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NEUMANN EIGENVALUE SUMS ON TRIANGLES

ARE (MOSTLY) MINIMAL FOR EQUILATERALS

R. S. LAUGESEN, Z. C. PAN AND S. S. SON

(Communicated by C. Bandle)

Abstract. We prove that among all triangles of given diameter, the equilateral triangle minimizes
the sum of the first n eigenvalues of the Neumann Laplacian, when n � 3 .

The result fails for n = 2 , because the second eigenvalue is known to be minimal for the
degenerate acute isosceles triangle (rather than for the equilateral) while the first eigenvalue is 0
for every triangle. We show the third eigenvalue is minimal for the equilateral triangle.

1. Results

Eigenfunctions of the Neumann Laplacian satisfy −Δu = μu with natural bound-
ary condition ∂u

∂n = 0, and the eigenvalues μ j satisfy

0 = μ1 < μ2 � μ3 � . . . → ∞.

We prove a geometrically sharp lower bound on sums of Neumann eigenvalues on tri-
angular domains, under normalization of the diameter.

THEOREM 1.1. Among all triangular domains of given diameter, the equilateral
triangle minimizes the sum of the first n eigenvalues of the Neumann Laplacian, when
n � 3 .

That is, if T is a triangular domain, E is equilateral, and n � 3 , then

(μ2 + . . .+ μn)D2
∣∣
T � (μ2 + . . .+ μn)D2

∣∣
E

with equality if and only if T is equilateral.

Multiplying the eigenvalues by D2 renders them scale invariant. Note the eigen-
values of the equilateral triangle are known explicitly (see Section 6), so that the lower
bound in the theorem is computable.

We prove the theorem in Sections 2–4. The proof is fully rigorous except when
n = 4,5,7,8,9. For those values of n , the proof relies on numerical estimation of
the eigenvalues μ2, . . . ,μ9 for one specific isosceles triangle. See Proposition 2.3 and
Table 1, below.
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Theorem 1.1 is geometrically sharp, meaning there exists an extremal domain for
each n . It is the first sharp lower bound on Neumann eigenvalue sums. (Upper bounds
are due to Laugesen and Siudeja [12], under a moment of inertia normalization.) The
theorem differs from the Weyl-type bounds of Kröger [9], which are asymptotically
sharp as n → ∞ , for each domain.

Two reasons for studying such sums are that the sum represents the energy needed
to fill the lowest n quantum states under the Pauli exclusion principle, and that the
eigenvalue sum provides a “summability” approach to studying the high eigenvalues
(μn for large n ), which are difficult to study directly.

We concentrate on triangular domains because they are the simplest domains whose
eigenvalues cannot be computed explicitly. The “hot spots” conjecture of Jeffrey Rauch
[7] about the maximum of the Neumann eigenfunction u2 remains unsolved on acute
triangles, in spite of Bañuelos and Burdzy’s proof for obtuse triangles by coupled Brow-
nian motion [5]. The triangular spectral gap conjecture of Antunes and Freitas [2],
which claims that the difference of the first two Dirichlet eigenvalues is minimal for
the equilateral, also remains unsolved. (The gap minimizer among convex domains is a
degenerate rectangle [1], but that result sheds no light on the conjecture for triangles.)
Clearly much remains to be discovered about triangles!

Theorem 1.1 fails for the second eigenvalue, n = 2, because μ2D2 is minimized
not by the equilateral but by the degenerate acute isosceles triangle, as Laugesen and
Siudeja showed when finding the optimal Poincaré inequality on triangles [11].

For the third eigenvalue we do prove minimality of the equilateral, in Section 5:

COROLLARY 1.2. Among all triangles of given diameter, μ3 is minimal for the
equilateral triangle. That is, μ3D2 � 16π2/9 for all triangular domains, with equality
if and only if the triangle is equilateral.

The fourth eigenvalue is not minimal for the equilateral, as shown by the numerical
work in Figure 1. The minimum appears to occur at the intersection of two eigenvalue
branches.

Now let us consider other shapes. Among rectangles of a given diameter, the
square does not always minimize the sum of the first n Neumann eigenvalues. For
example, by plotting the first 12 eigenvalues as a function of side-ratio, one finds that
the square fails to minimize (μ2 + · · ·+ μn)D2 when n = 5,6,7,10,11,12.

Ellipses behave more agreeably, for each individual eigenvalue, as we prove in
Section 5:

PROPOSITION 1.3. Among ellipses of given diameter, the disk minimizes each
eigenvalue of the Neumann Laplacian. That is, for each j � 2 , the quantity μ jD2 is
strictly minimal when the ellipse is a disk .

What about general convex domains? Our result for triangles in Theorem 1.1,
together with Proposition 1.3 for ellipses, suggests that:

CONJECTURE 1.4. Among convex domains of given diameter, the disk minimizes
the sum of the first n � 3 eigenvalues of the Neumann Laplacian. That is, (μ2 + . . .+
μn)D2 is minimal when the domain is a disk, for each n � 3 .
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Fig 1. Numerical plot of the first five nonzero Neumann eigenvalues normalized by diameter ( μ jD2 for
j = 2, . . . ,6 ) of an isosceles triangle, computed by the PDE Toolbox in Matlab and plotted as a function of
the aperture angle α between the two equal sides. The minimum value of μ4D2 is approximately 51.66 ,
occurring at α � 0.5433 (to 4 significant figures). The value at the equilateral triangle (α = π/3 ) is

larger: μ4D2 = 3 ·16π2/9 � 52.64 .

The conjecture fails for n = 2, because Payne and Weinberger proved μ2D2 is
minimal for the degenerate rectangle (and not the disk) among all convex domains [16].
In other words, they proved that the optimal Poincaré inequality for convex domains is
saturated by the degenerate rectangle.

Dirichlet and Robin boundary conditions

Minimality of Dirichlet eigenvalue sums for the equilateral, among all triangles
of given diameter, was proved recently by Laugesen and Siudeja [13], for each n � 1.
We will adapt their Method of the Unknown Trial Function to the Neumann case. The
adaptation breaks down for triangles that are “close to equilateral” when n = 4,5,7,8,9,
as we see in the next section. To overcome that obstacle we introduce a new triangle
with which to compare, in Proposition 2.3. The eigenvalues of this triangle are not
known explicitly, which necessitates a numerical evaluation for those exceptional n -
values.

Similar results should presumably hold under Robin boundary conditions, although
no such results have been proved. The Method of the Unknown Trial Function seems
not to work there, because the boundary integral in the Robin Rayleigh quotient trans-
forms differently from the integrals over the domain, under linear maps.

For more information on isoperimetric-type eigenvalue inequalities in mathemat-
ical physics (the general area of this paper), see the survey by Ashbaugh [3], and the
monographs of Bandle [4], Henrot [6], Kawohl [7], Kesavan [8] and Pólya–Szegő [18].

We thank Bartłomiej Siudeja for suggesting that we investigate Neumann eigen-
values, in this paper.
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2. Method of the Unknown Trial Function: the proof of Theorem 1.1

DEFINITION. The aperture of an isosceles triangle is the angle between its two
equal sides. Call a triangle subequilateral if it is isosceles with aperture less than π/3,
and superequilateral if it is isosceles with aperture greater than π/3.

The theorem will be proved in three steps.

Step 1 — Reduction to subequilateral triangles. Suppose the given triangle is not equi-
lateral. We may suppose it is subequilateral, as follows. Stretch the triangle in the
direction perpendicular to its longest side, until one of the other two sides has the same
length as the longest one. This subequilateral triangle has the same diameter as the orig-
inal triangle, and has strictly smaller eigenvalue sums by Lemma 5.1 later in the paper.
(When applying the equality statement of that lemma, notice that a second-or-higher
Neumann eigenfunction of a triangle cannot depend only on x , because the boundary
condition would force such a function to be constant.)

Thus it suffices to prove the theorem for subequilateral triangles.

Step 2 — Method of the Unknown Trial Function. Write

Mn = μ2 + · · ·+ μn

for the sum of the first n eigenvalues (where we may omit μ1 from the sum because it
equals 0). Define

T (a,b) = triangle having vertices at (−1,0),(1,0) and (a,b) ,

where a ∈ R and b > 0. The triangle T (a,b) is isosceles if a = 0, and subequilateral
if in addition b >

√
3. We will prove the theorem for the subequilateral triangle T (0,b)

with b >
√

3.
Further define three special triangles

E = T (0,
√

3) = equilateral triangle,

F+ = T (+1,2
√

3) = 30-60-90 right triangle,

F− = T (−1,2
√

3) = 30-60-90 right triangle.

The spectra of these triangles are explicitly computable, as we shall need in Step 3
below. Notice F+ and F− have the same spectra, by symmetry.

Our method involves transplanting the “unknown’ eigenfunctions of the triangle
T (0,b) to obtain trial functions for the (known) eigenvalues of the special triangles
E,F+,F− ; see Figure 2. By this technique we will prove:

PROPOSITION 2.1. For each n � 2 :

(a) if b >
√

3 then

MnD
2
∣∣
T (0,b) > min{MnD

2
∣∣
E ,

6
11

MnD
2
∣∣
F±};
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Fig 2. Linear maps to the subequilateral triangle T (0,b) , from the equilateral triangle E and right
triangles F+,F− .

(b) if b � 2.14 , then a better lower bound holds, namely

MnD
2
∣∣
T (0,b) > min{MnD

2
∣∣
E ,

5
8
MnD

2
∣∣
F±}.

The proof is in Section 3.

Step 3 — Compare eigenvalues of right and equilateral triangles.

LEMMA 2.2.

(a) 6
11MnD2

∣∣
F± � MnD2

∣∣
E for n = 3,6 and each n � 10 .

(b) 5
8MnD2

∣∣
F± � MnD2

∣∣
E for n = 4,5,7,8,9 .

The lemma is proved in Section 4. The lemma is certainly plausible, because the
Weyl asymptotic (μ j ∼ 4π j/A as j → ∞) implies that MnD2 is about twice as large
for the half-equilateral F± as for the full equilateral E , when n is large.

Proposition 2.1 combined with Lemma 2.2 proves most of Theorem 1.1, by show-
ing MnD2

∣∣
T (0,b) > MnD2

∣∣
E for most of the needed n -values and subequilateral trian-

gles. The remaining cases, where n = 4,5,7,8,9 and
√

3 < b < 2.14, are treated in the
next proposition.

PROPOSITION 2.3. The statement

MnD
2
∣∣
T (0,b) > MnD

2
∣∣
E , b ∈ (

√
3,2.14),
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is true when
n = 4 if M4D2

∣∣
G > 90.73 ,

n = 5 if M5D2
∣∣
G > 163.31 ,

n = 7 if M7D2
∣∣
G > 362.90 ,

n = 8 if M8D2
∣∣
G > 489.91 ,

n = 9 if M9D2
∣∣
G > 653.22 .

Here G denotes the isosceles triangle T (0,2.14) .

The proposition is proved in Section 3.
To verify the hypothesis of the proposition for each value of n , see Table 1.

n MnD2
∣∣
G

4 94.59
5 176.73
6 259.48
7 379.58
8 530.54
9 712.65

Table 1. Numerical values of the diameter-normalized eigenvalue sum MnD2 = (μ2 + · · ·+ μn)D2 for the
isosceles triangle G = T (0,2.14) , computed using the PDE Toolbox in Matlab.

3. Linear transformation of unknown eigenfunctions: proof of Propositions 2.1
and 2.3

Write μ j(a,b) for the Neumann eigenvalues of the triangle T (a,b) , and let the u j

be corresponding orthonormal eigenfunctions. Write

Mn(a,b) = μ2(a,b)+ · · ·+ μn(a,b)

for the eigenvalue sum.
We need a lemma estimating the change in an eigenvalue sum when the triangle

undergoes linear transformation.

LEMMA 3.1. (Linear transformation and eigenvalue sums) Let a,c∈R and b,d >
0 . Take C > 0 and n � 2 . Then the inequality

Mn(a,b) > CMn(c,d)

holds if
1
d2

[(
(a− c)2 +d2)(1− γn)+2b(a− c)δn +b2γn

]
<

1
C

,

where

γn =
∑n

j=1
∫
T (a,b) u

2
j,y dA

∑n
j=1

∫
T (a,b) |∇u j|2 dA

and δn =
∑n

j=1
∫
T (a,b) u j,xu j,y dA

∑n
j=1

∫
T (a,b) |∇u j|2 dA

.
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The lemma is due to Laugesen and Siudeja [13, Lemma 4.1] for Dirichlet boundary
conditions and the Neumann proof is exactly the same, except that we omit the case
n = 1, in order not to divide by zero in the denominators of γ1 and δ1 above.

Proof of Proposition 2.1

Part (a) of Proposition 2.1 was proved for Dirichlet boundary conditions by Lauge-
sen and Siudeja [13, Proposition 3.1]. The Neumann argument is identical.

Now we prove part (b) of Proposition 2.1, by adapting Laugesen and Siudeja’s
proof of the Dirichlet case. Assume b >

√
3. The equilateral triangle E = T (0,

√
3)

has diameter 2, and the subequilateral triangle T (0,b) has diameter
√

1+b2 . The
inequality

MnD
2
∣∣
T (0,b) = Mn(0,b)(1+b2) > Mn(0,

√
3)22 = MnD

2
∣∣
E

will hold by Lemma 3.1 with a = c = 0,d =
√

3 and C = 22/(1+b2) if

(1− γn)+
1
3
b2γn <

1+b2

22 .

This last inequality is equivalent to γn < 3/4. Thus if γn < 3/4 then part (b) of the
Proposition is proved. Assume γn � 3/4 from now on.

The triangle F± = T (±1,2
√

3) has diameter 4. The inequality

MnD
2
∣∣
T (0,b) = Mn(0,b)(1+b2) >

5
8
Mn(±1,2

√
3)42 =

5
8

MnD
2
∣∣
F±

will hold by Lemma 3.1 with a = 0,c = ±1,d = 2
√

3 and C = 5
8

42

1+b2 if

1
12

[13(1− γn)∓2bδn +b2γn] <
8
5

1+b2

42 .

We only need this inequality to hold for one of the choice of “+” or “−”, because F+
and F− have the same eigenvalues. Thus it suffices to show

1
12

[13(1− γn)+b2γn] <
8
5

1+b2

42 ,

which is equivalent to

b2 > 13− 19
6−5γn

.

The maximum of the right hand side over all possible values of γn ∈ [ 3
4 ,1] is approxi-

mately (2.134)2 . Thus part (b) certainly holds under the assumption b � 2.14.
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Proof of Proposition 2.3

In the previous proof we compared the eigenvalue sums of the subequilateral tri-
angle T (0,b) with those of the right triangles F± , by means of the Method of the
Unknown Trial Function. Those comparisons proved insufficient when b < 2.14. So in
this current proof we compare with the “endpoint” triangle T (0,b∗) . Unfortunately, the
eigenvalues of this triangle are not explicitly computable, which explains why certain
explicit estimates appear in the hypotheses of this Proposition.

We want to prove MnD2
∣∣
T (0,b) > MnD2

∣∣
E , for

√
3 < b < b∗ and n = 4,5,7,8,9,

where we have defined b∗ = 2.14. The proof of Proposition 2.1 above proves this
inequality when γn < 3

4 . So we assume γn � 3
4 .

Let K = 0.967. We will first prove

MnD
2
∣∣
T (0,b) = Mn(0,b)(b2 +1) > KMn(0,b∗)(b2

∗ +1) = KMnD
2
∣∣
T (0,b∗). (1)

This inequality holds by Lemma 3.1 with a = c = 0,d = b∗ and C = K b2∗+1
b2+1

if

1− γn +
b2

b2∗
γn <

1
K

b2 +1
b2∗ +1

. (2)

We must show that this inequality holds for all γn ∈ [ 3
4 ,1] and all b ∈ (

√
3,b∗) . Fixing

b temporarily, we see that the left side of inequality (2) is maximized when γn = 3
4 .

Substituting γn = 3
4 and then rearranging, we see it suffices to prove

K <
4b2∗

3(b2∗ +1)
b2 +1

b2 +b2∗/3

for all b ∈ (
√

3,b∗) . The right side of this new inequality is an increasing function of
b , since b2∗/3 > 1. Thus it suffices to check the inequality at b =

√
3; one finds the

right side equals approximately 0.9671, which exceeds our chosen value of K = 0.967
on the left side. Hence (1) is proved.

To complete the proof that MnD2
∣∣
T (0,b) > MnD2

∣∣
E , from (1), it would suffice to

know

MnD
2
∣∣
T (0,b∗) >

1
K

MnD
2
∣∣
E .

The right hand side can be evaluated explicitly (using the eigenvalues of the equilateral
triangle E as calculated in the Section 6). For n = 4,5,7,8,9 it equals 90.73, 163.31,
362.90, 489.91, 653.22, respectively. (We have rounded each number up in the second
decimal place.) These calculations justify the appearance of the five numbers in the
hypotheses of the proposition.

4. Comparison of eigenvalue sums: proof of Lemma 2.2

Consider the eigenvalue counting function N(μ) = #{ j � 0 : μ j(E1) < μ} , where
E1 is an equilateral triangle with sidelength 1. We develop explicit bounds of Weyl
type on this counting function, and then apply the bounds to prove Lemma 2.2.
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LEMMA 4.1. The counting function satisfies
√

3
16π

μ +
(6−√

3)
4π

√
μ +

3
2

> N(μ) >

√
3

16π
μ +

√
3

4π
√

μ − 3
2
, for all μ > 48π2 .

Hence for all j � 26 ,

16π√
3

( j− 3
2
)−8(2

√
3−1)

√
4π√

3
( j− 3

2
)+13−4

√
3+8(13−4

√
3)

� μ j(E1)

<
16π√

3
( j +

1
2
)−8

√
4π√

3
( j +

1
2
)+1+8.

Proof of Lemma 4.1. The spectrum of the equilateral triangle E1 under the Neu-
mann Laplacian is well known (see Section 6):

σm,n =
16π2

9
(m2 +mn+n2), m,n � 0.

Hence the Neumann counting function equals

N(μ) = #
{
(m,n) : m,n � 0,(m2 +mn+n2) < R2},

where R = 3
√μ/4π . The difference between this formula and the counting function

ND(·) for the Dirichlet eigenvalues is that in the Dirichlet case, m and n must be
positive. Therefore by counting pairs (m,n) that have either m = 0 or n = 0, we
can relate the two counting functions as follows:

ND(μ)+2R+1 > N(μ) > ND(μ)+2(R−1)+1,

where the “+1” counts the pair (0,0) . Some known estimates on the Dirichlet counting
function ND (see [13, Lemma 5.1]) now imply our estimates on the Neumann counting
function in Lemma 4.1.

Next, by applying the upper estimate in the lemma with μ = 48π2 + 1, we find
N(48π2 + 1) < 26. We conclude that μ j � 48π2 + 1 whenever j � 26. Thus the
counting function bounds in the lemma can be inverted for each j � 26 to yield the
stated bounds on μ j . (Specifically, to invert the upper bound on the counting function
one puts μ = μ j + ε and uses that N(μ j + ε) � j ; to invert the lower bound one puts
μ = μ j and uses that j−1 � N(μ j) .) �

Let μ s
j(E1) be the j th symmetric eigenvalue of the equilateral triangle E1 (see

Section 6), and write Ns(μ) for the symmetric counting function.

LEMMA 4.2. The symmetric counting function satisfies

Ns(μ) <

√
3

32π
μ +

3
4π

√
μ +

5
4
, for all μ > 48π2 .
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Hence for all j � 15 ,

μ s
j(E1) � 32π√

3
( j− 5

4
)−32

√
2
√

3π( j− 5
4
)+9+96.

Proof of Lemma 4.2. The symmetric eigenvalues of the equilateral triangle E1 are

σm,n =
16π2

9
(m2 +mn+n2), m � n � 0,

so that
Ns(μ) = #

{
(m,n) : m � n � 0,(m2 +mn+n2) < R2},

where R = 3
√μ/4π . Hence by symmetry,

2Ns(μ) � N(μ)+R/
√

3+1,

where the term “+R/
√

3+1” estimates the number of pairs (m,n) with m = n . Now
the upper bound on Ns(μ) in the lemma follows from the upper bound on N(μ) in
Lemma 4.1.

Next, by applying the upper estimate in this lemma with μ = 48π2 + 1, we find
Ns(48π2 +1) < 15, so that μ s

j � 48π2 +1 whenever j � 15. Thus the counting func-
tion estimate in the lemma can be inverted to yield the stated bounds on μ s

j , for each
j � 15. �

Proof of Lemma 2.2

The right triangle F+ = T (1,2
√

3) is half of an equilateral triangle. Thus the Neu-
mann eigenvalues of F+ are the symmetric eigenvalues of the equilateral triangle (the
eigenvalues whose eigenfunctions are symmetric across the bisecting line). Therefore,
after rescaling we see it suffices to show

Ms
j(E1)

Mj(E1)
�

{
11/6, for j = 3,6 and j � 10,

8/5, for j = 4,5,7,8,9,

where E1 is an equilateral triangle with diameter 1. For j � 192 this desired inequality
follows by direct calculation of the eigenvalues (Lemma 6.1 in the Section 6).

Next, from Lemmas 4.1 and 4.2 and an elementary estimate we find

μ s
j

μ j
>

32π√
3
( j− 5

4 )−32
√

2
√

3π( j− 5
4 )+9+96

16π√
3
( j + 1

2 )−8
√

4π√
3
( j + 1

2 )+1+8
>

11
6

for all j � 193. Hence the inequality Ms
j/Mj � 11/6 extends from j = 192 to all

j � 193.
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5. Proof of Corollary 1.2 and Proposition 1.3

Our results rely on a special kind of domain monotonicity that holds for Neumann
eigenvalues even though general domain monotonicity fails in the Neumann situation.

LEMMA 5.1. (Stretching) Let Ω be a Lipschitz domain in the plane. For t > 1 ,
let Ωt = {(x, ty) : (x,y) ∈ Ω} be the domain obtained by stretching Ω by the factor t
in the y direction. Then

μ j(Ωt) � μ j(Ω), j � 2.

If equality holds for some j � 2 , then there exists a corresponding eigenfunction on Ω
that depends only on x .

Proof of Lemma 5.1. The eigenvalue problem −(vxx+vyy)= μv on Ωt has Rayleigh
quotient

R[v] =

∫
Ωt

(v2
x + v2

y)dxdy∫
Ωt

v2 dxdy
.

We pull back to Ω by writing u(x,y) = v(x,ty) , so that R[v] equals

Rt [u] =

∫
Ω(u2

x + t−2u2
y)dxdy∫

Ω u2 dxdy
.

This quotient is smaller for t > 1 than for t = 1, and so μ j(Ωt) � μ j(Ω) by the varia-
tional characterization of eigenvalues [4, p. 97].

We prove the equality statement for j = 2, and leave the higher values of j to the
reader. Suppose μ2(Ωt) = μ2(Ω) . Let u be a second Neumann eigenfunction on Ω .
Then u has mean value 0 on Ω , so that v has mean value 0 on Ωt . Hence v is a valid
trial function for μ2(Ω2) , and so

μ2(Ωt) � R[v] = Rt [u] � R[u] = μ2(Ω).

Because equality holds in the second inequality, we conclude that uy ≡ 0. That is, u
depends only on x . �

Proof of Corollary 1.2

Consider a non-equilateral triangle T . We may assume T is subequilateral, for if
not then it can be stretched in the direction perpendicular to its longest side, until one of
the other two sides has the same length as the longest one; this subequilateral triangle
has smaller μ3 than the original one, by Lemma 5.1, and has the same diameter.

Among subequilateral triangles, μ2D2 is maximal for the equilateral by a result of
Laugesen and Siudeja [11, Section 6]:

μ2D
2
∣∣
T < μ2D

2
∣∣
E .

Furthermore, (μ2 + μ3)D2 is minimal for the equilateral by Theorem 1.1:

(μ2 + μ3)D2
∣∣
T > (μ2 + μ3)D2

∣∣
E .
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Subtracting these two inequalities shows for subequilateral triangles that

μ3D
2
∣∣
T > μ3D

2
∣∣
E .

Proof of Proposition 1.3

Each ellipse can be stretched to a circle of the same diameter. The Neumann
eigenvalues strictly decrease under such stretching (for j � 2), by Lemma 5.1.

6. Equilateral triangles, rectangles and their eigenvalues

The frequencies of the equilateral triangle were derived roughly 150 years ago by
Lamé [10, pp. 131–135]. For our Neumann situation, one can adapt the treatment of the
Dirichlet case given by Mathews and Walker’s text [14, pp. 237–239], or in the paper
by Pinsky [17]; or else see the exposition of the Neumann case by McCartin [15].

The equilateral triangle E1 with sidelength 1 has Neumann eigenvalues forming
a doubly-indexed sequence:

σm,n = (m2 +mn+n2) · 16π2

9
, m,n � 0.

For example,

μ1 = 0 = σ0,0, μ2 = μ3 = 1 · 16π2

9
= σ1,0 = σ0,1,

μ4 = 3 · 16π2

9
= σ1,1, μ5 = μ6 = 4 · 16π2

9
= σ2,0 = σ0,2.

Now consider a line of symmetry of E1 . Indices with m > n correspond to eigen-
functions that are antisymmetric across that line (see McCartin [15]). Indices with
m � n correspond to symmetric eigenfunctions. Denote the corresponding “symmetric
eigenvalues” by 0 = μ s

1 < μ s
2 � μ s

3 � . . . .

LEMMA 6.1. For j = 3,6 , and for 10 � j � 200 , we have

(μ s
2 + · · ·+ μ s

j) >
11
6

(μ2 + · · ·+ μ j). (3)

For j = 4,5,7,8,9 , we have a weaker inequality,

(μ s
2 + · · ·+ μ s

j) � 8
5
(μ2 + · · ·+ μ j), (4)

with equality for j = 4 and strict inequality for j = 5,7,8,9 .

Proof of Lemma 6.1. Begin by computing the first 200 eigenvalues μ j and sym-
metric eigenvalues μ s

j , using the indices m and n listed in Table 2. Estimates (3) and

(4) can then easily be checked. As a shortcut for (3), one can verify that μ s
j > 11

6 μ j

whenever 28 � j � 200, so that (3) holds for 28 � j � 200 as soon as the case j = 27
has been checked. �
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[0,0]
(0,0)

[0,1]
(0,1)

[1,1]
(1,0)

[0,2]
(1,1)

[1,2]
(0,2)

[0,3]
(2,0)

[2,2]
(1,2)

[1,3]
(2,1)

[0,4]
(0,3)

[2,3]
(3,0)

[1,4]
(2,2)

[0,5]
(1,3)

[3,3]
(3,1)

[2,4]
(0,4)

[1,5]
(4,0)

[0,6]
(2,3)

[3,4]
(3,2)

[2,5]
(1,4)

[1,6]
(4,1)

[4,4]
(0,5)

[0,7]
(5,0)

[3,5]
(3,3)

[2,6]
(2,4)

[1,7]
(4,2)

[4,5]
(1,5)

[3,6]
(5,1)

[0,8]
(0,6)

[2,7]
(6,0)

[1,8]
(3,4)

[5,5]
(4,3)

[4,6]
(2,5)

[3,7]
(5,2)

[0,9]
(1,6)

[2,8]
(6,1)

[1,9]
(4,4)

[5,6]
(0,7)

[4,7]
(3,5)

[3,8]
(5,3)

[0,10]
(7,0)

[2,9]
(2,6)

[6,6]
(6,2)

[5,7]
(1,7)

[1,10]
(7,1)

[4,8]
(4,5)

[3,9]
(5,4)

[0,11]
(3,6)

[2,10]
(6,3)

[6,7]
(0,8)

[5,8]
(8,0)

[1,11]
(2,7)

[4,9]
(7,2)

[3,10]
(1,8)

[0,12]
(8,1)

[2,11]
(5,5)

[7,7]
(4,6)

[6,8]
(6,4)

[5,9]
(3,7)

[4,10]
(7,3)

[1,12]
(0,9)

[3,11]
(9,0)

[0,13]
(2,8)

[7,8]
(8,2)

[6,9]
(1,9)

[2,12]
(5,6)

[5,10]
(6,5)

[4,11]
(9,1)

[1,13]
(4,7)

[3,12]
(7,4)

[8,8]
(3,8)

[7,9]
(8,3)

[0,14]
(0,10)

[6,10]
(10,0)

[2,13]
(2,9)

[5,11]
(9,2)

[4,12]
(6,6)

[1,14]
(5,7)

[3,13]
(7,5)

[8,9]
(1,10)

[7,10]
(10,1)

[6,11]
(4,8)

[0,15]
(8,4)

[2,14]
(3,9)

[5,12]
(9,3)

[4,13]
(0,11)

[1,15]
(11,0)

[9,9]
(2,10)

[8,10]
(10,2)

[3,14]
(6,7)

[7,11]
(7,6)

[6,12]
(5,8)

[0,16]
(8,5)

[2,15]
(1,11)

[5,13]
(4,9)

[4,14]
(9,4)

[9,10]
(11,1)

[1,16]
(3,10)

[8,11]
(10,3)

[7,12]
(0,12)

[3,15]
(12,0)

[6,13]
(2,11)

[0,17]
(7,7)

[5,14]
(11,2)

[2,16]
(6,8)

[10,10]
(8,6)

[4,15]
(5,9)

[9,11]
(9,5)

[8,12]
(4,10)

[1,17]
(10,4)

[7,13]
(1,12)

[3,16]
(12,1)

[6,14]
(3,11)

[0,18]
(11,3)

[5,15]
(0,13)

[2,17]
(7,8)

[10,11]
(8,7)

[9,12]
(13,0)

[4,16]
(6,9)

[8,13]
(9,6)

[1,18]
(2,12)

[7,14]
(12,2)

[3,17]
(5,10)

[6,15]
(10,5)

[0,19]
(4,11)

[5,16]
(11,4)

[11,11]
(1,13)

[2,18]
(13,1)

[10,12]
(3,12)

[9,13]
(12,3)

[8,14]
(8,8)

[4,17]
(7,9)

[7,15]
(9,7)

[1,19]
(0,14)

[3,18]
(6,10)

[6,16]
(10,6)

[11,12]
(14,0)

[5,17]
(2,13)

[10,13]
(13,2)

[0,20]
(5,11)

[2,19]
(11,5)

[9,14]
(4,12)

[8,15]
(12,4)

[4,18]
(1,14)

[7,16]
(14,1)

[1,20]
(3,13)

[3,19]
(8,9)

[6,17]
(9,8)

[12,12]
(13,3)

[11,13]
(7,10)

[10,14]
(10,7)

[5,18]
(6,11)

[0,21]
(11,6)

[9,15]
(0,15)

[2,20]
(15,0)

[8,16]
(2,14)

[4,19]
(14,2)

[7,17]
(5,12)

[1,21]
(12,5)

[6,18]
(4,13)

[3,20]
(13,4)

[12,13]
(1,15)

[11,14]
(15,1)

[10,15]
(9,9)

[5,19]
(8,10)

[9,16]
(10,8)

[0,22]
(3,14)

[2,21]
(7,11)

[8,17]
(11,7)

[4,20]
(14,3)

[7,18]
(6,12)

[1,22]
(12,6)

[13,13]
(0,16)

[12,14]
(16,0)

[6,19]
(2,15)

[11,15]
(5,13)

[3,21]
(13,5)

[10,16]
(15,2)

[9,17]
(4,14)

[5,20]
(14,4)

[0,23]
(9,10)

[2,22]
(10,9)

[8,18]
(1,16)

[4,21]
(8,11)

[7,19]
(11,8)

[13,14]
(16,1)

[12,15]
(7,12)

[1,23]
(12,7)

[11,16]
(3,15)

[6,20]
(15,3)

[3,22]
(6,13)

[10,17]
(13,16)

[9,18]
(0,17)

[5,21]
(17,0)

[0,24]
(5,14)

[8,19]
(14,5)

[2,23]
(2,16)

[4,22]
(16,2)

[14,14]
(10,10)

[7,20]
(4,15)

[13,15]
(9,11)

[12,16]
(11,9)

Table 2. Pairs of integers (m,n) giving the first 200 eigenvalues μ j along with pairs [m,n] giving the first
200 symmetric eigenvalues μs

j , for an equilateral triangle. The index j increases from 1 to 10 across the
first row, and so on.
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[5] R. BAÑUELOS AND K. BURDZY, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal., 164

(1999), 1–33.
[6] A. HENROT, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics.
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Rational Mech. Anal., 5 (1960), 286–292.

[17] M. A. PINSKY, Completeness of the eigenfunctions of the equilateral triangle, SIAM J. Math. Anal.,
16 (1985), 848–851.
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