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SEMILINEAR STOCHASTIC FUNCTIONAL EVOLUTION EQUATIONS
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(Communicated by I. Pinelis)

Abstract. In this paper, we study the boundedness and stability with respect to the parameters for
the mild solutions of stochastic functional evolution equations in which the nonlinearity satisfies
a monotone type condition. Our main tool is a version of the Itô-type inequality by means of
which we can obtain an appropriate bound for p -th moment, p � 2 , of the mild solutions.

1. Introduction

Over the last years, many authors attempted to extend the existence, uniqueness
and stability results for classical ordinary [3] and functional differential equations [10]
to equations in infinite dimensional spaces [1, 2, 4, 9, 16, 19, 20]. In particular, based on
the general results on monotone nonlinear operator equations in Hilbert and reflexive
Banach spaces, Browder [1, 2] proved the existence and uniqueness of generalized and
also mild solutions for the initial value problem x′(t) = f (t,x(t)) with x(0) = v on a
real Hilbert space H , in the case f : [0,T ]×H →H is continuous, carries bounded sets
of [0,T ]×H into bounded subsets of H and has a semi-monotone property. In [20],
Vainberg dropped coercivity condition that was essential in the abstract machinery of
Browder and assuming only that f is demicontinuous and bounded, established the
existence and uniqueness of the generalized and mild solutions. Note that the results
become very important specifically when the evolution with respect to the time of the
dynamical system modeled by an abstract differential equation, undergoes some sort
of randomness. In this case, we should take also into account the measurability of the
solutions. Appealing to a version of random Schauder’s fixed point theorem, Jahanipur
[14] established the existence, uniqueness and measurability of the generalized and mild
solutions of functional evolution equations on a Hilbert space in which the nonlinearity
is demicontinuous and satisfies a condition of monotone type.

One of the most important problems concerning the solution of a differential equa-
tion modeling the behaviour of a dynamic phenomenon is its continuous dependence on
the initial data and the various parameters existing on the right hand side of the equa-
tion which are the mathematical counterparts of the quantities involved in the system.
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The boundedness, continuity and smoothness of the solution of a stochastic differential
equation depending on a parameter, have been well-studied by several authors (see e.g.
[7, 11]). Métivier [17] proved the continuity and smoothness of an H -valued stochas-
tic differential equation of Lipschitz type with respect to parameters. In [8], Faris and
Jona-Lasinio proved that the solution of the integral equation

X(t) =U(t,0)X0 +
∫ t

0
U(t,s) f (s,X(s))ds+V (t)

is continuous function of V in the special case when the generator of U is d2

dx2 and

f (x) = −λx3− μx . Da Prato and Zabczyk [5] generalized this result to the case when
U is an analytic semigroup and f satisfies a locally Lipschitz condition on a Banach
space. Zangeneh [22] proved the continuity of the solution when all of V , f and X0 are
varied. In this way, he could first extend the results in [5, 8] to a more general setting
where U is an evolution operator and f satisfies the semi-monotone (which is weaker
than Lipschitz) condition, a problem that was open after Faris and Jona-Lasinio [8],
and then generalized the results obtained by Métivier [17], to the semilinear stochastic
evolution equations with monotone nonlinearity.

In this paper, we study the continuous dependence of the mild solutions of semi-
linear stochastic functional evolution equations with respect to the parameters. Our
novelty is that the nonlinear part of the equation is demicontinuous and satisfies a
special kind of monotone condition instead of Lipschitz one. In addition to this, the
linear part involves a time-dependent family of unbounded linear operators generating
an exponentially bounded evolution operator. The existence, uniqueness and moment
stability of the mild solutions of such a class of stochastic functional equations along
with several interesting examples have been studied in [13, 14, 15]. A version of the
Itô-type inequality established in [12] has an essential role in obtaining the continuity
and boundedness of the mild solutions.

2. Preliminaries

In this section, we give some definitions and preliminaries including a number of
notions from semigroup theory, Brownian motion and stochastic integration on Hilbert
spaces. Let H be a real separable Hilbert space with the norm and inner product de-
noted by ‖ .‖ and 〈. , .〉 , respectively. A family {U(t,s) : 0 � s � t � T} of bounded
linear operators on H is said to be an evolution operator if

• U(t, t) = I, U(t,r)U(r,s) = U(t,s), for 0 � s � r � t � T, where I is the
identity operator;

• The mapping (t,s) �→U(t,s) is strongly continuous for 0 � s � t � T .

Let {A(t) : 0 � t � T} be a family of closed densely defined linear operators on H
whose domain D is independent of t ∈ [0,T ] . We say that U(t,s) is a strong evolution
operator with generator A(t) if the following hold:
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(a) For all s � t and for each x ∈ D ,

U(t,s)x− x =
∫ t

s
U(t,r)A(r)xdr;

(b) Let x ∈ D and s ∈ [0,T ] . For all t > s , we have U(t,s)D ⊆ D and

∫ t

s
A(r)U(r,s)xdr = (U(t,s)− I)x.

The following are the relevant hypotheses concerning the family {A(t) : 0� t � T}
in order to be the generator of an evolution operator.

HYPOTHESIS 2.1. There exists a λ ∈ R such that

(a) For each t ∈ [0,T ] , A(t) − λ I is the generator of a strongly continuous contrac-
tion semigroup; that is, A(t) − λ I is a closed maximal monotone operator with
dense domain;

(b) For each μ > λ , the operator-valued function (−A(t)+ μI)−1 is strongly con-
tinuously differentiable with respect to t ∈ [0,T ];

(c) B(t,s)=A(t)[μI−A(s)]−1 is uniformly bounded in (t,s) for μ > λ with a bound
depending on μ .

It is turned out (see [1, 2, 16, 18, 19]) that under the above conditions, the fam-
ily U(t,s) is a strong evolution operator with generator A(t) which is exponentially
bounded with parameter λ on [0,T ] ; i.e., ‖U(t,s)‖ � eλ (t−s) for all 0 � s � t � T .
These conditions apply to a large class of parabolic, hyperbolic and functional evolution
equations (see e.g. [4]).

Let K be another real separable Hilbert space. We use the same notations ‖ .‖ and
〈 . , .〉 for the norm and inner product in K as well as in H . Suppose that (Ω,F ,Ft ,P)
is a complete stochastic basis with a right continuous filtration.

DEFINITION 2.2. A family of random linear functionals {Wt : t � 0} on K is
called a cylindrical Brownian motion on K , if

(a) W0 = 0 and Wt(x) is Ft -adapted for every x ∈ K ;

(b) For every x ∈ K such that x 
= 0, Wt(x)/‖x‖ is a one-dimensional Brownian
motion.

For the properties of cylindrical Brownian motion and its relation to other defini-
tions of Brownian motion in infinite dimensions, see [21].

DEFINITION 2.3. Let ξ : [0,∞)→ K be an Ft -adapted, predictable process such
that E[

∫ t
0 ‖ξ (s)‖2 ds] < ∞ for all t � 0. The stochastic integral of ξ with respect to the
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cylindrical Brownian motion {Wt : t � 0} is a real-valued continuous martingale given
by ∫ t

0
〈ξ (s) , dWs〉 =

∞

∑
n=1

∫ t

0
〈ξ (s) , en〉dWs(en),

where {en}∞
n=1 is a complete orthonormal basis of K .

Assume that L2(K,H) is the space of Hilbert-Schmidt operators from K to H
with the familiar Hilbert-Schmidt norm ‖ .‖2 . Now, we define the H -valued stochastic
integral for L2(K,H)-valued processes.

DEFINITION 2.4. Let Φ : [0,∞) → L2(K,H) be an Ft -adapted, predictable pro-
cess such that E[

∫ t
0 ‖Φ(s)‖2

2 ds] < ∞ for all t � 0. The stochastic integral of Φ is an
H -valued continuous martingale given by

〈h ,

∫ t

0
Φ(s)dWs〉 =

∫ t

0
〈Φ∗(s)h , dWs〉, ∀h ∈ H,

where Φ∗ is the adjoint operator of Φ .

For a fixed real r > 0, let CH =C(−r,0;H) be the Banach space of all continuous
H -valued functions ψ : [−r,0]→H defined on the finite delay interval [−r,0] with the
usual sup-norm ‖ψ‖CH = supθ∈[−r,0]‖ψ(θ )‖ . Also, whenever a problem of measura-
bility is in concern, we will equip CH with the σ -algebra of its Borel sets. Given any
p � 2, denote by Cp

F0
the space of all continuous processes φ : [−r,0]×Ω → H such

that φ(θ , .) is F0 -measurable for each θ ∈ [−r,0] and E(sup−r�θ�0‖φ(θ )‖p) < ∞ .
To any adapted continuous stochastic process

X : [−r,T ]×Ω → H such that E(sup−r�t�T‖X(t)‖p) < ∞,

(with Ft = F0 for t ∈ [−r,0]) there corresponds a CH -valued adapted process Xt ∈
Cp

F0
defined on θ ∈ [−r,0] by

Xt(θ ) = X(t + θ ), t ∈ [0,T ].

Consider on H a semilinear stochastic functional evolution equation of the form{
dX(t) = [A(t)X(t)+ f (t,Xt)]dt +g(t,Xt)dWt , t ∈ [0,T ]
X(θ ) = φ(θ ), θ ∈ [−r,0], (2.1)

where the initial data φ ∈Cp
F0

.

DEFINITION 2.5. An H -valued, Ft -adapted predictable process X(t) , t ∈ [−r,T ] ,
is called a mild solution of (2.1) if X(t) satisfies the integral equation

X(t) = U(t,0)φ(0)+
∫ t

0
U(t,s) f (s,Xs)ds+

∫ t

0
U(t,s)g(s,Xs)dWs, t ∈ [0,T ], (2.2)

with X(θ ) = φ(θ ) for θ ∈ [−r,0] .
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Let us consider a slightly more general integral equation

X(t) = U(t,0)φ(0)+
∫ t

0
U(t,s) f (s,Xs)ds+

∫ t

0
U(t,s)g(s,Xs)dWs +V(t), (2.3)

on the time interval [0,T ] where the given continuous process V : [−r,T ]×Ω → H
satisfies V (θ ) = 0 for all θ ∈ [−r,0] . The following are the relevant hypotheses con-
cerning A,U,g and the nonlinear part f .

HYPOTHESIS 2.6. (a) The function f : [0,T ]×Ω×CH →H is jointly measur-
able;

(b) For each t ∈ [0,T ] and ω ∈ Ω , the mapping ψ �→ f (t,ω ,ψ) is demicontinuous;
i.e., whenever {ψn} is a sequence which is strongly convergent to ψ in CH , then
f (t,ω ,ψn) converges weakly to f (t,ω ,ψ) in H ;

(c) There exists a nonnegative number M such that for each ω ∈ Ω , the function
(t,ψ) �→ f (t,ω ,ψ) is semimonotone with parameter M . By this, we mean that

〈 f (t,ω ,ψ1)− f (t,ω ,ψ2) , ψ1(0)−ψ2(0)〉 � M‖ψ1(0)−ψ2(0)‖2,

for all t ∈ [0,T ] and ψ1,ψ2 ∈CH ;

(d) There exists a constant C > 0 such that

‖ f (t,ω ,ψ)‖ � C(1+‖ψ‖CH),

for all t ∈ [0,T ] , ω ∈ Ω and ψ ∈CH ;

(e) g : [0,T ]×Ω×CH → L2(K,H) is a predictable process on H such that

‖g(t,ω ,ψ1)−g(t,ω ,ψ2)‖2 � C‖ψ1−ψ2‖CH ,

for all t ∈ [0,T ] and ψ1,ψ2 ∈CH ;

(f) A and U satisfy Hypothesis 2.1.

Now, we state the existence result of a unique continuous solution for (2.3). Re-
call that if X : [−r,T ]×Ω → H is an H -valued stochastic process, then the notation
X∗(t), t ∈ [0,T ] , always means sup−r�s�t ‖X(s)‖ . Also we denote by ‖X‖∞ the usual
sup-norm of X on [−r,T ] .

THEOREM 2.7. ([15]) Let p � 2 . If E[sup0�s�t ‖g(s,0)‖p
2 ] and E(V ∗(t))p are

finite for all t ∈ [0,T ] and hypotheses 2.6 hold, then the integral equation (2.3) has a
unique continuous adapted solution X with E(X∗(t))p < ∞ for all t ∈ [0,T ] .

Finally, we give the Itô-type inequality [12] which is our main tool in this paper
to prove continuity with respect to the parameters and p -th mean boundedness of the
mild solutions. Let {Wt : t � 0} be the cylindrical Brownian motion with respect to
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(Ω,F ,Ft ,P) . Assume that p � 2 and f ,g are two processes defined on [0,T ] with
values in H and L2(K,H) , respectively and satisfy∫ T

0
E‖ f (t)‖p dt < ∞,

∫ T

0
E‖g(t)‖p

2 dt < ∞.

THEOREM 2.8. (Itô-type inequality) Let ξ be an H -valued, F0 -measurable
random variable. Suppose that U and A satisfy Hypothesis 2.1. If

X(t) =U(t,0)ξ +
∫ t

0
U(t,s) f (s)ds+

∫ t

0
U(t,s)g(s)dWs, t ∈ [0,T ],

then

‖X(t)‖p � epλ t‖ξ‖p + p
∫ t

0
epλ (t−s)‖X(s)‖p−2〈X(s) , f (s)〉ds

+p
∫ t

0
epλ (t−s)‖X(s)‖p−2〈X(s) , g(s)dWs〉

+
p(p−1)

2

∫ t

0
epλ (t−s)‖X(s)‖p−2‖g(s)‖2

2 ds,

for all t ∈ [0,T ] .

3. Boundedness of the mild solutions

In this section, we apply the Itô-type inequality of the previous section to prove a
boundedness theorem for the p -th mean of the mild solutions for stochastic functional
evolution equations under hypotheses 2.6. Two useful inequalities help us to obtain
our main result in this section and we state them in the next two lemmas. The first is
an elementary inequality due to Young and the second is a simple consequence of the
Burkholder-Davis-Gundy inequality [6] and its proof can be found in [23].

LEMMA 3.1. For all nonnegative real numbers u and v and all 0 � α � 1 , we
have u1−αvα � (1−α)u+ αv.

LEMMA 3.2. Let X(t), t � 0 , be an H -valued continuous process. If M(t) is an
H -valued continuous martingale, then for any constant K > 0 we have

E

(
sup

0�ρ�t

∣∣∣∣
∫ ρ

0
〈X(s) , dM(s)〉

∣∣∣∣
)

� 3
2K

E(X∗(t))2 +
3K
2

E([M](t)),

where [ ] stands for the quadratic variation process.

THEOREM 3.3. Suppose that all conditions of Theorem 2.7 hold. If X(t), t ∈
[−r,T ] , is the solution of (2.3), then there exists a constant C > 0 such that

E(X∗(t))p � C

{
1+E(‖φ(0)‖p)+E

(∫ t

0
‖g(s,0)‖p

2 ds

)
+E(V ∗(t))p

}
.

In particular, X∗(t) ∈ Lp for all t ∈ [−r,T ] .
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Proof. First of all, note that by Lemmas 1 and 5 of [23], we may assume without
loss of generality that g(s,0) = 0 for all s ∈ [0,T ] and by a simple transformation [14],
we may reduce the problem to the case when λ = 0. Define Y (t) = X(t)−V(t) for all
t ∈ [−r,T ] . Then we can rewrite (2.3) as

Y (t) = U(t,0)φ(0)+
∫ t

0
U(t,s) f (s,Xs)ds+

∫ t

0
U(t,s)g(s,Xs)dWs.

By the Itô-type inequality of Section 2, one can derive that

‖Y (t)‖p � ‖φ(0)‖p + p
∫ t

0
‖Y (s)‖p−2〈Y (s) , f (s,Xs)〉ds

+p
∫ t

0
‖Y (s)‖p−2〈Y (s) , g(s,Xs)dWs〉 (3.1)

+
p(p−1)

2

∫ t

0
‖Y (s)‖p−2‖g(s,Xs)‖2

2 ds.

Since Xs = Ys +Vs for all s ∈ [0,T ] , we have

p
∫ t

0
‖Y (s)‖p−2〈Y (s) , f (s,Xs)〉ds = p

∫ t

0
‖Y (s)‖p−2〈Y (s) , f (s,Ys +Vs)− f (s,Vs)〉ds

+p
∫ t

0
‖Y (s)‖p−2〈Y (s) , f (s,Vs)〉ds.

Now, we use Lemma 3.1 and Hypothesis 2.6(c) and (d) to conclude that the right hand
side of the above equation is

� pM
∫ t

0
‖Y (s)‖p ds+ pCT(Y ∗(t))p−1(1+V ∗(t)) (3.2)

� pM
∫ t

0
(Y ∗(s))p ds+

1
2
(Y ∗(t))p +CT [4pCT (1− 1

p
)]p−1{1+(V∗(t))p}.

Substituting (3.2) in (3.1), it then follows that

1
2
(Y ∗(t))p � ‖φ(0)‖p + pM

∫ t

0
(Y ∗(s))p ds+CT [4pCT (1− 1

p
)]p−1{1+(V∗(t))p}

+p sup
0�ρ�t

∣∣∣∣
∫ ρ

0
‖Y (s)‖p−2〈Y (s) , g(s,Xs)dWs〉

∣∣∣∣ (3.3)

+
p(p−1)

2

∫ t

0
‖Y (s)‖p−2‖g(s,Xs)‖2

2 ds

Multiplying both sides of (3.3) by 2, taking the mathematical expectation and using
Lemma 3.2 on the next to the last term, yield

E(Y ∗(t))p � 2E(‖φ(0)‖p)+2pM
∫ t

0
E(Y ∗(s))p ds

+2CT [4pCT (1− 1
p
)]p−1{1+E(V∗(t))p}+

3p
K

E(Y ∗(t))p

+[p(p−1)+3pK]
∫ t

0
E(‖Y (s)‖p−2‖g(s,Xs)‖2

2)ds,
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where K is an arbitrary positive constant. Choose K = 6p and note that by Theorem
2.7, E(Y ∗(t))p < ∞ . Then

E(Y ∗(t))p � 4E(‖φ(0)‖p)+4pM
∫ t

0
E(Y ∗(s))p ds

+4CT [4pCT (1− 1
p
)]p−1{1+E(V∗(t))p} (3.4)

+2[p(p−1)+2(3p)2]
∫ t

0
E(‖Y (s)‖p−2‖g(s,Xs)‖2

2)ds.

By Hypothesis 2.6(e) and the fact that g(s,0) = 0, we obtain that the last integral on
the right of (3.4) is

� C2
∫ t

0
E(‖Y (s)‖p−2‖Xs‖2

CH
)ds

� 2C2
∫ t

0
E(‖Y (s)‖p−2‖Vs‖2

CH
)ds+2C2

∫ t

0
E(‖Ys‖p

CH
)ds

� 4C2(1− 1
p
)
∫ t

0
E(Y ∗(s))p ds+

4C2T
p

{1+E(V∗(t))p}.

Therefore, we can rewrite (3.4) as

E(Y ∗(t))p � 4E(‖φ(0)‖p)+{4CT [4pCT (1− 1
p
)]p−1 +

4C2T
p

δ}{1+E(V∗(t))p}

+{4pM+4C2δ (1− 1
p
)}
∫ t

0
E(Y ∗(s))p ds,

in which δ = 2[p(p−1)+2(3p)2] . Now, by the well-known Gronwall inequality, we
have

E(Y ∗(t))p � α[1+E(‖φ(0)‖p)+E(V∗(t))p]eγt ,

where α = max{4, 4CT [4pCT (1− 1
p )]p−1 + 4C2T

p δ} and γ = 4pM + 4C2δ (1− 1
p ) .

Finally, since
(X∗(t))p � 2p−1{(Y ∗(t))p +(V ∗(t))p},

we conclude that

E(X∗(t))p � C{1+E(‖φ(0)‖p)+E(V ∗(t))p},

where the constant C = 2p−1αeγT . This completes the proof of the theorem. �

4. Continuity with respect to the parameters

In this section, we give a proof for the continuity of the mild solution or more
generally, the solution of equation (2.3), with respect to the parameters; i.e., we prove
that the solution changes continuously when any or all of V , f , g and the initial data
φ are varied. Before that, we are going to prove a lemma.
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LEMMA 4.1. Let f i , gi , V i and φ i , i = 1,2 satisfy the conditions of Theorem
2.7 and Xi(t) , i = 1,2 are solutions of the integral equations

Xi(t) = U(t,0)φ i(0)+
∫ t

0
U(t,s) f i(s,Xi(s))ds+

∫ t

0
U(t,s)gi(s,Xi(s))dWs +Vi(t).

If Y i = Xi−Vi for i = 1,2 , then

p
∫ t

0
‖Y 2(s)−Y 1(s)‖p−2〈Y 2(s)−Y1(s) , f 2(s,X2

s )− f 1(s,X1
s )〉ds

� [4(p−1)M+(2p−3)]
∫ t

0
‖Y 2(s)−Y 1(s)‖p ds

+
∫ t

0
‖ f 2(s,X1

s )− f 1(s,X1
s )‖p ds+ I

(∫ t

0
‖V 2(s)−V 1(s)‖p ds

) 1
2

,

in which

I = 4M

(∫ t

0
‖V 2(s)−V 1(s)‖p ds

) 1
2

+2

(∫ t

0
‖ f 2(s,X2

s )− f 2(s,X1
s )‖p ds

) 1
2

,

for all t ∈ [0,T ] .

Proof. We denote by J(t) the left hand side of the asserted inequality:

J(t) = p
∫ t

0
‖Y 2(s)−Y 1(s)‖p−2〈Y 2(s)−Y1(s) , f 2(s,X2

s )− f 1(s,X1
s )〉ds,

and decompose it into two parts:

J(t) = p
∫ t

0
‖Y 2(s)−Y 1(s)‖p−2〈Y 2(s)−Y 1(s) , f 2(s,X2

s )− f 2(s,X1
s )〉ds

+p
∫ t

0
‖Y 2(s)−Y 1(s)‖p−2〈Y 2(s)−Y 1(s) , f 2(s,X1

s )− f 1(s,X1
s )〉ds

= J1(t)+ J2(t).

Then we estimate each part separately. Since, Y i = Xi−V i , for i = 1,2 and f 2 satisfies
Hypothesis 2.6(c), we get

J1(t) � p
∫ t

0
‖Y 2(s)−Y 1(s)‖p−2‖V 2(s)−V 1(s)‖‖ f 2(s,X2

s )− f 2(s,X1
s )‖ds

+pM
∫ t

0
‖Y 2(s)−Y 1(s)‖p−2‖X2(s)−X1(s)‖2 ds. (4.1)

Using the Hölder inequality to the first term on the right hand side of (4.1) and since
Xi

s = Y i
s +Vi

s for i = 1,2, we obtain
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J1(t) � p

(∫ t

0
‖V 2(s)−V 1(s)‖ p

2 ‖ f 2(s,X2
s )− f 2(s,X1

s )‖ p
2 ds

) 2
p

×
(∫ t

0
‖Y 2(s)−Y 1(s)‖p ds

)1− 2
p

+2pM
∫ t

0
‖Y 2(s)−Y1(s)‖p−2‖V 2(s)−V 1(s)‖2 ds (4.2)

+2pM
∫ t

0
‖Y 2(s)−Y1(s)‖p ds.

Applying Lemma 3.1 with α = 2
p to the first and second term on the right of (4.2), one

can see that

J1(t) � [2pM +2p(1− 2
p
)M]

∫ t

0
‖Y 2(s)−Y 1(s)‖p ds+4M

∫ t

0
‖V 2(s)−V 1(s)‖p ds

+2

(∫ t

0
‖V 2(s)−V 1(s)‖p ds

) 1
2
(∫ t

0
‖ f 2(s,X2

s )− f 2(s,X1
s )‖p ds

) 1
2

(4.3)

+(p−2)
∫ t

0
‖Y 2(s)−Y 1(s)‖p ds.

On the other hand, again by Lemma 3.1, we have

J2(t) � p
∫ t

0
‖Y 2(s)−Y 1(s)‖p−1‖ f 2(s,X1

s )− f 1(s,X1
s )‖ds

� p(1− 1
p
)
∫ t

0
‖Y 2(s)−Y 1(s)‖p ds+

∫ t

0
‖ f 2(s,X1

s )− f 1(s,X1
s )‖p ds. (4.4)

From (4.3) and (4.4) the desired result follows. �
Now, we are ready to state and prove our main theorem on the continuity with

respect to data for the mild solutions of (2.1) and generally the solutions of (2.3).

THEOREM 4.2. Let f i , gi , V i and φ i , i = 1,2 satisfy the conditions of Theorem
2.7 and Xi(t) , i = 1,2 are solutions of the integral equations

Xi(t) = U(t,0)φ i(0)+
∫ t

0
U(t,s) f i(s,Xi

s)ds+
∫ t

0
U(t,s)gi(s,Xi

s)dWs +Vi(t).

Then there exist positive constants α , γ and C such that

E{(X2−X1)∗(t)}p � 2p−1αeγT [E(‖φ2(0)−φ1(0)‖p)+K{E(‖V2−V 1‖p
∞)} 1

2

+
∫ T

0
E(‖g2(s,X1

s )−g1(s,X1
s )‖p

2)ds

+
∫ T

0
E(‖ f 2(s,X1

s )− f 1(s,X1
s )‖p ds],

where

K � C
(
1+E(‖φ2(0)‖p)+E(‖φ1(0)‖p)+E(‖V2‖p

∞)+E(‖V 1‖p
∞)
)
. (4.5)
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Proof. As we said in the previous section, by a simple transformation [14] we may
assume without lose of generality that λ = 0. Setting Y i(t) = Xi(t)−Vi(t) , we have

Y i(t) = U(t,0)φ i(0)+
∫ t

0
U(t,s) f i(s,Xi

s)ds+
∫ t

0
U(t,s)gi(s,Xi

s)dWs.

Hence,

Y 2(t)−Y1(t) = U(t,0)(φ2(0)−φ1(0))+
∫ t

0
U(t,s)[ f 2(s,X2

s )− f 1(s,X1
s )]ds

+
∫ t

0
U(t,s)[g2(s,X2

s )−g1(s,X1
s )]dWs.

Now, define
Y = Y 2 −Y1, V = V 2−V 1, φ = φ2 −φ1.

Using the Itô-type inequality of Section 2, we obtain

‖Y (t)‖p � ‖φ(0)‖p + p
∫ t

0
‖Y (s)‖p−2〈Y (s) , f 2(s,X2

s )− f 1(s,X1
s )〉ds

+p
∫ t

0
‖Y (s)‖p−2〈Y (s) , (g2(s,X2

s )−g1(s,X1
s ))dWs〉 (4.6)

+
p(p−1)

2

∫ t

0
‖Y (s)‖p−2‖g2(s,X2

s )−g1(s,X1
s )‖2

2 ds.

There are three integrals on the right hand side of the above inequality which we denote
them by I1(t) , I2(t) and I3(t) , respectively. In fact,

I1(t) =
∫ t

0
‖Y (s)‖p−2〈Y (s) , f 2(s,X2

s )− f 1(s,X1
s )〉ds,

I2(t) =
∫ t

0
‖Y (s)‖p−2〈Y (s) , (g2(s,X2

s )−g1(s,X1
s ))dWs〉,

and

I3(t) =
∫ t

0
‖Y (s)‖p−2‖g2(s,X2

s )−g1(s,X1
s )‖2

2 ds.

We try to estimate each of the foregoing integrals to obtain an ultimate bound for the
p -th moment of Y ∗(t) . By Lemma 4.1, we get

I1(t) � [4(p−1)M+(2p−3)]
∫ t

0
‖Y (s)‖pds+

√
TI‖V‖

p
2∞

+
∫ t

0
‖ f 2(s,X1

s )− f 1(s,X1
s )‖p ds, (4.7)

where

I � 4M
√

T‖V‖
p
2∞ +2

(∫ t

0
‖ f 2(s,X2

s )− f 2(s,X1
s )‖p ds

) 1
2

.
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But, since f 2 satisfies the linear growth condition; i.e., it is bounded by the function
ψ(r) = C(1+ r) on R

+ , we have

‖ f 2(s,X2
s )− f 2(s,X1

s )‖ � C(1+‖X2‖∞)+C(1+‖X1‖∞),

for all s ∈ [0,T ] . Consequently,

I � 4M
√

T‖V‖
p
2∞ +2p+1

√
TC

p
2 (2+‖X2‖

p
2∞ +‖X1‖

p
2∞).

Moreover, by Lemma 3.2, we deduce that

E{ sup
0�ρ�t

I2(ρ)} � 3L
2

E(I∗3 (t))+
3
2L

E(Y ∗(t))p, (4.8)

for arbitrary positive constant L . Choose L = 3p in (4.8). Since by Theorem 2.7,
E(Y ∗(t))p < ∞ , we obtain that

E(Y ∗(t))p � 2E(‖φ(0)‖p)+2pE(I∗1(t))+ [(3p)2 + p(p−1)]E(I∗3(t)). (4.9)

On the other hand, according to Lemma 3.1 with α = 2
p and Hypothesis 2.6(e), we find

for the third integral that

E(I∗3 (t)) � 2C2
∫ t

0
E(‖Y (s)‖p−2‖X2

s −X1
s ‖2

CH
)ds

+2
∫ t

0
E(‖Y (s)‖p−2‖g2(s,X1

s )−g1(s,X1
s )‖2

2)ds

� [8C2(1− 1
p
)+2(1− 2

p
)]
∫ t

0
E(Y ∗(s))p ds+

4C2T
p

E(‖V‖p
∞)

+
4
p

∫ t

0
E(‖g2(s,X1

s )−g1(s,X1
s )‖p

2)ds. (4.10)

Combining (4.7), (4.9) and (4.10) and using the Cauchy-Schwartz inequality, one can
derive that

E(Y ∗(t))p � 2E(‖φ(0)‖p)+2{[4(p−1)M +(2p−3)]

+[(3p)2 + p(p−1)][8C2(1− 1
p
)+2(1− 2

p
)]}
∫ t

0
E(Y ∗(s))p ds

+2
√

T{E(I2)} 1
2 {E(‖V‖p

∞)} 1
2 +

4C2T
p

[(3p)2 + p(p−1)]E(‖V ‖p
∞)

+2
∫ t

0
E(‖ f 2(s,X1

s )− f 1(s,X1
s )‖p)ds

+
4
p
[(3p)2 + p(p−1)]

∫ t

0
E(‖g2(s,X1

s )−g1(s,X1
s )‖p

2 )ds.

Now, by the Gronwall inequality

E(Y ∗(t))p � α[E(‖φ(0)‖p)+
∫ T

0
E(‖ f 2(s,X1

s )− f 1(s,X1
s )‖p)ds

+
∫ T

0
E(‖g2(s,X1

s )−g1(s,X1
s )‖p

2)ds+E(‖V‖p
∞) (4.11)

+{E(I2)} 1
2 {E(‖V‖p

∞)} 1
2 ]eγt ,
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in which α = max{2, 2
√

T ,4C2T (10p−1),4(10p−1)} and

γ = 2[4(p−1)M+(2p−3)]+ (10p−1)[8C2(p−1)+2(p−2)].

Since X∗(t) � Y ∗(t)+‖V‖∞ , (4.11) implies that

E(X∗(t))p � 2p−1αeγT [E(‖φ(0)‖p)+
∫ T

0
E(‖ f 2(s,X1

s )− f 1(s,X1
s )‖p)ds

+
∫ T

0
E(‖g2(s,X1

s )−g1(s,X1
s )‖p

2)ds+K{E(‖V‖p
∞)} 1

2 ],

where K = {E(I2)} 1
2 +{E(‖V‖p

∞)} 1
2 . To complete the proof of the theorem, we only

need to show that the constant K satisfies (4.5). Indeed, by Theorem 3.3, there exists a
constant C depending on p and T such that

E(‖Xi‖p
∞) � C(1+E(‖φ i(0)‖p)+E(‖Vi‖p

∞)),

for i = 1,2. Therefore,

E(I2) � C1
(
1+E(‖φ1(0)‖p)+E(‖φ2(0)‖p)+E(‖V 1‖p

∞)+E(‖V2‖p
∞)
)
, (4.12)

for some positive constant C1 . Moreover,

‖V‖p
∞ � 2p−1(‖V 1‖p

∞ +‖V 2‖p
∞). (4.13)

Thus, from (4.12) and (4.13) we conclude that there exists a positive constant C such
that

K � C
(
1+E(‖φ1(0)‖p)+E(‖φ2(0)‖p)+E(‖V 1‖p

∞)+E(‖V2‖p
∞)
)
.

This completes the proof of the theorem. �

COROLLARY 4.3. (continuity with respect to the initial data) If X1(t) and X2(t)
are two mild solutions of (2.1) with the initial data φ1 and φ2 , respectively, then there
exists a positive constant C such that

E{(X2−X1)∗(t)}p � CE(‖φ2(0)−φ1(0)‖p),

for all t ∈ [0,T ] .
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