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Abstract. Applying norm inequalities for RKHSs corresponding to the product of reproducing
kernels and using the minimal norm of the Nevanlinna interpolation, we give the basic back-
ground and essences of the quite famous fundamental inequalities, Oppenheim’s inequality,
Hadamard’s inequality and Schur’s inequality on positive semidefinite matrices. In particular,
as an application, we determine equality conditions for Oppenheim’s inequality and Schur’s in-
equality.

1. Introduction

Oppenheim’s inequality [4]: for any positive semidefinite complex matrices A and
B , we have

|A◦B|� |A|b11 · · ·bnn, (1.1)

where A = (ai j)n
i, j=1, B = (bi j)n

i, j=1 , and A◦B = (ai jbi j)n
i, j=1 is the Hadamard product

of A and B . Our aim is to derive equality conditions for Oppenheim’s inequality by
using the theory of kernel functions.

A function k : E×E →C is called a positive definite kernel on the set E if, for any
finite sequence {xi}n

i=1 ⊂ E and for any complex numbers ξi (i = 1, . . . ,n) , k satisfies
the inequality

n

∑
i=1

k(xi,x j)ξiξ j � 0.

One verifies easily that the reproducing kernel of a reproducing kernel Hilbert space
(RKHS) on E is a positive definite kernel on E . The converse to this fact is important.
Indeed, it is well-known that, for each positive definite kernel k on E , there exists a
unique RKHS Hk on E whose reproducing kernel is k . By Schur’s theorem the product
of two positive definite kernels on E is also a positive definite kernel on E . Thus, if Hk1

and Hk2 are RKHSs on E , then Hk1k2 is a well-defined RKHS on E and the following
norm inequality holds: for every f ∈Hk1 and g∈Hk2 , the product f g belongs to Hk1k2

and satisfies

‖ f g‖k1k2 � ‖ f‖k1‖g‖k2 . (1.2)

Here ‖ · ‖k denotes the norm of Hk . The inequality (1.2) and its equality condition are
the main tool of our paper. For the general theory of reproducing kernels, the reader is
referred to [1, 5].

Mathematics subject classification (2010): Primary 46E22; Secondary 15A45.
Keywords and phrases: Oppenheim’s inequality, Hadamard’s inequality, Schur’s inequality, Hadamard

product of matrices, positive semidefinite matrices, reproducing kernels.

c© � � , Zagreb
Paper MIA-15-39

449



450 AKIRA YAMADA

2. Positive semidefinite matrix and its RKHS

Setting a(i, j) = ai j , we may regard any positive semidefinite matrix A = (ai j) ∈
Mn as a positive definite kernel a(i, j) on the set {1, . . . ,n} , where Mn is the set of
n×n complex matrices. Moreover, we identify a column vector (xi)n

i=1 with a function
x(i) = xi on {1, . . . ,n} . With these identifications it is interesting to know a concrete
description of the RKHS HA . We summarize well-known facts about HA as follows
(cf. [5, pp. 13–14]):

PROPOSITION 2.1. Let A = (ai j) be an n×n positive semidefinite complex ma-
trix. By identifying the matrix A as a positive definite kernel on {1, . . . ,n} , the RKHS
HA on {1, . . . ,n} is the vector space ranA equipped with the inner product

〈Ax,Ay〉 =
n

∑
i, j=1

xiy ja ji

for tx = (x1 · · · xn) ∈ Cn and ty = (y1 · · · yn) ∈ Cn . The i-th column vector of A is the
reproducing kernel of HA at i , (i = 1, . . . ,n) .

Proof. We only note that from the identity

〈Ax,Ay〉 = 〈Ax,y〉0 = 〈x,Ay〉0,

the inner product is well-defined and positive definite, where 〈·, ·〉0 denotes the standard
inner product of Cn . The rest of the proof is omitted. �

From now on the reproducing kernel of HA at i is denoted by kA
i . Thus, A =

(kA
1 kA

2 . . . kA
n ) .

We next show an analogue of Bergman’s formula for minimal integrals [2, p. 26].

PROPOSITION 2.2. Let {x j}n
j=1 be a linearly independent subset of a complex

Hilbert space H . Then, for any complex numbers {b j}n
j=1 , there exists a unique ele-

ment f ∈ H which satisfies

〈 f ,x j〉 = b j, j = 1, . . . ,n, (2.1)

and minimizes the norm ‖ f‖ . Moreover, if fn is the element which satisfies (2.1) and
minimizes the norm, then

fn = − 1
Gn

∣∣∣∣∣∣∣∣∣

0 x1 . . . xn

b1 〈x1,x1〉 . . . 〈xn,x1〉
...

...
. . .

...
bn 〈x1,xn〉 . . . 〈xn,xn〉

∣∣∣∣∣∣∣∣∣
, (2.2)
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and

‖ fn‖2 = − 1
Gn

∣∣∣∣∣∣∣∣∣

0 b1 . . . bn

b1 〈x1,x1〉 . . . 〈xn,x1〉
...

...
. . .

...
bn 〈x1,xn〉 . . . 〈xn,xn〉

∣∣∣∣∣∣∣∣∣
,

where Gn = det(〈x j,xi〉)n
i, j=1 is the Gramian of {x j}n

j=1 .

Proof. Note that Gn > 0 since the elements {x j}n
j=1 are linearly independent.

From (2.2) we obtain

〈 fn,x j〉 = − 1
Gn

∣∣∣∣∣∣∣∣∣

0 〈x1,x j〉 . . . 〈xn,x j〉
b1 〈x1,x1〉 . . . 〈xn,x1〉
...

...
. . .

...
bn 〈x1,xn〉 . . . 〈xn,xn〉

∣∣∣∣∣∣∣∣∣
,

which immediately implies that fn satisfies (2.1). For any element g of H which
satisfies (2.1), we have (g− fn) ⊥ fn , since fn is a linear combination of the elements
{x j}n

j=1 . Hence

‖g‖2 = ‖ fn‖2 +‖g− fn‖2,

so that fn is the unique element which satisfies (2.1) and minimizes the norm. �

REMARK 2.3. When {a j} is a sequence in a RKHS Hk , putting x j = ka j we see
that the conditions (2.1) are rewritten as f (a j) = b j . Hence we may consider (2.1) as a
Nevanlinna interpolation problem.

COROLLARY 2.4. Let {x j}n
j=1 ⊂ H be linearly independent, and set b1 = . . . =

bn−1 = 0 , and bn = 1 . If fn is the solution to (2.1) which minimizes the norm, then we
have

1. ‖ fn‖2 = Gn−1/Gn , and

2. fn = Φn/Gn ,

where Gk (k = 1, . . . ,n) is the Gramian of {x j}k
j=1 (G0 = 1 ), and

Φn =

∣∣∣∣∣∣∣∣∣

〈x1,x1〉 . . . 〈xn,x1〉
...

. . .
...

〈x1,xn−1〉 . . . 〈xn,xn−1〉
x1 . . . xn

∣∣∣∣∣∣∣∣∣
.
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3. Equality of Oppenheim’s inequality

From the minimal solution to the Nevanlinna interpolation problem on a RKHS,
we shall obtain necessary and sufficient conditions for equality of Oppenheim’s in-
equality (cf. [7]). To this end we first recall the norm inequality concerning the tensor
product RKHS Hk1 ⊗Hk2 and the RKHS Hk1k2 . Let Hkj ( j = 1,2) be RKHSs on E .
Then the tensor product Hilbert space Hk1 ⊗Hk2 is a RKHS on E ×E whose repro-
ducing kernel at (x,y) ∈ E×E is k1

x ⊗ k2
y , where k j

x ( j = 1,2) denotes the reproducing
kernel of Hkj at x ∈ E . Now we have the following inequality (see [1, 5]): for any
f ∈ Hk1 ⊗Hk2 ,

‖ f ◦ ι‖k1k2 � ‖ f‖k1⊗k2 , (3.1)

where the map ι : E → E ×E denotes the natural inclusion of E to the diagonal of
E ×E , that is, ι(x) = (x,x) for all x ∈ E .

DEFINITION 3.1. If equality holds in the above inequality (3.1), the element f ∈
Hk1 ⊗Hk2 is called extremal ([6]).

LEMMA 3.2. A function f ∈ Hk1 ⊗Hk2 on E × E is extremal if and only if f
belongs to the closed span of the set {k1

x ⊗ k2
x}x∈E .

Proof. Let H0 be the subspace of functions f in Hk1 ⊗Hk2 on E×E with f ◦ι = 0
on E . By the reproducing property of the kernel function k1⊗ k2 , we obtain

H0 = ({k1
x ⊗ k2

x}x∈E)⊥.

But it is well-known that f is extremal if and only if f ∈H⊥
0 ([6]). Since H⊥

0 = ({k1
x ⊗

k2
x}x∈E)⊥⊥ , the function f must belong to the closed span of the set {k1

x ⊗k2
x}x∈E . �

We use the following notation. For x,y in a complex vector space, we write x ∼ y
if there exists a nonzero constant α ∈C with x = αy . For a positive semidefinite matrix
X ∈ Mn , if the set of solutions to the interpolation problem

f (1) = . . . = f (m−1) = 0, f (m) = 1 (3.2)

is nonempty for a RKHS HX , let λ X
m (m = 1, . . . ,n) be the minimal norm of such

solutions.

LEMMA 3.3. Assume that A ∈ Mn is positive definite and that B ∈ Mn is positive
semidefinite with bmm > 0 (m = 1, . . . ,n) . Then, for m = 1, . . . ,n, (3.2) has a solution
in HA◦B and the following inequality holds:

λ A◦B
m � λ A

m/
√

bmm. (3.3)

Equality holds for (3.3) if and only if the solution fm ∈ HA which satisfies (3.2) and
minimizes the norm is a linear combination of {kA

i : kB
i ∼ kB

m,1 � i � m} .
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Proof. Putting h = kB
m/bmm , we have h(m) = 1 and ‖h‖ = 1/

√
bmm . Hence the

function fmh on {1, . . . ,n} clearly satisfies the interpolation condition (3.2). Since
fmh is obtained from the function fm ⊗ h ∈ HA ⊗HB on {1, . . . ,n} × {1, . . . ,n} as
fmh = ( fm ⊗h)◦ ι , the minimum property of λ A◦B

m and the inequality (3.1) imply

λ A◦B
m � ‖ fmh‖ � ‖ fm ⊗h‖= ‖ fm‖‖h‖= λ A

m/
√

bmm,

which gives the inequality (3.3).
Now assume that equality holds in (3.3). First we note that fm is a linear combi-

nation of the set kA
i (1 � i � m) , since fm is the minimum solution to (3.2):

fm =
m

∑
i=1

cik
A
i . (3.4)

Equality in (3.3) implies that fm ⊗ h is extremal in HA ⊗HB , so we conclude from
Lemma 3.2 that there exist complex numbers αi ∈ C, i = 1, . . . ,n such that

fm ⊗h =
n

∑
i=1

αik
A
i ⊗ kB

i . (3.5)

By (3.4) we obtain fm ⊗h = (bmm)−1 ∑m
i=1 cikA

i ⊗ kB
m . We now make use of an elemen-

tary fact that if {xi} and {y j} are linearly independent subsets of vector spaces V1 and
V2 respectively, then the set of their tensor products {xi⊗ y j} is also linearly indepen-
dent in V1⊗V2 . Indeed, by |A| > 0, the set {kA

i }n
i=1 forms a basis for HA . As for HB

take a basis containing kB
m . Then, expanding both sides of (3.5) by means of these bases

and comparing coefficients, we conclude that αi = 0 for all i > m .
If kB

j 
∼ kB
m ( j < m) , then there exists a basis for HB which contains kB

j and kB
m .

Again, expanding the right-hand side of (3.5) by using these bases, and comparing
coefficients, we see that α j = 0. Therefore, putting Im = {i : kB

i ∼ kB
m, 1 � i � m} , we

have
fm ⊗h = ∑

i∈Im

αik
A
i ⊗ kB

i =
(

∑
i∈Im

cik
A
i

)
⊗h,

which implies that fm is of the form as desired.
Conversely, assume that fm is a linear combination of {kA

i : kB
i ∼ kB

m,1 � i � m} .
Then, it is clear that fm ⊗h is extremal by Lemma 3.2. The function fmh satisfies the
interpolation condition (3.2), and is a linear combination of kA

i kB
i = kA◦B

i (i = 1, . . . ,m) .
Hence fmh is the solution with minimum norm in HA◦B . Thus equality holds in this
case. �

For A = (ai j) ∈ Mn , if σ is a permutation in the symmetric group Sn , we define
the matrix Aσ by Aσ = (aσ(i)σ( j)) . When σ is the transposition (i j) (1 � i, j �
n) , the matrix Aσ is obtained from the matrix A by swapping i-th and j -th rows
and, simultaneously, i-th and j -th columns. We call such operations of a matrix by
simultaneous exchanges of rows and columns. In terms of this terminology, Aσ is
obtained from the matrix A by a finite number of simultaneous exchanges. One verifies
easily the following:
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1. A is positive semidefinite if and only if Aσ is positive semidefinite.

2. |A| = |Aσ | .
3. The set of diagonal entries of A coincides with that of Aσ .

We remark that if

(a) the matrix A is diagonal, or

(b) the matrix B is of rank one,

then equality holds in Oppenheim’s inequality. Indeed, if (a) holds, this is trivial. If (b)
holds, since B is of rank one and positive semidefinite, B is of the form B = (wiw j)
for some (wi) ∈ Cn . Thus |A ◦B| = det(ai jwiw j) = |A||w1 · · ·wn|2 = |A|b11 · · ·bnn, as
desired.

Our main theorem asserts that the condition for equality of Oppenheim’s inequality
is in general a blend of two conditions (a) and (b) stated in the above remark.

THEOREM 3.4. If complex matrices A,B ∈ Mn are positive semidefinite, then the
following are equivalent:

1. Equality holds in Oppenheim’s inequality (1.1).

2. A◦B is singular, or there exists σ ∈ Sn such that Aσ is block diagonal, i.e.

Aσ =

⎛
⎜⎜⎝

A11 000
A22

. . .
000 App

⎞
⎟⎟⎠ ,

with Aii ∈ Mni (i = 1, . . . , p) , n1 + . . .+np = n, and that Bσ satisfies

kBσ
1 ∼ . . . ∼ kBσ

n1
, kBσ

n1+1 ∼ . . . ∼ kBσ
n1+n2

, . . . , kBσ
n1+...+np−1+1 ∼ . . . ∼ kBσ

n .

3. A◦B is singular, or there exists B′ = (b′i j) ∈ Mn such that

(a) B′ is positive semidefinite and of rank one,
(b) A◦B = A◦B′ , and
(c) b′ii = bii (i = 1, . . . ,n) .

4. A ◦B is singular, or there exists a diagonal matrix T = diag(w1, . . . ,wn) such
that

(a) A◦B = TAT ∗ , and
(b) |wi|2 = bii (i = 1, . . . ,n) .

Proof. (1) =⇒ (2): We may assume that A ◦B is nonsingular. Then, (1) implies
that A is nonsingular and bii = ‖kB

i ‖2 > 0 for all i = 1, . . . ,n . Since kA
i and kA◦B

i are
column vectors of the matrices A and A◦B respectively, the set of vectors {kA

i }n
i=1 and
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{kA◦B
i }n

i=1 are both linearly independent, and kB
i 
= 0 for all i = 1, . . . ,n . Therefore,

applying Corollary 2.4 with xi = kA◦B
i and with xi = kA

i , we obtain

|A◦B|= Gn =
Gn

Gn−1
· Gn−1

Gn−2
· · ·G1 = (λ A◦B

n λ A◦B
n−1 · · ·λ A◦B

1 )−2,

and
|A| = (λ A

n λ A
n−1 · · ·λ A

1 )−2.

By Lemma 3.3 these identities immediately imply Oppenheim’s inequality (1.1). Since
equality occurs in (1.1), we conclude that equality must occur in (3.3) for all m =
1, . . . ,n . Now we claim that, for 1 � i, j � n , if kB

i 
∼ kB
j , then kA

i ⊥ kA
j . This is proved as

follows. As we remarked above, by the invariance property of simultaneous exchanges
of columns and rows, equality holds in Oppenheim’s inequality for the pair of matrices
(A′,B′) = (Aσ ,Bσ ) for any σ ∈ Sn whenever equality holds for the pair (A,B) . Thus,
taking a permutation σ ∈ Sn with σ(1) = i and σ(2) = j , we may assume without
loss of generality that i = 1 and j = 2. Then, equality must hold for m = 2 of the
inequality (3.3) of Lemma 3.3. Since kB

i 
∼ kB
j if and only if kB′

1 
∼ kB′
2 , we conclude

that kA′
2 ∼ f2 where f2 is the solution with minimum norm for the interpolation problem

(3.2). Hence, we have kA′
2 (1) = f2(1) = 0. Thus,

〈kA
j ,k

A
i 〉 = ai j = aσ(1)σ(2) = 〈kA′

2 ,kA′
1 〉 = kA′

2 (1) = 0,

so that our claim is proved. Thus, choosing a suitable σ ∈ Sn such that Bσ is of the
form as in (2), we see that Aσ is a block diagonal matrix of the form stated in our
Theorem.

(2) =⇒ (3): Assume that A ◦ B is nonsingular. By invariance of simultaneous
exchanges of columns and rows we may assume without loss of generality that σ =
id , so that A is block diagonal and B is of the form described in (2). Then all the
corresponding diagonal blocks Bii, i = 1, . . . , p , of the matrix B are of rank one. Hence,
there exists a complex vector (wi) ∈ Cn such that

bi j = wiwj (n1 + . . .+nl−1 +1 � i, j � n1 + . . .+nl, l = 1, . . . , p).

Put B′ = (wiwj) ∈ Mn . Then B′ is positive semidefinite of rank one and bii = |wi|2
(i = 1, . . . ,n) . Since A is block diagonal, it is clear that A◦B = A◦B′ .

(3) =⇒ (4): If A◦B is singular, there is nothing to prove. Otherwise, B′ is of the
form B′ = (wiw j)n

i, j=1 . Put T = diag(w1, . . . ,wn) . Then, clearly, A◦B′ = TAT ∗ .
(4) =⇒ (1): If A◦B is singular, then obviously equality holds. Otherwise, from (a)

and (b) we have |A◦B|= |A||T |2 = |A|b11 . . .bnn . Thus equality holds in Oppenheim’s
inequality. �

REMARK 3.5. By the reproducing property and Schwarz’s inequality we obtain
λ B

m � 1/
√

bmm . As in the above proof this inequality immediately yields Hadamard’s
inequality for positive semidefinite matrix:

|B| � b11 · · ·bnn.
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REMARK 3.6. In [7, Theorem 1.5] it is claimed that equality occurs for Oppen-
heim’s inequality if and only if A ◦ B is singular, or there exists a diagonal matrix
T = diag(w1, . . . ,wn) such that

1. A◦B = TAT , and

2. |wi|2 = bii (i = 1, . . . ,n) .

However, for complex matrices this is false. A counter example is given by the follow-
ing: for any complex number a with 0 < |a| < 1, let

A =
(

1 a
a 1

)
, B =

(
1

√−1
−√−1 1

)
.

Then, matrices A and B are positive semidefinite, A ◦B is nonsingular, and equality
holds for Oppenheim’s inequality. But it is easy to see that there exists no diagonal
matrix T satisfying (1) above.

REMARK 3.7. For positive semidefinite matrices A = (ai j) and B = (bi j) ∈ Mn ,
the following inequality holds (Schur’s inequality):

|A◦B|+ |A||B|� |A|b11 · · ·bnn + |B|a11 · · ·ann.

Oppenheim [4] gave an equality condition for Schur’s inequality when both A and B
are positive definite. Observe that, when either A or B is singular, Schur’s inequality
reduces to Oppenheim’s inequality. Thus equality condition for Schur’s inequality can
be reduced to that of Oppenheim’s inequality (cf. [7]).
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