)

This formula can be found in different references, for instance in [1, Corollary 2, p. 111]
or in the excellent monograph of D. S. Mitrinović, J. E. Pečarić, V. Volenec [12].

The following result contains a simple geometric proof of the fundamental in-
equality of a triangle.

THEOREM 1. Assume that the triangle ABC is not equilateral. The following
relation holds :

cos ÎON =
2R2 +10Rr− r2− s2

2(R−2r)
√

R2−2Rr
. (5)
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Proof. It is known that the points N , G , and I are collinear and the defined line is
called Nagel’s line of the triangle, and we have NI = 3GI (see for instance [1, Theorem
3, p.108-109] or [10, pp 127-136]). If we use Stewart’s Theorem in the triangle ION ,
then we get

ON2 ·GI +OI2 ·NG−OG2 ·NI = GI ·GN ·NI,

and it follows that

ON2 ·GI +OI2 ·2GI−OG2 ·3GI = 6GI3.

This relation is equivalent to

ON2 +2 ·OI2−3 ·OG2 = 6GI2. (6)

Now, using formulas (1), (2), (3) in (6) we obtain

GI2 =
1
6

(
a2 +b2 + c2

3
−8Rr+4r2

)
=

1
6

(
2(s2 − r2−4Rr)

3
−8Rr+4r2

)
.

So we get
NI2 = 9GI2 = 5r2 + s2−16Rr.

We use the Law of Cosines in the triangle ION and obtain

cos ÎON =
ON2 +OI2−NI2

2ON ·OI

=
(R−2r)2 +(R2−2Rr)− (5r2 + s2−16Rr)

2(R−2r)
√

R2 −2Rr
=

2R2 +10Rr− r2− s2

2(R−2r)
√

R2−2Rr
(7)

and we are done.
If the triangle ABC is equilateral, then the points I,O,N coincide, i.e. triangle

ION degenerates to one point. In this case we can extend formula (5) by cos ÎON =
1. �

THEOREM 2. (Blundon’s inequalities) The necessary and sufficient condition for
the existence of a triangle with elements s, R and r is

2R2+10Rr−r2−2(R−2r)
√

R2−2Rr � s2 � 2R2+10Rr−r2+2(R−2r)
√

R2 −2Rr.
(8)

Proof. If we have R = 2r , then the triangle must be equilateral and we are done.
If we assume that R−2r �= 0, then inequalities (8) are direct consequences of the fact
that −1 � cos ÎON � 1.

�
Equilateral triangles give the trivial situation where we have equality in (8). Sup-

pose that we are not working with equilateral triangles, i.e we have R−2r �= 0. Denote
by T (R,r) the family of all triangles having the circumradius R and the inradius r .
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The inequalities (8) give in terms of R and r the exact interval for the semiperimeter s
of triangles in family T (R,r) . We have s2

min = 2R2 +10Rr− r2−2(R−2r)
√

R2 −2Rr
and s2

max = 2R2 +10Rr− r2 +2(R−2r)
√

R2 −2Rr . If we fix the circumcenter O and
the incenter I such that OI =

√
R2−2Rr , then the triangle in the family T (R,r) with

minimal semiperimeter corresponds to the equality case cos ÎON = 1, i.e. points I,O,N
are collinear and I and N belong to the same ray with the origin O . Taking in to ac-
count the well-known property that points O,G,H belong to Euler’s line of triangle,
this implies that O, I,G must be collinear, hence in this case triangle ABC is isosceles.
In Figure 1 this triangle is denoted by AminBminCmin . Also, the triangle in the family
T (R,r) with maximal semiperimeter corresponds to the equality case cos ÎON = −1,
i.e. points I,O,N are collinear and O is situated between I and N . Using again the
Euler’s line of the triangle, it follows that triangle ABC is isosceles. In Figure 1 this
triangle is denoted by AmaxBmaxCmax . Note that we have BminCmin > BmaxCmax . The
triangles in the family T (R,r) are ”between” these two extremal triangles (see Fig-
ure 1). According to the Poncelet’s closure Theorem, they are inscribed in the circle
C (O;R) and their sides are tangent externally to the circle C (I;r) .

From Theorem 2.1 it follows that it is a natural and important problem to construct
the triangle ABC from its incenter I , circumcenter O , and its Nagel point N . Taking
into account that points I , G , N are collinear, determining the Nagel line of triangle,
it follows that we get the centroid G on the segment IN such that IG = 1

3 IN . Then,
using the Euler’s line of the triangle, we get the orthocenter H on the ray (OG such
that OH = 3OG . Now we have reduced the construction problem to the famous Euler’s
determination problem i.e. to construct a triangle from its incenter I , circumcenter
O , and orthocenter H (we refer to the original reference [8]). Some new approaches
involving this problem are given by B. Scimemi [17], G. C. Smith [18], J. Stern [19],
and P. Yiu [21].
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3. A dual version of Blundon’s inequalities

In this section we consider a triangle ABC with circumcenter O , incenter I , excen-
ters Ia, Ib, Ic , and Na,Nb,Nc the adjoint points to the Nagel point N . For the definition
and some properties of the adjoint points Na ,Nb ,Nc we refer to the paper of D. An-
drica and K. L. Nguyen [2]. Let s , R , r , ra ,rb ,rc be the semiperimeter, circumradius,
inradius, and exradii of triangle ABC , respectively. We know that points Na , G , Ia are
collinear and we have NaIa = 3GIa . The similar properties hold for the triples of points
Nb , G , Ib and Nc , G , Ic . The following relations are similar to (1) and (2)

OI2
a = R2 +2Rra,OI2

b = R2 +2Rrb,OI2
c = R2 +2Rrc (9)

and
ONa = R+2ra,ONb = R+2rb,ONc = R+2rc (10)

For a proof by using complex numbers we refer to the paper [2].

THEOREM 3. The following relation holds :

cos ̂IaONa =
R2−3Rra− r2

a −α
(R+2ra)

√
R2 +2Rra

, (11)

where α = a2+b2+c2

4 .

Proof. We know that points Na , G , Ia are collinear and we have NaIa = 3GIa ,
ONa = R+ 2ra , and OI2

a = R2 + 2Rra . Using Stewart’s Theorem in triangle IaONa it
follows

ON2
a ·GIa +OI2

a ·NaG−OG2 ·NaIa = GIa ·GNa ·NaIa, (12)

hence
ON2

a ·GIa +OI2
a ·2GIa−OG2 ·3GIa = 6GI3

a . (13)

Taking in to account the relation NaIa = 3GIa we get

IaN
2
a = 9GI2

a =
3
2
(
a2 +b2 + c2

3
+8Rra +4r2

a)

=
a2 +b2 + c2

2
+12Rra +6r2

a = 2α +12Rra +6r2
a. (14)

From Law of Cosines applied in triangle IaONa it follows:

cos ̂IaONa =
OI2

a +ON2
a − IaN2

a

2OIa ·ONa
=

R2 +2Rra +(R+2ra)2 − IaN2
a

2OIa ·ONa

=
R2−3Rra− r2

a −α
(R+2ra)

√
R2 +2Rra

,

and the relation is proved. There are similar formulas for ra and rb . �
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THEOREM 4. (Dual form of Blundon’s inequalities) The following inequalities
hold

0 � a2 +b2 + c2

4
� R2−3Rra− r2

a +(R+2ra)
√

R2 +2Rra. (15)

Proof. Let us begin by noticing that if we proceed as in the proof of Theorem 2.2,
i.e. by using the inequalities −1 � cos ̂IaONa � 1, then we get

R2−3Rra− r2
a − (R+2ra)

√
R2 +2Rra � α � R2−3Rra− r2

a +(R+2ra)
√

R2 +2Rra.

It is clear that we have

R2 = R
√

R2 � (R+2ra)
√

R2 +2Rra � 3Rra + r2
a +(R+2ra)

√
R2 +2Rra,

that is the expression in the left hand side of the previous inequalities is always negative.
On the other hand, we have α � 0.

The right inequality in (15) follows from to cos ̂IaONa � 1, where cos ̂IaONa is
given by formula (11) in Theorem 3.1. There are similar inequalities for rb and rc . �

Denote by T (R,ra) the family of all triangles having the circumradius R and
the exradius ra . The inequalities (15) give in terms of R and ra the exact interval for
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α , for triangles in family T (R,ra) . We have αmin = 0 and αmax = R2 − 3Rra− r2
a +

(R+ 2ra)
√

R2 +2Rra . If we fix the circumcenter O and the excenter Ia such that we
have OIa =

√
R2 +2Rra , then the triangles in the family T (R,ra) with minimal α are

degenerated to a point and they correspond to the intersection points of the circles. In
Figure 2 these points are denoted by A′

min and A′′
min . Also, the triangle in the family

T (R,ra) with maximal α corresponds to the equality case cos ̂IaONa =−1, i.e. points
Ia , O , Na are collinear and O is between Ia and Na . Using again the Euler’s line of
the triangle, it follows that triangle ABC is isosceles. Figure 2 presents the standard
geometric configuration illustrating the extremal triangles. Also, in Figure 2 other two
degenerated triangles are illustrated, i.e. the “isosceles” triangle A′

minB
′ and A′′

minB
′′

defined by the intersections of tangents at points A′
min and A′′

min to the circle C (Ia,ra)
with the circle C (I,r) .

In this case we have also an exterior Poncelet’s closure Theorem, that is the trian-
gles “between” these two extremal triangles belong to the family T (R,ra) . We refer to
the paper of L. Emelyanov and T. Emelyanov [7] for a complicate proof of this property.

From Theorem 3.1 it follows that it is a natural problem to construct the triangle
ABC from its excenter Ia , circumcenter O , and its adjoint Nagel point Na . Taking in to
account that points Ia , G , Na are collinear, it follows that we get the centroid G on the
segment IaNa such that IaG = 1

3 IaNa . Then, using the Euler’s line of the triangle, we get
the orthocenter H on the ray (OG such that OH = 3OG . Now we have reduced again
our construction problem to the famous Euler’s determination problem: to construct a
triangle from its incenter I , circumcenter O , and orthocenter H (we refer to the original
reference [7]).

REMARKS. 1) From Theorem 3.1 it follows that it is a natural question to express
α in terms of s , R , ra , in order to obtain a similar formula to (5). In order to answer to
this question we shall prove that

ab+bc+ ca =
s6 + ra(4R+3ra)s4 + r2

a(3r2
a −16R2)s2 + r5

a(ra −4R)
(s2 + r2

a)2.
(16)

Indeed, we have tan A
2 = ra

s , hence we can write

sinA = 2sin
A
2

cos
A
2

=
2sin A

2 cos A
2

sin2 A
2 + cos2 A

2

=
2tan A

2

tan2 A
2 +1

=
2 ra

s
r2a
s2

+1
=

2ras
r2
a + s2 .

It follows

a = 2R · sinA =
4Rras
r2
a + s2 .

If K denotes the area of triangle ABC , from abc
4R = K = (s−a)ra , we get

bc =
4(s−a)Rra

a
= 4Rra · ( s

a
−1) = 4Rra · r2

a + s2−4Rra

4Rra
= r2

a + s2−4Rra.
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We combine these formulas to get

ab+bc+ ca= a(b+ c)+bc = a(2s−a)+bc

=
4Rras
r2
a + s2 · (2s− 4Rras

r2
a + s2 )+ r2

a + s2−4Rra

=
s6 + ra(4R+3ra)s4 + r2

a(3r2
a −16R2)s2 + r5

a(ra −4R)
(s2 + r2

a)2 .

Now it is easy to find α in terms of s , R , ra . We have

4α = a2 +b2 + c2 = (a+b+ c)2−2(ab+bc+ ca)

= 4s2−2
s6 + ra(4R+3ra)s4 + r2

a(3r2
a −16R2)s2 + r5

a(ra −4R)
(s2 + r2

a)2

=
2[s6− ra(4R− ra)s4 + r2

a(16R2− r2
a)s2 − r5

a(ra −4R)]
(s2 + r2

a)2 . (17)

2) Formula (17) express α as a complicated function of s , R , ra , so in order
to have a duality between formulas (5) and (11) we have to express cos ÎON in terms
of α,R,r . In this respect, from formula a2 + b2 + c2 = 2(s2 − r2 − 4Rr) we get s2 =
2α +4Rr+ r2 . Replacing in formula (5) we obtain

cos ÎON =
2R2 +10Rr− r2− s2

2(R−2r)
√

R2−2Rr
=

2R2 +10Rr− r2−2α −4Rr− r2

2(R−2r)
√

R2−2Rr

=
2R2 +6Rr−2r2−2α
2(R−2r)

√
R2−2Rr

.

Then it follows

cos ÎON =
R2 +3Rr− r2−α
(R−2r)

√
R2−2Rr

. (18)

The formal transformation r �→ −ra gives the duality between formulas (18) and (11).
We have similar duality relations for ra,rb .

4. Applications to some inequalities in s , R , and the exradii

In this section we will obtain as consequences to Theorem 3.2 some inequalities
involving s,R and the exradii of the triangle.

COROLLARY 1. In any triangle with semiperimeter s the following inequalities
hold

4Rr+ r2 � s2 � 2R2 + r2 +4Rr−6Rra−2r2
a +2(R+2ra)

√
R2 +2Rra, (19)

and analogous relations for rb and rc .
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Proof. Because a2+b2+c2

2 = s2 − r2 − 4Rr , the inequalities follow from the dual
form of Blundon’s inequality. �

Using the fact that r < ra from the right inequality in the previous result we obtain

s2 � 2R2 + r2 +4Rr−6Rra−2r2
a +2(R+2ra)

√
R2 +2Rra

< 2R2 + r2
a +4Rra−6Rra−2r2

a +2(R+2ra)
√

R2 +2Rra

= 2R2−2Rra− r2
a +2(R+2ra)

√
R2 +2Rra

hence we get the following inequality between s,R and ra :

s2 < 2R2−2Rra− r2
a +2(R+2ra)

√
R2 +2Rra. (20)

COROLLARY 2. In any triangle with semiperimeter s the following inequality
holds

s2 < min{4R2 +4Rra +3r2
a,4R2 +4Rrb +3r2

b,4R2 +4Rrc +3r2
c}. (21)

Proof. According to the inequality (20) we can write

s2 < 2R2−2Rra− r2
a +2(R+2ra)

√
R2 +2Rra

< 2R2−2Rra− r2
a +2(R+2ra)(R+ ra)

= 4R2 +4Rra +3r2
a,

and the similar relations for rb , rc , and we are done. �
In what follows we will derive an inequality involving R , ra and α .

COROLLARY 3. The following inequalities hold

a2 +b2 + c2 < min{8R2 +4r2
a,8R2 +4r2

b,8R2 +4r2
c}. (22)

Proof. From Theorem we have

α =
a2 +b2 + c2

4
� R2−3Rra− r2

a +(R+2ra)
√

R2 +2Rra

< R2−3Rra− r2
a +(R+2ra)(R+ ra) = 2R2 + r2

a,

and the inequality involving ra follows. We have the analogous relations for rb and
rc . �
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