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Abstract. In this paper, we find the greatest value α and the least values β , p , q and r in
(0,1/2) such that the inequalities L(αa+ (1−α)b,αb+ (1−α)a) < P(a,b) < L(βa + (1−
β)b,βb + (1− β)a) , H(pa + (1− p)b, pb + (1− p)a) > G(a,b) , H(qa+ (1− q)b,qb +(1−
q)a) > L(a,b) , and G(ra+(1− r)b,rb+(1− r)a) > L(a,b) hold for all a,b > 0 with a �= b .
Here, H(a,b) , G(a,b) , L(a,b) and P(a,b) denote the harmonic, geometric, logarithmic and
Seiffert means of two positive numbers a and b , respectively.

1. Introduction

For a,b > 0 with a �= b , the harmonic mean H(a,b) , geometric mean G(a,b) ,
logarithmic mean L(a,b) and Seiffert mean P(a,b) are defined by

H(a,b) =
2ab
a+b

, G(a,b) =
√

ab, L(a,b) =
a−b

loga− logb
(1.1)

and

P(a,b) =
a−b

4arctan
√

a/b−π
, (1.2)

respectively.
Recently, the inequalities for means have been the subject of intensive research. In

particular, many remarkable inequalities for the harmonic, geometric, logarithmic and
Seiffert means can be found in the literature [1–18]. Let I(a,b) = 1/e(bb/aa)1/(b−a) ,
A(a,b) = (a+ b)/2 and Mp(a,b) = [(ap + bp)/2]1/p(p �= 0) and M0(a,b) =

√
ab be

the identric, arithmetic and p− th power means of two positive numbers a and b with
a �= b , respectively. Then it is well-known that

min{a,b} < H(a,b) = M−1(a,b) < G(a,b) = M0(a,b) < L(a,b)
< P(a,b) < I(a,b) < A(a,b) = M1(a,b) < max{a,b}

for all a,b > 0 with a �= b .
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Lin [10] proved that the double inequality

M0(a,b) < L(a,b) < M1/3(a,b)

holds for all a,b > 0 with a �= b .
In [9], the authors presented that

L(a,b) <
1
3
A(a,b)+

2
3
G(a,b)

for all a,b > 0 with a �= b .
The following bounds for the Seiffert mean P(a,b) were established in [5, 7, 8,

14, 16]:

P(a,b) >
2
π

A(a,b),

Mlog2/ logπ(a,b) < P(a,b) < M2/3(a,b),

A2/3(a,b)G1/3(a,b) < P(a,b) <
2
3
A(a,b)+

1
3
G(a,b)

and
2
π

A(a,b)+
π −2

π
H(a,b) < P(a,b) <

5
6
A(a,b)+

1
6
H(a,b)

for all a,b > 0 with a �= b .
For fixed a,b > 0 with a �= b and x ∈ [0,1/2] , let

f1(x) = H(xa+(1− x)b,xb+(1− x)a),

f2(x) = G(xa+(1− x)b,xb+(1− x)a)

and

f3(x) = L(xa+(1− x)b,xb+(1− x)a).

Then it is not difficult to verify that f1(x) , f2(x) and f3(x) are continuous and strictly
increasing from [0,1/2] onto [H(a,b),A(a,b)] , [G(a,b),A(a,b)] and [L(a,b),A(a,b)] ,
respectively.

Therefore, it is natural to ask what are the greatest value α and the least values β ,
p , q , and r in (0,1/2) such that the inequalities L(αa+(1−α)b,αb+(1−α)a) <
P(a,b) < L(βa+(1−β )b,βb+(1−β )a) , H(pa+(1− p)b, pb+(1− p)a)> G(a,b) ,
H(qa+(1−q)b,qb+(1−q)a)> L(a,b) , and G(ra+(1−r)b,rb+(1−r)a)> L(a,b)
hold for all a,b > 0 with a �= b . The main purpose of this paper is to answer these
questions.
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2. Main Results

LEMMA 2.1. The equation

log[(1−λ )/λ ] = π(1−2λ )

has a unique solution λ = λ0 in the interval (0,1/2) and λ0 < (2−√
2)/4 .

Proof. Let f (λ ) = log[(1−λ )/λ ] and g(λ ) = π(1− 2λ ) . Then simple compu-
tations lead to

f (1/2) = g(1/2) = 0, (2.1)

f (0+) = +∞, (2.2)

f ′(λ ) = − 1
λ (1−λ )

(2.3)

and

f ′′(λ ) =
1−2λ

λ 2(1−λ )2 . (2.4)

It follows from equations (2.3) and (2.4) that f (λ ) is strictly decreasing and con-
vex in (0,1/2] . Note that

f

(
2−√

2
4

)
= 2log(2+

√
2)− log2 <

√
2

2
π = g

(
2−√

2
4

)
. (2.5)

Therefore, Lemma 2.1 follows from (2.1), (2.2) and (2.5) together with the mono-
tonicity and convexity of f (λ ) in (0,1/2] . �

THEOREM 2.2. If α,β ∈ (0,1/2) , then the double inequality

L(αa+(1−α)b,αb+(1−α)a)< P(a,b) < L(βa+(1−β )b,βb+(1−β )a)

holds for all a,b > 0 with a �= b if and only if α � λ0 and β � (2−√
2)/4 , where λ0

is defined as in Lemma 2.1.

Proof. Let μ = (2−√
2)/4. We first prove that inequalities

P(a,b) > L(λ0a+(1−λ0)b,λ0b+(1−λ0)a) (2.6)

and
P(a,b) < L(μa+(1− μ)b,μb+(1−μ)a) (2.7)

hold for all a,b > 0 with a �= b .
Without loss of generality, we assume that a > b . Let t =

√
a/b > 1 and p ∈

(0,1/2) , then from (1.1) and (1.2) one has

L(pa+(1− p)b, pb+(1− p)a)−P(a,b)

=
b(t2−1)

(4arctant−π)[log((1− p)t2 + p)− log(pt2 +(1− p))]
h(t), (2.8)
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where

h(t) = (1−2p)(4arctant−π)− log[(1− p)t2 + p]+ log[pt2 +(1− p)]. (2.9)

Simple computations lead to
h(1) = 0, (2.10)

lim
t→+∞

h(t) = (1−2p)π − log
1− p

p
, (2.11)

h′(t) =
2(1−2p)t(t−1)2

(t2 +1)[pt2 +(1− p)][(1− p)t2+ p]
h1(t), (2.12)

where

h1(t) = 2p(1− p)(t +
1
t
)+4p(1− p)−1. (2.13)

We clearly see that h1(t) is strictly increasing in (1,∞) . Note that

h1(1) = −8p2 +8p−1, (2.14)

lim
t→+∞

h1(t) = +∞. (2.15)

We divide the proof into two cases.
Case A. p = λ0 . Then from equations (2.11) and (2.14) together with Lemma 2.1

we have

lim
t→+∞

h(t) = (1−2p)π − log
1− p

p
= 0 (2.16)

and
h1(1) = −8p2 +8p−1 < 0. (2.17)

It follows from (2.12), (2.15) and (2.17) together with the monotonicity of h1(t)
that there exists t0 > 1, such that h(t) is strictly decreasing in (1,t0) and strictly in-
creasing in (t0,∞) .

Therefore, inequality (2.6) follows from (2.8)-(2.10) and (2.16) together with the
piecewise monotonicity of h(t) .

Case B. p = μ = (2−√
2)/4. Then h1(1) = −8p2 + 8p− 1 = 0, and h1(t) > 0

for t ∈ (1,∞) . Thus inequality (2.7) follows from (2.8)-(2.10) and (2.12).
Next, we prove that λ0 is the best possible parameter such that inequality (2.6)

holds for all a,b > 0 with a �= b . In fact, if λ0 < p < 1/2, then from the proof of
Lemma 2.1 and equation (2.11) we conclude that

lim
t→+∞

h(t) = (1−2p)π− log
1− p

p
> 0. (2.18)

Inequality (2.18) implies that there exists T = T (p) > 1 such that

h(t) > 0 (2.19)

for t ∈ (T,+∞) .
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Therefore, P(a,b) < L(pa+(1− p)b, pb+(1− p)a) for a/b∈ (T 2,+∞) follows
from equations (2.8) and (2.9) together with inequality (2.19).

Finally, we prove that p = μ = (2−√
2)/4 is the best possible parameter such that

inequality (2.7) holds for all a,b > 0 with a �= b . In fact, if 0 < p < μ = (2−√
2)/4,

then from equation (2.14) we get

h1(1) = −8p2 +8p−1 < 0. (2.20)

Inequality (2.20) implies that there exists δ > 0 such that

h1(t) < 0 (2.21)

for t ∈ (1,1+ δ ) .
Therefore, P(a,b) > L(pa+(1− p)b, pb+(1− p)a) for a/b ∈ (1,(1+ δ )2) fol-

lows from equations (2.8)-(2.10) and (2.12) together with inequality (2.21). �

THEOREM 2.3. If p ∈ (0,1/2) , then inequality

H(pa+(1− p)b, pb+(1− p)a)> G(a,b)

holds for all a,b > 0 with a �= b if and only if p � (2−√
2)/4 .

Proof. Without loss of generality, we assume that a > b . Let t =
√

a/b > 1, then
from (1.1) one has

H(pa+(1− p)b, pb+(1− p)a)−G(a,b)=
bt(t−1)2

t2 +1
h1(t), (2.22)

where h1(t) is defined as in (2.13).
Therefore, Theorem 2.3 follows from (2.14), (2.15) and (2.22) together with the

monotonicity of h1(t) . �

REMARK 2.4. From (2.22) and the range of h1(t) we know that there exist a,b >
0 such that H(pa+(1− p)b, pb+(1− p)a)> G(a,b) for any p ∈ (0,1/2) .

THEOREM 2.5. If q ∈ (0,1/2) , then inequality

H(qa+(1−q)b,qb+(1−q)a)> L(a,b) (2.23)

holds for all a,b > 0 with a �= b if and only if q � (3−√
3)/6 .

Proof. Without loss of generality, we assume that a > b . Let t = a/b > 1, then
from (1.1) one has

H(qa+(1−q)b,qb+(1−q)a)−L(a,b)=
2b[qt +(1−q)][(1−q)t+q]

(t +1) logt
g(t), (2.24)

where

g(t) = logt − t2−1
2[qt +(1−q)][(1−q)t+q]

. (2.25)
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Simple computations lead to
g(1) = 0, (2.26)

g′(t) =
(t−1)2

2[qt +(1−q)]2[(1−q)t +q]2
g1(t), (2.27)

where

g1(t) = 2q2(1−q)2(t +
1
t
)−4q4 +8q3−10q2 +6q−1. (2.28)

Clearly g1(t) is strictly increasing in (1,∞) . Note that

g1(1) = −6q2 +6q−1, (2.29)

lim
t→+∞

g1(t) = +∞. (2.30)

Making use of (2.25)-(2.30) and the monotonicity of g1(t) together with the sim-
ilar argument as in the proof of Theorem 2.2 we know that g(t) > 0 for all t > 1 if and
only if q � (3−√

3)/6. Then equation (2.24) leads to Theorem 2.5. �

REMARK 2.6. From (2.25) we clearly see that lim
t→+∞

g(t) = +∞ for any q ∈
(0,1/2) . Therefore, there does not exist q ∈ (0,(3 −√

3)/6) such that inequality
H(qa+(1−q)b,qb+(1−q)a)< L(a,b) holds for all a,b > 0 with a �= b .

THEOREM 2.7. If r ∈ (0,1/2) , then inequality

G(ra+(1− r)b,rb+(1− r)a)> L(a,b) (2.31)

holds for all a,b > 0 with a �= b if and only if r � (3−√
6)/6 .

Proof. Without loss of generality, we assume that a > b . Let t = log(a/b) > 0,
then from (1.1) one has

[G(ra+(1− r)b,rb+(1− r)a)]2−L2(a,b) =
(

b
t

)2

J(t), (2.32)

where

J(t) = [r(1− r)t2−1]e2t +[(2r2−2r+1)t2 +2]et + r(1− r)t2−1. (2.33)

Making use of Taylor series expansion, (2.33) becomes

J(t) =
∞

∑
n=3

(n+1)(n+2)[2nr(1− r)+2r2−2r+1]−2n+2+2
(n+2)!

tn+2

− (r2− r+
1
12

)t4. (2.34)

We divide the proof into three cases.



BEST POSSIBLE INEQUALITIES 421

Case 1. r = (3−√
6)/6. Then equation (2.34) reduces to

J(t) =
1
12

∞

∑
n=6

2n[(n+1)(n+2)−48]+10(n+1)(n+2)+24
(n+2)!

tn+2

+
t6

240
+

t7

240
> 0. (2.35)

Therefore, inequality (2.31) follows from (2.32) and (2.35).
Case 2. (3−√

6)/6 < r < 1/2. Then from Case 1 and the monotonicity of the
function f2(x) = G(xa +(1− x)b,xb +(1− x)a) in [0,1/2] we know that inequality
(2.31) holds.

Case 3. 0 < r < (3−√
6)/6. Then −(r2− r+1/12) < 0, and (2.34) implies that

there exists δ1 > 0 such that
J(t) < 0 (2.36)

for t ∈ (0,δ1) .
Therefore, G(ra + (1− r)b,rb + (1− r)a) < L(a,b) for all a,b > 0 with a/b ∈

(1,eδ1) follows from (2.32) and (2.36). �

REMARK 2.8. If r ∈ [0,(3−√
6)/6) , then inequality G(ra+(1− r)b,rb+(1−

r)a) < L(a,b) holds for all a,b > 0 with a �= b if and only if r = 0. In fact, equation
(2.33) implies that lim

t→+∞
J(t) = +∞ for any q ∈ (0,(3−√

6)/6) .

Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the
manuscript and their fruitful comments and suggestions.

RE F ER EN C ES

[1] H. ALZER AND S.-L. QIU, Inequalities for means in two variables, Arch. Math. 80 (2003), 201–215.
[2] F. BURK, The geometric, logarithmic, and arithmetic mean inequality, Amer. Math. Monthly 94

(1987), 527–528.
[3] B. C. CARLSON, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615–618.
[4] Y.-M. CHU AND B.-Y. LONG, Sharp inequalities between means, Math. Inequal. Appl. 14 (2011),

647–655.
[5] Y.-M. CHU, Y.-F. QIU, M.-K. WANG AND G.-D. WANG, The optimal convex combination bounds

of arithmetic and harmonic means for the Seiffert’s mean, J. Inequal. Appl. 2010, Article ID 436457,
7 pages.

[6] Y.-M. CHU AND W.-F. XIA, Two optimal double inequalities between power mean and logarithmic
mean, Comput. Math. Appl. 60 (2010), 83–89.
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