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Abstract. We prove a sharp Heisenberg uncertainty principle inequality and Hardy-Poincaré in-
equality on the sub-Riemannian manifold R

2n+1 = R
n ×R

n ×R defined by the vector fields:

Xj =
∂

∂x j
+2kyj |z|2k−2 ∂

∂ l
, Yj =

∂
∂y j

−2kx j |z|2k−2 ∂
∂ l

, j = 1,2, ...,n

where |z| = (|x|2 + |y|2)1/2 and k � 1 .

1. Introduction

The present work is concerned with the Heisenberg uncertainty principle inequal-
ity and a new (sharp) form of the weighed Hardy-Poincaré type inequality on the sub-
Riemannian manifold R

2n+1 = R
n×R

n×R defined by the vector fields:

Xj =
∂

∂x j
+2ky j|z|2k−2 ∂

∂ l
, Yj =

∂
∂y j

−2kx j|z|2k−2 ∂
∂ l

, j = 1,2, ...,n (1.1)

where |z| = (|x|2 + |y|2)1/2 and k � 1. The vector fields (1.1) satisfy Hörmander’s
condition for any k ∈ N , i.e, Xj,Yj and their iterated Lie brackets span the tangent
space of R

2n+1 at each point [19]. The number of brackets plus 1 is called the step of
the sub-Riemannian manifold, and in our case is 2k . If k = 1 then we have the vector
fields :

Xj =
∂

∂x j
+2y j

∂
∂ l

, Yj =
∂

∂y j
−2x j

∂
∂ l

, j = 1,2, ...,n (1.2)

that are left invariant with respect to the following Lie group law on R
2n+1

(x,y, l)◦ (x′,y′, l′) = (x+ x′,y+ y′, l + l′ −2(xy′ − yx′)).

These vector fields satisfy the “Heisenberg commutation relations”

[Xj,Yj] = −4
∂
∂ l

, [Xj,Xi] = [Yj,Yi] = [Xj,
∂
∂ l

] = [Yj,
∂
∂ l

] = 0 (1.3)
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and the Lie group H
n = (R2n+1,◦) is called the n -dimensional Heisenberg group. The

non-trivial commutator [Xj,Yj] =−4 ∂
∂ l is known as the analogue of the Heisenberg un-

certainty principle on the Heisenberg group H
n . The first and most famous uncertainty

principle goes back to Heisenberg’s seminal work which was developed in the context
of quantum mechanics [18]. It says that the position and momentum of a particle can-
not be determined exactly at the same time but only with an “uncertainty”. There are
various forms of the uncertainty principle inequality and the most well known form on
the Euclidean space R

n is the following:

(∫
Rn

|x|2| f (x)|2dx
)(∫

Rn
|∇ f (x)|2dx

)
� n2

4

(∫
Rn

| f (x)|2dx
)2

(1.4)

for all f ∈ L2(Rn) . Here the constant n2

4 is sharp and also it is well-known that equality

is attained in (1.3) if and only if f is a Gaussian (i.e. f (x) = Ae−α |x|2 for some A ∈
R,α > 0). The Heisenberg uncertainty principle is a fundamental concept in harmonic
analysis, signal and information theory as well as in quantum mechanics and has been
extensively studied in Euclidean space and generalized to various settings [14]. In this
direction our first goal is to obtain an analogue of the classical Heisenberg uncertainty
principle inequality (1.4) on sub-Riemannian manifold R

2n+1 defined by the vector
fields (1.1). In addition to this we shall also prove a higher order uncertainty principle
inequality.

Another important inequality in mathematical analysis is the following Hardy in-
equality: ∫

Rn
|∇φ(x)|2dx �

(n−2
2

)2 ∫
Rn

φ2

|x|2 dx (1.5)

where φ ∈C∞
0 (Rn) and n � 3. Here the constant

(
n−2
2

)2
is sharp in the sense that

(n−2
2

)2
= inf

0 �=φ∈C∞
0 (Rn)

∫
Rn |∇φ(x)|2dx∫

Rn
|φ(x)|2
|x|2 dx

.

It is well known that the Hardy inequality and its improved versions (non-negative terms
are added to right hand-side of (1.5)) play important role in partial differential equations
with singular potentials [5], [4], [10], [15], [16], [20] and references therein. Note that
an immediate application of the Hardy and Cauchy-Schwarz inequalities yields the non
sharp version of the Heisenberg uncertainty principle inequality.

An analogue of the Hardy inequality (1.5) for the vector fields (1.1) has been
proved by Niu, Zang and Wang [23]

∫
R2n+1

|∇kφ |pdzdl �
(2n+2k− p

p

)p ∫
R2n+1

|z|(2k−1)p

(|z|4k + l2)
p
2
|φ |pdzdl (1.6)

where φ ∈C∞
0 (R2n+1)\{O} and 1 < p < 2n+2k . Here ∇kφ = (X1φ , ...,Xnφ ,Y1φ , ...,Ynφ)

denotes the horizontal gradient of φ , (z, l) = (x,y, l) ∈ R
n×R

n×R and O = (0,0,0) .
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On the other hand Niu, Ou and Han [24] applied the method of Goldstein and
Kombe [17] and obtained (among other inequalities) a weighted version of the Hardy
type inequality (1.6):∫

R2n+1
ρα |∇kφ |pdzdl �

(2n+2k+ α− p
p

)p ∫
R2n+1

ρα |∇kρ |p
ρ p |φ |pdzdl (1.7)

where φ ∈C∞
0 (R2n+1)\{O} , 1 < p < 2n+2k , 2n+2k+α− p > 0, ρ = (|z|4k + l2)1/4k

and |∇kρ | = |z|2k−1

ρ2k−1 .
Recently, Ahmetolan and Kombe [3] obtained a sharp extension of (1.7) (involving

two radial weight functions):∫
Ω

ρα |∇kρ |pt |∇kφ |pdzdl �
(2n+2k+ α− p

p

)p ∫
Ω

ρα |∇kρ |pt |∇kρ |p
ρ p |φ |pdzdl (1.8)

where φ ∈C∞
0 (R2n+1) , t ∈ R , 1 < p < 2n+2k and 2n+2k+ α− p > 0.

Since the above inequalities are strict unless φ is identical equal to zero, it is
natural expect some extra term might be added on the right hand side of (1.6), (1.7) and
(1.8). In this direction Ahmetolan and Kombe [3] obtained various remainder terms for
the inequality (1.8). These inequalities play important roles in the study of linear and
nonlinear partial differential equations involving singular potential [20], [21], [1], [2].
Another important fact is that the weighted Hardy-type inequalities are the main tools
for proving weighted Rellich type inequalities (see [3]).

Our second goal is to prove a new form of the weighted Hardy-Poincaré type
inequality on sub-Riemannian manifold R

2n+1 defined by the vector fields (1.1). We
should point out that one of the advantage of our Hardy-Poincaré inequality (4.1) in
this paper is that it implies and thus provides another shorter proof of weighted Hardy
type inequality (1.6), (1.7) and (1.8). Furthermore, Hardy-Poincaré inequality (4.1)
and Cauchy-Schwarz inequality yields the sharp form of the Heisenberg uncertainty
principle inequality (3.1).

The plan of the paper is as follows. In Section 2 we introduce fundamental no-
tations, generalized Greiner vector fields, basic facts about the horizontal gradient ∇k ,
sub-Laplacian Δk . In Section 3 we prove a sharp Heisenberg uncertainty inequality
associated vector fields (1.1). In Section 4 we prove various sharp weighted Hardy-
Poincaré type inequalities.

2. Preliminary and Notations

In this section, we will introduce some notations, definitions, and preliminary facts
which will be used throughout the article. A generic point is w = (z, l) = (x,y, l) ∈
R

n ×R
n ×R with n � 1. The sub-elliptic gradient is the 2n dimensional vector field

given by
∇k := (X1, ...,Xn,Y1, ...,Yn) (2.1)

where

Xj =
∂

∂x j
+2ky j|z|2k−2 ∂

∂ l
, Yj =

∂
∂y j

−2kx j|z|2k−2 ∂
∂ l

, j = 1,2, ...,n. (2.2)
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The sub-Laplacian associated with the vector fields (1.1) is the second order partial
differential operator on R

2n+1 given by

Δk =
n

∑
j=1

(X2
j +Y 2

j ) = Δz +4k2|z|4k−2 ∂ 2

∂ l2
+4k|z|2k−2 ∂

∂ l
T (2.3)

where Δz = ∑n
j=1(

∂ 2

∂x2
j
+ ∂ 2

∂y2
j
) is the Laplacian in the variable z = (x,y)∈R

2n and T de-

notes the vector field as T = ∑n
j=1(y j

∂
∂x j

− x j
∂

∂y j
) . The sub-Laplacian arises in diverse

areas of mathematics including boundary value problems in several complex variables,
harmonic analysis and quantum mechanics of anharmonic oscillators. We refer the
reader to the articles [6], [12] and the book [11] for further details.

There is a natural norm:

ρ = |(z, l)| = (|z|4k + l2)1/4k ,k � 1, (2.4)

and a notion of dilation δλ (z, l) = (λ z,λ 2kl) , where λ > 0, on this model. Notice that
norm function is homogeneous of degree one with respect to the natural dilation δλ .
The function ρ is related to the fundamental solution of sub-Laplacian Δk at the origin
(see, [13], [7], [8], [9], [23]). The change of variable formula for the Lebesgue measure
gives that

dδλ (z, l) = λ Qdw = λ Qdzdl (2.5)

where
Q = 2(n+ k) (2.6)

is the homogeneous dimension with respect to dilation δλ and dw = dzdl denotes the
Lebesgue measure on R

2n+1 .
A direct computation shows that

Xjρ =
|z|2(k−1)

ρ4k−1 (x j|z|2k + y jl) , Yjρ =
|z|2(k−1)

ρ4k−1 (y j|z|2k − x jl). (2.7)

Let φ = φ(ρ) be a smooth radial function (i.e., φ only depends on the function ρ ) then
we have:

|∇kφ(ρ)| = |z|2k−1

ρ2k−1 |φ ′(ρ)| (2.8)

and

Δkφ(ρ) =
|z|4k−2

ρ4k−2

(
φ ′′ +

Q−1
ρ

φ ′
)

= |∇kρ |2
(

φ ′′ +
Q−1

ρ
φ ′

)
. (2.9)

In particular

Δkρ =
|∇kρ |2

ρ
(Q−1). (2.10)

We now use the above formulas and obtain:

∇k(|∇kρ |2) ·∇kρ = 0 (2.11)
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which shows that the norm function (2.4) is infinite harmonic. An immediate conse-
quence of the equation (2.10) is the following formula:

∇k

( ρ
|∇kρ |2

)
·∇kρ = 1. (2.12)

A straightforward computation shows that

∇k ·
( ρ
|∇kρ |2 ∇kρ

)
= ∇k

( ρ
|∇kρ |2

)
·∇kρ +

ρ
|∇kρ |2 Δkρ . (2.13)

Substituting (2.10) and (2.12) into (2.13) we obtain the following formula:

∇k ·
( ρ
|∇kρ |2 ∇kρ

)
= Q (2.14)

which plays a fundamental role in this paper.
In order to compute some radial integrals we use the following spherical transfor-

mation in [22]:
Let w = (x,y, l) and

x1 = ρ(sinϕ)1/2k cosψ1 cosθ1,

y1 = ρ(sinϕ)1/2k cosψ1 sinθ1,
...

xn−1 = ρ(sinϕ)1/2k sinψ1...sinψn−2 cosψn−1 cosθn−1,

yn−1 = ρ(sinϕ)1/2k sinψ1...sinψn−2 cosψn−1 sinθn−1,

xn = ρ(sinϕ)1/2k sinψ1...sinψn−2 sinψn−1 cosθn,

yn = ρ(sinϕ)1/2k sinψ1...sinψn−2 sinψn−1 sinθn,
l = ρ2k cosϕ ,

(2.15)

for R1 < ρ < R2 , 0 � ϕ � π , 0 � ψ j � π
2 , j = 1, ...,n−1, and 0 � θ j � 2π ,

j = 1, ...,n . Then the volume element satisfies the following relation

dw = dzdl = dxdydl = ρQ−1dρ(sinϕ)
n−k
k dϕ

n−1

∏
j=1

[
cosψ j(sinψ j)2(n− j)dψ j

] n

∏
j=1

dθ j

(2.16)
and

|z|2 = ρ2 sin
1
k ϕ . (2.17)

3. Uncertainty Principle Inequalities

The following inequality is the sharp analogue of the Heisenberg uncertainty prin-
ciple inequality (1.4).

THEOREM 3.1. Let φ ∈C∞
0 (R2n+1) , k � 1 and Q = 2(n+k) . Then the following

inequality is valid :(∫
R2n+1

ρ2φ2dw
)(∫

R2n+1

( ρ
|z|

)4k−2|∇kφ |2dw
)

� Q2

4

(∫
R2n+1

φ2dw
)2

. (3.1)
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Moreover, the constant Q2

4 is sharp.

Proof. Multiplying (2.14) by φ2 and applying integration by parts gives∫
R2n+1

Q
2

φ2dw = −
∫

R2n+1
φρ4k−1|z|2(1−2k)∇kρ ·∇kφdw. (3.2)

We now apply the Cauchy-Schwarz inequality to

RH = −
∫

R2n+1
φρ4k−1|z|2(1−2k)∇kρ ·∇kφdw

and get

RH �
(∫

R2n+1
ρ2φ2dw

)1/2(∫
R2n+1

|z|2(1−2k)ρ2(2k−1)|∇kφ |2dw
)1/2

. (3.3)

Substituting (3.3) into the equation (3.2) gives the desired inequality.

To show that the constant Q2

4 is sharp, we will use the Gaussian function f (ρ) =
Ae−Bρ2

, A,B ∈ R and B > 0. After a straightforward computation, we have∫
R2n+1

φ2dw = A2B(−Q
2 )2−(1+ Q

2 )Γ(
Q
2

)α1,∫
R2n+1

ρ2φ2dw = A2B−(1+ Q
2 )2−(2+ Q

2 )Γ(1+
Q
2

)α1 ,∫
R2n+1

|z|2(1−2k)ρ2(2k−1)|∇kφ |2dw = 4A2B(1−Q
2 )2−(2+ Q

2 )Γ(1+
Q
2

)α1 .

(3.4)

where Γ is the gamma function and

α1 =
∫ π

0
(sinϕ)(n−k)/kdϕ ×

∫ π/2

0

n−1

∏
j=1

cosψ j(sinψ j)2(n− j)dψ j ×
∫ 2π

0

n

∏
j=1

dθ j .

Substituting the integrals in (3.4) into (3.1) then, the case of equality in the Theorem is
attained and so the proof is completed. �

REMARK. Note that even though φ(ρ) = Ae−Bρ2
does not have a compact sup-

port, it can be approximated by such functions yielding that (3.1) is sharp.
There is natural link between second order Uncertainty principle and Rellich type

inequalities. In our previous work we obtained the following Rellich type inequality
[3]:

THEOREM 3.2. Let α ∈ R , Q � 3 , and 8−Q
3 < α < Q. Then the following in-

equality holds;

∫
R2n+1

ρα+4k−2|z|2(1−2k)|Δkφ |2dw � (Q−α)2

4

∫
R2n+1

ρα−2|∇kφ |2dw (3.5)

for all φ ∈C∞
0 (Ω) . Furthermore, the constant (Q−α)2

4 is sharp.
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We now have the following higher order Uncertainty principle type inequality.

THEOREM 3.3. Let φ ∈C∞
0 (R2n+1) and Q � 8 . Then we have:

(∫
R2n+1

ρ4(
ρ
|z|

)4k−2
φ2dw

)(∫
R2n+1

( ρ
|z|

)4k−2|Δkφ |2dw
)

� Q4

16

(∫
R2n+1

φ2dw
)2

.

(3.6)

Proof. To prove the theorem, we use the inequality in (3.2). Applying the Cauchy-
Schwarz inequality to the righthand side of (3.2), we obtain,

Q
2

∫
R2n+1

φ2dw �
(∫

R2n+1
ρ4(

ρ
|z|

)4k−2
φ2dw

) 1
2
(∫

R2n+1

|∇kφ |2
ρ2 dzdl

) 1
2

. (3.7)

Now, we apply the weighted Rellich type inequality (3.5) for α = 0, then we have the
desired inequality

(∫
R2n+1

ρ4(
ρ
|z|

)4k−2
φ2dw

)(∫
R2n+1

( ρ
|z|

)4k−2|Δkφ |2dw
)

� Q4

16

(∫
R2n+1

φ2dw
)2

. �

4. Sharp weighted Hardy-Poincaré type inequalities

In this section, we first prove a new form of the weighted Hardy-Poincaré type
inequality with a sharp constant.

THEOREM 4.1. Let Q � 3 , 1 < p < Q and Q+ α > 0 . Then the following in-
equality is valid for all compactly supported smooth functions φ ∈C∞

0 (R2n+1):

∫
R2n+1

ρα+4kp−p|z|p(2−4k)|∇kρ ·∇kφ |pdw �
(Q+ α

p

)p ∫
R2n+1

ρα |φ |pdw (4.1)

where ρ = (|z|4k + l2)
1
4k . Furthermore, the constant (Q+α

p )p is sharp.

Proof. We will use the formula in (2.14) to prove the theorem. Multiply both sides
of (2.14) by the function ρα |φ |p and integrate over R

2n+1 to get

∫
R2n+1

Qρα |φ |pdw =
∫

R2n+1
ρα |φ |pdw+

∫
R2n+1

ρα+4k−1|z|2(1−2k)|φ |pΔkρdw . (4.2)

Applying integration by parts to the second integral in the righthand side, we have,

∫
R2n+1

ρα+4k−1|z|2(1−2k)|φ |pΔkρdw

= −(α +1)
∫

R2n+1
ρα |φ |pdw−

∫
R2n+1

ρα+4k−1|z|2(1−2k)∇k|φ |p ·∇kρdw . (4.3)
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Substituting (4.3) into (4.2), we get

(Q+ α)
∫

R2n+1
ρα |φ |pdw = −p

∫
R2n+1

ρα+4k−1|z|2(1−2k)φ |φ |p−2∇kφ ·∇kρdw. (4.4)

An application of Hölder’s inequality yields

(∫
R2n+1

ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw
)1/p(∫

R2n+1
ρα |φ |pdw

)(p−1)/p

�
∫

R2n+1
ρα+4k−1|z|2(1−2k)|φ |p−1|∇kρ ·∇kφ |dw .

(4.5)

To continue the proof, we use the Young inequality: Let p > 1, and a �= b be two
positive real numbers then,

ab � ap

p
+

(p−1)
p

b
p

(p−1) . (4.6)

For any ε > 0, assuming that

a = ε
(∫

R2n+1
ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw

)1/p
,

b = ε−1
(∫

R2n+1
ρα |φ |pdw

)(p−1)/p
,

(4.7)

we have,(∫
R2n+1

ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw
)1/p(∫

R2n+1
ρα |φ |pdw

)(p−1)/p

� ε p

p

∫
R2n+1

ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw+
(p−1)

p
ε−

p
p−1

∫
R2n+1

ρα |φ |pdw .

(4.8)
First substituting (4.8) into (4.5) and then rearranging the resulting inequality, we get,∫

R2n+1
ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw � f (ε,Q,α, p)

∫
R2n+1

ρα |φ |pdw (4.9)

where f (ε,Q,α, p) = ε−1[(Q+ α)− (p− 1)ε−
p

(p−1) ] . Here note that, the function f
attains the maximum for ε = ( p

Q+α )(p−1)/p and this maximum is equal to (Q+α
p )p .

Thus, we obtain the desired inequality as follows;∫
R2n+1

ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw �
(Q+ α

p

)p ∫
R2n+1

ρα |φ |pdw . (4.10)

Now, we need to show that
(

Q+α
p

)p
is the best constant. Let CH be the best constant

in (4.10);

CH := inf
0 �= f∈C∞

0 (R2n+1)

∫
R2n+1 ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw∫

R2n+1 ρα |φ |pdw
. (4.11)
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It is clear from (4.10) that

(Q+ α
p

)p
�

∫
R2n+1 ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw∫

R2n+1 ρα |φ |pdw
(4.12)

holds for all φ ∈C∞
0 (R2n+1) . By taking the infimum in (4.12), we have that

(Q+ α
p

)p
� CH (4.13)

To prove that CH =
(

Q+α
p

)p
, we only need to show that CH �

(
Q+α

p

)p
. Hence, for a

given ε > 0, we define the radial function: R
2n+1 .

φε(ρ) =

{
ρ

Q+α
p +ε if 0 � ρ � 1,

ρ−( Q+α
p +ε) if ρ > 1 .

(4.14)

Note that φε (ρ) that can be approximated by smooth functions with compact support
in R

2n+1 . By a direct computation, the integrands in (4.10) are determined as follows;

ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |p =

{
(Q+α

p + ε)pρQ+2α+pε if 0 � ρ � 1,

(Q+α
p + ε)pρ−Q−pε if ρ > 1 .

(4.15)
and

ρα |φε |p =

{
ρQ+2α+pε if 0 � ρ � 1,

ρ−Q−pε if ρ > 1 .
(4.16)

Defining a unit ball with respect to the homogeneous norm, ρ , denoted by B1 = {w ∈
R

2n+1,0 � ρ � 1} , then integrating the functions in (4.15) and (4.16) over R
2n+1 , we

can obtain the following relation;

(Q+α
p

+ε
)p ∫

R2n+1
ρα |φε |pdw =

(Q+α
p

+ε
)p(∫

B1

ρQ+2α+pεdw+
∫

R2n+1\B1

ρ−Q−pεdw
)

(4.17)
Note that, for every ε > 0, the weights ρQ+2α+pε and ρ−Q−pε are integrable at 0 and
∞ . This implies that

∫
R2n+1 ρα |φε |pdw is finite. Thus we have we have

(Q+ α
p

+ ε
)p ∫

R2n+1
ρα |φε |pdw

=
(Q+ α

p
+ ε

)p[∫
B1

ρQ+2α+pεdz+
∫

R2n+1\B1

ρ−Q−pεdw
]

=
∫

R2n+1
ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw.
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On the other hand(
Q+α

p + ε
)p

CH

∫
R2n+1

ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw

�
(Q+α

p
+ε

)p ∫
R2n+1

ρα |φε |pdw =
∫

R2n+1
ρα+4kp−p|z|2p(1−2k)|∇kρ ·∇kφ |pdw

(4.18)
As ε approaches 0, ε → 0, (4.18) yields

(Q+ α
p

+ ε
)p

� CH . (4.19)

From (4.13) and (4.19), we have, CH =
(

Q+α
p

)p
. �

As we said in the introduction, Hardy-Poincaré inequality (4.1) gives us a short
proof of the inequalities (1.6), (1.7) and (1.8) as it is shown in the following theorem:

THEOREM 4.2. ([3]) Let Q � 3 , 1 < p < ∞ , t ∈ R , α ∈ R and Q+ α − p > 0 .
Then the following inequality is valid for all compactly supported smooth functions
φ ∈C∞

0 (R2n+1):

∫
Ω

ρα |∇kρ |pt |∇kφ |pdw �
(Q+ α − p

p

)p ∫
Ω

ρα |∇kρ |pt |∇kρ |p
ρ p |φ |pdw. (4.20)

Furthermore, the constant (Q+α−p
p )p is sharp.

Proof. To prove the theorem, we replace |∇ρ |t+1φ instead of φ in the inequality
(4.1) where t ∈R . Using the identity (2.11) and |∇kρ ·∇k(|∇kρ |t+1φ)|� |∇kρ |t+2|∇kφ |
we have,

∫
Ω

ρα+p|∇kρ |pt |∇kφ |pdw �
(Q+ α

p

)p ∫
Ω

ρα |∇kρ |pt+p|φ |pdw . (4.21)

Replacing α − p instead of α gives the desired inequality:

∫
Ω

ρα |∇kρ |pt|∇kφ |pdw �
(Q+ α − p

p

)p ∫
Ω

ρα |∇kρ |pt |∇kρ |p
ρ p |φ |pdw . (4.22)

�
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