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Abstract. We obtain an explicit approximation for the sum of prime powers in the factorization
of n! into prime numbers. This reproves, as more as gives an explicit version to, a well-known
result of Hardy and Ramanujan concerning the summation ∑k�n Ω(k) .

1. Introduction

Let vp(n!) be the power of the prime p in the factorization of n! into prime
numbers. In this paper, we find some bounds for the arithmetic function

S (n) = ∑
p�n

vp(n!),

where in this sum (and what follows below) p runs over primes. Indeed, we show the
following result.

THEOREM 1.1. For n � 2 we have

n loglogn+M′n− 814921n
logn

< S (n) < n loglogn+M′n+
n

log2 n
. (1.1)

where M′ is a constant defined by

M′ = γ +∑
p

(
log
(
1− p−1

)
+(p−1)−1

)
= 1.0346538818 · · ·.

We note that γ refers to Euler’s constant. Moreover, the constant M′ has been
known before (see [2]), and to evaluate it with high numerical precision we can use the
representation

M′ = γ +
∞

∑
k=2

ϕ(k) logζ (k)
k

.
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Now, we let Ω(k) be the total number of prime factors of k . A result of Hardy
and Ramanujan [3] asserts that

∑
k�n

Ω(k) = n loglogn+M′n+O
( n

logn

)
. (1.2)

By considering the relation

∑
k�n

Ω(k) = Ω(n!) = S (n),

we observe that the truth of Theorem 1.1 gives an explicit version of (1.2). This im-
proves the previously known [1] bound∣∣∣∑

k�n

Ω(k)−n loglogn
∣∣∣< 23n (n � 3).

2. Required explicit bounds

In this section, we state some required explicit bounds, which allow us to obtain
explicit approximation of S (n) . Starting point of the proof of Theorem 1.1 is the
following lemma, which is Theorem 2.1 from [4].

LEMMA 2.1. For every n ∈ N and prime p with p � n we have

n− p
p−1

− logn
log p

< vp(n!) � n−1
p−1

. (2.1)

Then, let us set

A (n) := ∑
p�n

1
p
, B(n) := ∑

p�n

1
p−1

, C (n) := ∑
p�n

1
log p

, D(n) := ∑
p�n

1
p(p−1)

.

Theorem 5 from [5] gives the following bound for A (n) .

LEMMA 2.2. For every n � 2 we have

log logn+M− 1

2log2 n
< A (n) < loglogn+M+

1

log2 n
, (2.2)

where M is a constant defined by

M = γ +∑
p

(
log
(
1− p−1

)
+ p−1

)
= 0.2614972128 · · ·.

The constant M is known as the Meissel-Mertens constant. To compute M we
may apply rapidly converging series

M = γ +
∞

∑
k=2

μ(k) logζ (k)
k

.
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LEMMA 2.3. For n � 2 we have

D(n) = (M′ −M)−E (n),

where E (n) is an error term satisfying the bound 1/(3n2) < E (n) < 1/n.

Proof. We have

D(n) = ∑
p

1
p(p−1)

− ∑
p>n

1
p(p−1)

= M′ −M−E (n),

where we let E (n) = ∑p>n 1/(p(p−1)) . We note that

E (n) <
∞

∑
j=n+1

1
j( j−1)

=
1
n
.

Also, we write

E (n) =
∞

∑
j=0

(
∑

2 jn<p�2 j+1n

1
p(p−1)

)
.

Bertrand’s postulate asserts that for any integers j � 0 and n � 2 there exists at least
one prime p with 2 jn < p < 2 j+1n . Thus, we obtain

E (n) >
∞

∑
j=0

1
(2 j+1n)2 =

1
3n2 .

This implies the stated result.
It seems that the true order of E (n) is 1/(n logn) . Also, since we have B(n) =

A (n) +M′ −M − E (n) , we can easily get some explicit bounds for B(n) by using
Lemma 2.2 and Lemma 2.3. About, C (n) , we have the following result, which is
Proposition 2.2 from [1].

LEMMA 2.4. For every n � 2 , we have

∣∣∣C (n)−
( n

log2 n
+

2n

log3 n
+

6n

log4 n

)∣∣∣< 271382
n

log5 n
. (2.3)

Finally, let us recall the statement of Theorem 1 from [5], which gives an upper
bound for the function π(x) = ∑p�x 1.

LEMMA 2.5. For n � 2 we have

π(n) <
n

logn

(
1+

3
2logn

)
. (2.4)
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3. Proof of Theorem 1.1

3.1. Lower bound

By considering the left hand side of (2.1), we have

S (n) > ∑
p�n

(
n− p
p−1

− logn
log p

)
= (n−1)B(n)−π(n)−C(n) logn.

We apply bounds for the functions A (n) , C (n) , E (n) and π(n) , which all hold for
n � 2. We obtain

S (n) > n loglogn+M′n+R�(n),

where

R�(n) = − 2n
logn

− 4n

log2 n
− 6n

log3 n
− 271382n

log4 n
− loglogn−M′ −1+

1
n

+
1

2log2 n
.

Now, we let g(n) = R�(n)+ 814921n/ logn . Since g(2) > 0 and for n � 2 we have
g′(n) > 0, we obtain R�(n) > −814921n/ logn . This proves the left hand side of (1.1).

3.2. Upper bound

By considering the right hand side of (2.1), we have

S (n) � ∑
p�n

(
n−1
p−1

)
= (n−1)B(n) = (n−1)

(
A (n)+M′ −M−E (n)

)
.

Now, we apply bounds for the functions A (n) and E (n) , which hold for n � 2. We
obtain

S (n) < n loglogn+M′n+Ru(n),

where Ru(n) = (n− 1)/ log2 n− loglogn−M′ − (n− 1)/(3n2) and trivially we have
Ru(n) < n/ log2 n for n � 2. This proves the right hand side of (1.1), and thus, com-
pletes the proof of Theorem 1.1.
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