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Abstract. Based on the well-known operator monotone function logt the chaotic order was
defined by A� B , e.g. logA � logB , and thereby the operator monotonicity of functions under
strictly chaotic order has been introduced. However, until now the revealed operator functions
with such property have been less than those functions under usual order. In this study, we
investigate two sequences of operator monotone functions under strictly chaotic order, following
the trace of Professor T. Furuta, S. Izumino and so on. However, the method is different from
that of the relative results on

f0(t) =
t−1
logt

, fp(t) =
t− p fp−1(t)

log t
, p = 1,2, · · ·

due to S. Izumino and N. Nakamura.

1. Introduction

A bounded linear operator A on a Hilbert space H is positive, in symbol A � 0, if
(Ax,x) � 0 for all x ∈ H . In particular, A is strictly positive, in symbol A > 0, if A is
positive invertible. The well-known Löwner-Heinz inequality[2] says that if A � B � 0,
then Aα � Bα for 0 � α � 1. This means that the function t → tα (0 � α � 1) on
[0,∞) is operator monotone. Another known example of operator monotone function is
t → logt on (0,1)∪ (1,+∞)[3]. Based on this fact, the chaotic order A � B , which is
weaker than the usual order A � B , is defined by logA � logB between strictly positive
operators A and B . Similarly, the strictly chaotic order is defined by logA > logB .

Recently, Professor T. Furuta, by using Löwner-Heinz inequality, showed the fol-
lowing operator monotonicity of functions

ϕ(t) =
t−1
logt

, ψ(t) =
t logt− t +1

log2 t

under strictly chaotic order:
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THEOREM F. ([4]) Let A and B be two strictly positive operators on a Hilbert
space H . If logA > logB with 1 /∈ σ(A),σ(B) , then there exists β ∈ (0,1] such that
ϕ(Aα) > ϕ(Bα) and ψ(Aα) > ψ(Bα) for all α ∈ (0,β ) .

The first author and L. Zhang extended the result about ψ(t) in Theorem F to a
sequence of functions

ψk(t) =
tk logk t− (t−1)k

logk+1 t
(k = 1,2, · · ·) :

THEOREM J-Z. ([5]) Assume the conditions as in Theorem F, then for all integers
k � 1 , there exists β ∈ (0,1] such that ψk(Aα) > ψk(Bα) for all α ∈ (0,β ) .

Since ψ1(t) = ψ(t) , we know that Theorem J-Z is an essential extension of The-
orem F.

Another extension of Theorem F was given by Professor S. Izumino and N. Naka-
mura:

THEOREM N-I. ([1]) Assume the conditions as in Theorem F, then for all integers
p � 0 , there exists β ∈ (0,1] such that fp(Aα) > fp(Bα) for all α ∈ (0,β ) , where

f0(t) =
t −1
log t

, fp(t) =
t− p fp−1(t)

logt
, p = 1,2, · · · .

By direct calculation we have f0(t) = ϕ(t) and f1(t) = ψ(t) , so Theorem I-N is
also an essential extension of Theorem F.

In this paper, we study the operator monotonicity of two sequences of functions
fpk(t) and hpk(t) (p,k = 1,2, · · ·) under strictly chaotic order. We prove that fp1(t) is
just fp(t) , and therefore more general results are obtained.

2. Main Result

First of all, we define two sequences of real numbers {u jk} ∞
j,k=1 and {v jk} ∞

j,k=1
by {

ekt = (1+ t + t2
2! + · · ·)k = 1+u1kt +u2kt2 + · · ·

(1+ t
2! + t2

3! + · · ·)k = 1+ v1kt + v2kt2 + · · ·
It’s easy to know that 0 < v jk < u jk = k j

j! and v1k = k
2 , v j1 = 1

( j+1)! , where j,k =
1,2, · · · .

Now the main result in this paper is given below:

THEOREM 2.1. Let A and B be two strictly positive operators on a Hilbert space
H . If logA > logB with 1 /∈ σ(A),σ(B) , then for all integers p � 1,k � 1 , there exists
β ∈ (0,1] such that fpk(Aα) > fpk(Bα) for all α ∈ (0,β ) , where v0k = 1 ,

fpk(t) =
(−1)pp!

logp+k t
[tk logk t

p

∑
j=1

(−1) jv j−1,k log j−1 t +(t−1)k], p,k = 1,2, · · · .
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To achive this theorem, we should give some lemmas, involving the discussion of
the relation between { fp(t)}∞

p=1 in Theorem I-N and { fpk(t)}∞
p,k=1 in our theorem.

LEMMA 2.2. fp1(t) = fp(t) for all t ∈ (0,1)∪ (1,+∞) and p = 1,2, · · · .
Proof. By the definition we know that

f11(t) =
(−1)
log2 t

[t logt(−1v01)+ (t−1)] = ψ(t) = f1(t).

Supposing f j1(t) = f j(t) for j = 1,2, · · · , p−1(p � 2) , we have

fp(t) =
t− p fp−1(t)

logt
=

t− p fp−1,1(t)
log t

=
1

log t

{
t − p

(−1)p−1(p−1)!
logp t

[t log t
p−1

∑
j=1

(−1) jv j−1,1 log j−1 t +(t−1)]
}

=
(−1)pp!

logp+1 t

[
t logt

p−1

∑
j=1

(−1) jv j−1,1 log j−1 t +(t−1)+
(−1)p

p!
t logp t

]

=
(−1)pp!

logp+1 t

{
t logt

[ p−1

∑
j=1

(−1) jv j−1,1 log j−1 t +(−1)pvp−1,1 logp−1 t
]
+(t−1)

}

=
(−1)pp!

logp+1 t

[
t logt

p

∑
j=1

(−1) jv j−1,1 log j−1 t +(t−1)
]

= fp1(t).

And hence, we get the conclusion by inductive method. �

According to Lemma 2.2, we know that our theorem is an essential extension of
Theorem I-N!

LEMMA 2.3. If we denote

Fpk(t) =
(−1)pp!

t p+k [ekttk
p

∑
j=1

(−1) jv j−1,kt
j−1 +(et −1)k] ,

then

Fpk(t) = p!ekt
i

∑
j=0

(−1) jv j+p,kt
j = p!

∞

∑
i=0

w(i)
pkt

i (p,k = 1,2, · · ·) ,

in which u0k = 1 and

w(i)
pk =

i

∑
j=0

(−1) jui− j,kv j+p,k (i = 0,1,2, · · · ; p,k = 1,2, · · ·)

Proof. Since

1
tk

(1− e−t)k =
1
tk

[
1−

∞

∑
j=0

(−t) j

j!

]k

=
[ ∞

∑
j=0

(−t) j

( j +1)!

]k

=
∞

∑
j=0

v jk(−t) j =
∞

∑
j=0

(−1) jv jkt
j,
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we have

Fpk(t) =
(−1)pp!ekt

t p

[ p

∑
j=1

(−1) jv j−1,kt
j−1 +

1
tk

(1− e−t)k
]

=
(−1)pp!ekt

t p

∞

∑
j=p

(−1) jv jkt
j

= p!ekt
∞

∑
j=p

(−1) j−pv jkt
j−p = p!

( ∞

∑
i=0

uikt
i
)[ ∞

∑
j=0

(−1) jv j+p,kt
j
]

= p!
∞

∑
i=0

[ i

∑
j=0

(−1) jui− j,kv j+p,k

]
ti = p!

∞

∑
i=0

w(i)
pkt

i.

�

Now, we should know more details about
{
v jk

}
and

{
w(i)

pk

}
. It is well-known

that (x− 1)k = ∑k
q=0Cq

k xq(−1)k−q leads to ∑k
q=0Cq

k (−1)k−q = 0, by this means and
inductive method it is easy to get the lemma below:

LEMMA 2.4.
k
∑

q=1
Cq

k (−1)k−qq j = 0 for all integers j : 1 � j < k ; 1
k! [

k
∑

q=1
Cq

k (−1)k−qqk] =

1.

LEMMA 2.5. According to the definition of
{
v jk

}
, we have

v jk =
(−1)k

( j + k)!

k

∑
q=1

(−1)qq j+kCq
k ,

as well as the inductive relation

v jk =
k

j + k

(
v j−1,k + v j,k−1

)
(v01 = 1,v10 = 0)

for j,k = 1,2, · · · .
Proof. By the definition and Lemma 2.4 we know that

tk(1+
∞

∑
j=1

v jkt
j) = tk(1+

t
2!

+
t2

3!
+ · · ·)k = (t +

t2

2!
+

t3

3!
+ · · ·)k = (et −1)k

=
k

∑
q=0

Cq
k eqt(−1)k−q =

k

∑
q=0

[
1+

∞

∑
j=1

(qt) j

j!

]
Cq

k (−1)k−q

=
k

∑
q=0

Cq
k (−1)k−q +

∞

∑
j=1

1
j!

[ k

∑
q=1

Cq
k (−1)k−qq j

]
t j

=
∞

∑
j=1

1
j!

[ k

∑
q=1

Cq
k (−1)k−qq j

]
t j

=
1
k!

[ k

∑
q=1

Cq
k (−1)k−qqk

]
tk +

∞

∑
j �=k

1
j!

[ k

∑
q=1

Cq
k (−1)k−qq j

]
t j
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= tk +
∞

∑
j �=k

1
j!

[ k

∑
q=1

Cq
k (−1)k−qq j

]
t j

= tk +
∞

∑
j=k+1

1
j!

[ k

∑
q=1

Cq
k (−1)k−qq j

]
t j

= tk +
∞

∑
j=1

(−1)k

( j + k)!

[ k

∑
q=1

(−1)qq j+kCq
k

]
t j+k.

And hence it follows that

v jk =
(−1)k

( j + k)!

k

∑
q=0

(−1)qq j+kCq
k

by comparing with the coefficient of t j .
Furthermore, by the direct calculation, we have

k
j + k

(v j−1,k + v j,k−1)

=
k

j + k

[
(−1)k

( j + k−1)!

k

∑
q=1

(−1)qq j+k−1Cq
k +

(−1)k−1

( j + k−1)!

k−1

∑
q=1

(−1)qq j+k−1Cq
k−1

]

=
(−1)kk
( j + k)!

[ k−1

∑
q=1

(−1)qq j+k−1(Cq
k −Cq

k−1

)
+(−1)kk j+k−1

]

=
(−1)k

( j + k)!

[ k−1

∑
q=1

(−1)qq j+k−1kCq−1
k−1 +(−1)kk j+k

]

=
(−1)k

( j + k)!

[ k−1

∑
q=1

(−1)qq j+kCq
k +(−1)kk j+k

]
= v jk.

�

LEMMA 2.6. w(i)
1k = ui+1,k − vi+1,k for i = 0,1,2, · · · ;k = 1,2, · · · and w(i)

p1 =
1

(i+p+1)i!p! for i = 0,1,2, · · · ; p = 1,2, · · · .

Proof. By the definition of
{
u jk

}
,
{
v jk

}
,
{
w(i)

pk

}
and Lemma 2.3, we have

F1k(t) =
1

tk+1

[
tkekt − (et −1)k]

=
1
t

[
(1+u1kt +u2kt

2 +u3kt
3 + · · ·)− (1+ v1kt + v2kt

2 + v3kt
3 + · · ·)]

= (u1k − v1k)+ (u2k − v2k)t +(u3k − v3k)t2 + · · ·

and hence, we get w(i)
1k = ui+1,k − vi+1,k , for i = 0,1,2, · · · ;k = 1,2, · · · .
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While

w(i)
p1 =

i

∑
j=0

(−1) jui− j,1v j+p,1 =
i

∑
j=0

(−1) j

(i− j)!( j + p+1)!

=
1

(i+ p+1)!

i

∑
j=0

(−1) jC j+p+1
i+p+1

=
1

(i+ p+1)!

[ i−1

∑
j=0

(−1) j(Cj+p
i+p +Cj+p+1

i+p

)
+(−1)i

]

=
1

(i+ p+1)!

[ i

∑
j=0

(−1) jC j+p
i+p −

i

∑
j=1

(−1) jC j+p
i+p

]

=
1

(i+ p+1)!
Cp

i+p =
1

(i+ p+1)i!p!
.

This completes the proof. �

LEMMA 2.7. According to the definition of
{
w(i)

pk

}
in Lemma 2.3, we have the

inductive relation

w(i)
pk =

k
p+ k+ i

[
w(i)

p−1,k+w(i−1)
pk +

i

∑
q=0

1
(i−q)!

w(q)
p,k−1

]
for i = 1,2, · · · ; p,k = 2,3, · · · .

where w(0)
pk = vpk , w(i)

1k = ui+1,k − vi+1,k, w(i)
p1 = 1

(i+p+1)i!p! for i = 0,1,2, · · · ; p,k =
1,2, · · · .

Proof. By the definition of
{
u jk

}
,
{
w(i)

pk

}
and Lemma 2.5, we have

i

∑
j=0

(−1) jui− j,k
(
v j+p−1,k + v j+p,k−1

)
=

i

∑
j=0

(−1) jui− j,k
j + p+ k

k
v j+p,k

=
i

∑
j=0

(−1) j p+ k+ i− (i− j)
k

ui− j,kv j+p,k

=
p+ k+ i

k
w(i)

pk −w(i−1)
pk

and

i

∑
j=0

(−1) jui− j,kv j+p,k−1 =
i

∑
j=0

(−1) j (k−1+1)i− j

(i− j)!
v j+p,k−1

=
i

∑
j=0

(−1) j

(i− j)!

[ i− j

∑
h=0

Ch
i− j(k−1)h

]
v j+p,k−1

=
i

∑
j=0

(−1) j
[ i− j

∑
h=0

(k−1)h

h!(i− j−h)!

]
v j+p,k−1
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=
i

∑
j=0

(−1) j
[ i− j

∑
h=0

1
(i− j−h)!

uh,k−1

]
v j+p,k−1

q=i− j−h
=

i

∑
j=0

(−1) j
[ i− j

∑
q=0

1
q!

ui− j−q,k−1

]
v j+p,k−1

=
i

∑
q=0

1
(i−q)!

[ q

∑
j=0

(−1) juq− j,k−1v j+p,k−1

]

=
i

∑
q=0

1
(i−q)!

w(q)
p,k−1.

Therefore

w(i)
p−1,k =

i

∑
j=0

(−1) jui− j,kv j+p−1,k =
p+ k+ i

k
w(i)

pk −w(i−1)
pk −

i

∑
q=0

1
(i−q)!

w(q)
p,k−1.

While, we have w(0)
pk = vpk by direct calculation, and w(i)

1k = ui+1,k − vi+1,k, w(i)
p1 =

1
(i+p+1)i!p! for i = 0,1,2, · · · ; p,k = 1,2, · · · by Lemma 2.6, then the proof is completed.�

LEMMA 2.8. 0 < w(i)
pk � uikvpk for i = 0,1,2, · · · ; p,k = 1,2, · · · .

Proof. Firstly, we have known that w(0)
pk = vpk > 0 (p,k = 1,2, · · ·) by the defi-

nition and w(i)
1k = ui+1,k − vi+1,k > 0 (i = 0,1,2, · · · ; k = 1,2, · · ·), w(i)

p1 = 1
(i+p+1)i!p! >

0 (i = 0,1,2 · · · ; p = 1,2, · · ·) by Lemma 2.6. And hence it follows w(i)
pk > 0 (i =

0,1,2, · · · ; p,k = 1,2, · · ·) by Lemma 2.7 and induction.

Secondly, by direct calculation, we have w(0)
pk = u0kvpk (u0k = 1) and

w(i)
pk =

i

∑
j=0

(−1) jui− j,kv j+p,k = uikvpk −
i

∑
j=1

(−1) j−1ui− j,kv j+p,k

= uikvpk −
i−1

∑
j=0

(−1) jui−1− j,kv j+p+1,k = uikvpk −w(i−1)
p+1,k

< uikvpk for i, p,k = 1,2, · · · .

�

LEMMA 2.9. Let A be a self-adjoint operator on a Hilbert space H . If a,b ∈ R
such that 0 < a � b, then aA � −b‖A‖I .

Proof. For μ ∈ σ(aA+b‖A‖I) , there exists λ ∈ σ(A) such that μ = aλ +b‖A‖ .
It is well-known that |λ | � ‖A‖ , so μ = aλ +b‖A‖� b‖A‖−a|λ |� 0. Noticing that
aA+b‖A‖I is also self-adjoint, it gives aA+b‖A‖I � 0. �
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LEMMA 2.10. Let A and B be two self-adjoint operators on a Hilbert space H .
If A > B, then for all integers p � 1 , k � 1 , there exists β ∈ (0,1] , which is independent
of p , such that Fpk(αA) > Fpk(αB) for all α ∈ (0,β ) , where Fpk(t) (p,k = 1,2, · · ·)
are defined in Lemma 2.3.

Proof. As A > B holds, there exists ε > 0 such that A−B � εI > 0. Denote

μk := inf
p�1

w(1)
pk

vpk
and choose

β = min

{
μkε

(ek‖A‖ + ek‖B‖)
, 1

}
.

Now, it is easy to see, from Lemma 2.5, (i) vp+1,k = k
p+1+k(vp,k+vp+1,k−1) , and by

definition, (ii) vp+1,k−1 < vp+1,k . thus, by (i) and (ii), we can obtain vp+1,k < k
p+1vp,k .

Note that by Lemmas 2.3 and 2.8, ω(1)
pk = u1kvpk −u0kvp+1,k = kvpk − vp+1,k > 0, thus

ω(1)
pk

vpk
< k ; while,

ω(1)
pk

vpk
= k− vp+1,k

vpk
> k− k

p+1 = pk
p+1 � k

2 , then k
2 � μk < k. And hence,

β can be independently from p and β ∈ (0,1] .
Next, by Lemma 2.3, Lemma 2.8 and Lemma 2.9, for all α ∈ (0,β ) , we have

Fpk(αA)−Fpk(αB) = p!
∞

∑
i=0

w(i)
pk

[
(αA)i − (αB)i]

= α p!

[
w(1)

pk (A−B)+ α
∞

∑
i=2

w(i)
pkα i−2(Ai−Bi)

]

� α p!

[
w(1)

pk ε −α
∞

∑
i=2

uikvpk‖Ai−Bi‖
]
I

� α p!

[
w(1)

pk ε −αvpk

∞

∑
i=0

uik
(‖A‖i +‖B‖i)]I

= α p!

[
w(1)

pk ε −αvpk(ek‖A‖ + ek‖B‖)
]
I > 0.

It gives the conclusion. �

To prove Theorem 2.1 in this paper, we have only to replace A and B by logA
and logB respectively in Lemma 2.10.

LEMMA 2.11. If we denote

Hpk(t) =
ekt

t p

[(
et −1

t

)k

−
p

∑
j=1

v j−1,kt
j−1

]
,

then

Hpk(t) =
∞

∑
i=0

ϖ (i)
pk ti for p,k = 1,2, · · ·
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where

ϖ (i)
pk =

i

∑
j=0

ui− j,kv j+p,k in which u0k = 1

as well as the relation 0 < ϖ (i)
pk � (2k)i+p

(i+p)! for i = 0,1,2, · · · ; p,k = 1,2, · · · .

LEMMA 2.12. Let A and B be two self-adjoint operators on a Hilbert space H .
If A > B, then for all integers p � 1 , k � 1 , there exists β ∈ (0,1] such that Hpk(αA) >
Hpk(αB) for all α ∈ (0,β ) .

Proof. As A > B holds, there exists ε > 0 such that A−B � εI > 0. Choosing

β = min

{ ϖ (1)
pk ε

e2k‖A‖
‖A‖p + e2k‖B‖

‖B‖p

, 1

}
,

we obtain, by Lemma 2.9 and Lemma 2.11, for all α ∈ (0,β )

Hpk(αA)−Hpk(αB) =
∞

∑
i=0

ϖ (i)
pk

[
(αA)i − (αB)i]

= α
[

ϖ (1)
pk (A−B)+ α

∞

∑
i=2

ϖ (i)
pk α i−2(Ai −Bi)

]

� α
[

ϖ (1)
pk ε −α

∞

∑
i=2

(2k)i+p

(i+ p)!
‖Ai−Bi‖

]
I

� α
[

ϖ (1)
pk ε −α

∞

∑
i=0

(2k)i+p

(i+ p)!

(‖A‖i+p

‖A‖p +
‖B‖i+p

‖B‖p

)]
I

� α
[

ϖ (1)
pk ε −α

(
e2k‖A‖

‖A‖p +
e2k‖B‖

‖B‖p

)]
I > 0.

It gives the conclusion. �

THEOREM 2.13. Let A and B be two strictly positive operators on a Hilbert
space H . If logA > logB with 1 /∈ σ(A),σ(B) , then for all integers p � 1,k � 1 ,
there exists β ∈ (0,1] such that hpk(Aα) > hpk(Bα) for all α ∈ (0,β ) , where v0k = 1 ,

hpk(t) =
tk

logp t

[(
t −1
log t

)k

−
p

∑
j=1

v j−1,k log j−1 t

]
, p,k = 1,2, · · · .

Proof. We have only to replace A and B by logA and logB respectively in
Lemma 2.12. �
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