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SOME NEW GENERALIZATIONS OF ZYGMUND-TYPE
INEQUALITIES FOR POLYNOMIALS

A. Az1Z AND N. A. RATHER

(Communicated by J. Pecari¢)

Abstract. In this paper, we consider a problem of investigating the dependence of

HP(Rz) —aP(rz) +B{ <%>n - \oc\}

P

on [|[P(z)|, for arbitrary real or complex numbers o, f with [o| <1, [B| <1, R>r2>1,
p >0 and present certain sharp compact generalizations of some well-known Zygmund-type
inequalities for polynomials, from which a variety of interesting results follows as special cases.

1. Introduction and statements of results

Let P,(z) denote the space of all complex polynomials P(z) = X_,a 7/ of degree

n. For P € P,, define
) P
P} 1<

P, = {5 [

[P = Max P(2)].

A famous result known as Bernstein’s inequality (for reference, see [13, p. 531],
[17, p. 508] or [19]) states that if P € P,, then

and

1P @) <nllP@E)., (1)
whereas concerning the maximum modulus of P(z) on the circle |z] =R > 1, we have
1P(Rz)[lee < R ([ P(2)]]eos )

(for reference, see [13, p. 442] or [14, vol. I, p. 137]). Inequalities (1) and (2) can be
obtained by letting p — o< in the inequalities

IP'@)|, <nlP@I,, p=>1 3)
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and
IP(R2)[|, <R"||P(2)]l,, R>1, p>0, (4)

respectively. Inequality (3) was found by Zygmund [20] whereas inequality (4) is a
simple consequence of a result of Hardy [10] (see also [15, Th. 5.5]). Since inequality
(3) was deduced from M. Riesz’s interpolation formula [18] by means of Minkowski’s
inequality, it was not clear, whether the restriction on p was indeed essential. This
question was open for a long time. Finally Arestov [2] proved that (3) remains true for
0<p<1aswell

If we restrict ourselves to the class of polynomials P € P, having no zero in |z <
1, then inequalities (1) and (2) can be respectively replaced by

|P'(2)]|.. < HP @), (5)

and R”+1
[P(R2)]|o <

1P(2) |- (6)

Inequality (5) was conjectured by Erdos and later verified by Lax [12]. Ankeny and
Rivlin [1] used inequality (5) to prove inequality (6).
Both the inequalities (5) and (6) can be obtain by letting p — oo in the inequalities

HP()H
P 7
IP'(2)]], < "Il (7
and
IRz 41,
HP(RZ)Hpgwﬂp(Z)Hp» R>1, p>0. (8)
"\ p

Inequality (7) is due to De-Bruijn [8] for p > 1. Rahman and Schmeisser [16] extended
it for 0 < p < 1 whereas the inequality (8) was proved by Boas and Rahman [7] for
p = 1 and later it was extended for 0 < p < 1 by Rahman and Schmeisser [16].

Jain [11] generalized both the inequalities (5) and (6) and proved that if P(z) #0
in |z] < 1, then for every real or complex number § with || <1, [z]=1and R> 1

e+ e <5 {1+ 5|+ 5| bire. ©)

<Hlers () '1+ﬁ(’”1) bIpl..

(10)
Recently authors in [5] (see also [6]) investigated the dependence of
|P(Rz) — aP(2)||., on [P(z)

and

P+ (1) Peo

for every real or complex number o with || < 1 and R > 1. As a compact general-
ization of inequalities (1) and (2), they have shown that if P € P,, then for every real or
complex number o with || <1, R>1and |z] > 1,

|P(Rz) — aP(z)| < [R" — o] [z]" [ P(2)]].. - (11
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As a compact generalization of inequalities (5) and (6), authors [5] have also
proved that if P(z) # 0 in |z| < 1, then for every real or complex number o with
|| <1, |zl >1and R> 1,

[R" — o |z]" + |1 —
2

[P(Rz) — aP(z)] < 1P(2)]].s - (12)

In the present paper, we consider a more general problem of investigating the
dependence of

HP(Rz) —aP(rz)+ B { (1:511)" - IaI}P(rZ)

on [|P(z)]],
P

for arbitrary real or complex numbers ¢, § with || <1, |[B|<1,R>r>1,p>0
and develop a unified method for arriving at these results. We first present the following
interesting result, which is a compact generalization of inequalities (1), (2), (3), (4), (9),
(10) and an extension of (11) to L? mean of |P(z)|.

THEOREM 1. If P € P,, then for arbitrary real or complex numbers o, B with
| <1, |B|<1,R>r>1and p>0,

|P(Rz) + ¢(R, 1,00, B)P(r2) ||, < [R* + @(R, 1,0, B)r"[ || P(2),,, (13)
where )
orrap)=p{(T17) It} o (1)

The result is best possible and equality in (13) holds for P(z) = a7", a # 0.

A variety of interesting results can be deduced from Theorem 1 as special cases.
Here we mention a few of these.

Taking B = 0 in (13), we get the following compact generalization of inequalities
(3), (4) and (11).

COROLLARY 1. If P € P,, then for every real or complex number o with || <1,
R>r>21and p>0,

1P(Rz) — aP(rz)||, < [R" —ar| [P, - (15)

The result is best possible and equality in (15) holds for P(z) = a7", a # 0.
REMARK 1. For o =0, Corollary 1 reduces to inequality (4). If we divide the
two sides of (15) by R—r with oo =1 and let R — r, we get

[P/ (r2)[|, <nr" HIPG),, >0 (16)

p b)
For r =1, it reduces to inequality (3) due to Zygmund [20] for each p > 0.
Next, if we divide the two sides of (13) by R—r with ¢ =1 and let R — r, we

obtain:
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COROLLARY 2. If P € Py, then for every real or complex number B with |B| <1,
r=>1andp>0,

n—1 ﬁrn
o 2 e, (1)

<n

P (rz) + rn—ﬁP(rZ)
P

+1

The result is best possible.

The following result immediately follows from Theorem 1 by letting p — oo in
(13).

COROLLARY 3. If P € By, then for arbitrary real or complex numbers o, B with
| <1, |BI|<L,R>r>1and |z =1,

|P(Rz) + ¢ (R, 1,0, B)P(rz)| < [R"+ 9 (R, , a,ﬁ)r"\l‘\’llgf 1P(2)]. (18)

The result is sharp and equality in (18) holds for P(z) = a7", a # 0.

REMARK 2. For B =0, r =1, we get inequality (11). If we divide the two sides
of (18) by R—r with oo =1 and let R — r, we obtain:

COROLLARY 4. If P € P,, then for every real or complex number B with |B| <1,
r>1land |z =1,

’,.n
< n—1 ﬁ )
<nif 4 Y Max |P(z)] (19)

|z[=1

7P (r7) + rr:_—ﬁlP(rZ)

The result is best possible.

For B =0 and r = 1, inequality (19) reduces to inequality (1) due to Bernstein.

We next present the following multifaceted generalization for polynomials P € P,
not vanishing in |z| < 1 which among other interesting results include inequalities (5),
6), (1), (8), (9), (10) and (12) as special cases.

THEOREM 2. If P € P, and P(z) does not vanish in |z| < 1, then for arbitrary
real or complex numbers o, B with |a| < 1,|B|<1,R>r>1and p >0,

G

IP(Rz) + & (R, 1, 0, B)P(r2) |, < i+,

1P, . (20)

where
Cp=[(R"+ R, 1,0, f)r")z+ (1 +@(R, 0, B))]], 1)

and ¢(R,r,o,B) is defined by (14). The result is best possible and equality in (20)
holds for P(z) = az"+b, |a| = |b| = 1.

REMARK 3. For oo = 3 = 0, Theorem 2 reduces to inequality (8). If we divide
the two sides of (20) by R —r with o« = 1 and let R — r, we easily get:
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COROLLARY 5. If P € P, and P(z) does not vanish in |z| < 1, then for every real
or complex number B with |B| <1, r=1 and p >0,

4 ('ﬂlJ“fJ:nr)”lﬁr

7P (rz) + ——P(rz)
Next corollary follows by taking o = 0 in Theorem 2.

PO,

<n .
p I+l

p

147

COROLLARY 6. If P € P, and P(z) does not vanish in |z| < 1, then for every real
or complex number B with |B| <1, r>1 and p >0,

(R"+y(R,r,B)r")z+ (1 + y(R,r,B)r")|
11+2]],

1P(Rz) + y(R,r, B)P(r2)|, < H EIP@), -

(23)
where y(R,r,B) = ¢(R,r,0,).
For r = 1, inequalities (22) and (23) extend inequalities (9) and (10) to the L”
mean of |P(z)].
The following corollary immediately follows from Theorem 2 by taking § = 0.

COROLLARY 7. If P € P, and P(z) does not vanish in |z| < 1, then for every real
or complex number o with |ot| <1, R>r>1and p >0,

[(R" —ar")z+ (1 - &)
142,

1P(Rz) — aP(rz)|], < FIPE)I,- 24

The result is sharp and equality in (24) holds for P(z) = a" + b,

al = |p] = 1.

REMARK 4. For o = r =1, if we divide the two sides of (24) by R— 1 and let
R — 1, we immediately get De-Bruijn’s theorem (inequality (7)) for each p > 0. For
a =0, Corollary 7 reduces to inequality (8) for each p > 0.

Next, we mention the following compact generalization of a theorem of Erdos
and Lax [12] and a result of Ankeny and Rivlin [1], which immediately follows from
Corollary 7 by letting p — oo in (19).

COROLLARY 8. If P € P, and P(z) does not vanish in |z| < 1, then for every real
or complex numbers o with |0 <1 and R>r> 1,

R"— ar' -«
| P = Nk P)] for =1, @25)

|P(Rz) — oP(rz)| <
2 lz|=1

The result is best possible and equality in (25) holds for P(z) = a?" + b,

al = |b| = 1.

A polynomial P € P, is said to be self-inversive if P(z) = uQ(z) for all z € C
where |u| =1 and Q(z) = 7"P(1/Z). It is known [3, 9] that if P € P, is self-inversive
polynomial, then for every p > 1,

1P,
1 +z],

[P@)]|, <n (26)

Finally, we present the following result which include some well-known results
for self-inversive polynomials as special cases.
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THEOREM 3. If P € B, is self-inversive polynomial, then for arbitrary real or
complex numbers o, B with || <1, |B|<1,R>r>1and p >0,

C
< - IP@)I,»
11 +z], i

1P(Rz) + ¢ (R, 7, e, B)P(rz)]],

where
Cp=[I(R"+o(R,r,0,B)r")z+ (1+ ¢(R,r,a, B))[,,
and §(R,r,o,B) is defined by (14).

COROLLARY 9. If P € P, is self-inversive polynomial, then for every real or com-
plex number o with |o| <1, R>r>1 and p >0,

[(R" —ar")z+ (1 - a)||
11 +z]l,

1P(Rz) — aP(rz)|], < FIPE)I,- 27

The result is best possible and equality in (27) holds for P(z) = 7"+ 1.

REMARK 5. Many interesting results can be deduced from Theorem 3 in exactly
the same way as we have deduced from Theorem 2.

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

LEMMA 1. If P € P, and P(z) has all its zeros in |z| < k where k < 1, then for
every R>2r>1and |z| =1,

R+E\"
) > (55 ) 1) (8)

Proof of Lemma 1. Since all the zeros of P(z) lie in |z| < k, we write

P(z) = lei[1 (z— rjei91> ,

where r; < k. Now for 0 < 0 <27, R>7r> 1, we have

Re'® — et R?+ r% —2RrjCos(0 — 6; 172
rei® —rie®% | | P24 r% —2rrjCos(6 — 6;
R i R+k
> +rj > ki ) j:1727"'7n'
r+r; r+k
Hence
P(Reie) T Re'® — rjeiei
P(re®) | 1| rei® —rjei

" (R+k R+k\"
> fr—
H(r—l—k) (r—i—k)

j=1
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for 0 < 0 < 2x. This implies for |z] =1 and R>r > 1,

P = (55 1pea,

which completes the proof of Lemma 1. [J

LEMMA 2. If F € P, has all its zeros in |z| < land P(z) is a polynomial of
degree at most n such that

|P(2)| < [F(2)] for [z] = 1,

then for arbitrary real or complex numbers o, 3 with |a| <1,
and |z| > 1,

BI<1,R>r>1,

|P(Rz) + ¢ (R, 1,0, B)P(rz)| < |F(Rz) + ¢ (R, r, 00, B)F (rz)], (29)
where ¢(R,r,0, ) is defined by (14).

Proof of Lemma 2. In case R = r, we have nothing to prove. Henceforth, we
assume that R > r. Since the polynomial F(z) of degree n has all its zeros in |z] < 1
and P(z) is a polynomial of degree at most n such that

[P(R)| <|F(2)] for |z[ =1, (30)

therefore, if F(z) has a zero of multiplicity s at z = /%, then P(z) has a zero of
multiplicity at least s at z = /% . If P(z)/F(z) is a constant, then the inequality (29)
is obvious. We now assume that P(z)/F(z) is not a constant, so that by the maximum
modulus principle, it follows that

|P(2)| < |F(z)| for|z| >1.
Suppose F(z) has m zeros on |z| = 1 where 0 < m < n, so that we can write
F(z) = Fi(2)F2(z)

where Fj(z) is a polynomial of degree m whose all zeros lie on |z] =1 and F»(z) is a
polynomial of degree exactly n — m having all its zeros in |z| < 1. This implies with
the help of inequality (30) that

P(z) = P1(2)Fi(z)

where Pj(z) is a polynomial of degree at most n — m. Now, from inequality (30), we
get
|P1(2)| < [Fa(2)] for [z] =1

where F»(z) # 0 for |z] = 1. Therefore for every real or complex number A with
|A| > 1, a direct application of Rouche’s theorem shows that the zeros of the polynomial
Pi(z) — AF»(z) of degree n—m > 1 lie in |z| < 1 Hence the polynomial

f(2) = F(2) (Pi(z) = AF(z)) = P(2) = AF(2)
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has all its zeros in |z| < 1 with at least one zero in |z| < 1, so that we can write

f(2) = (z—1e®)H(2)

where t < 1 and H(z) is a polynomial of degree n — 1 having all its zeros in |z] < 1
Applying Lemma 1 to the polynomial f(z) with k = 1, we obtain for every R >r > 1
and 0 < 0 < 2m,

f(R?)| = [Re'® —1¢||H(Re)]

. /R 1\"! .
> |Re"® — 1) (L) |H(re'®)]

r—+1
_ (R+1 el |Rei6_tei6‘ i0 i) (rei®
S \r+1 |rei9— teid| |(re®™ 1) H (re)]

R+1 R+t F(re®)|
> r+1 r+t '
This implies for R>r > 1 and 0 < 6 < 2m,

r+i R+1N"
(s )ireni= (7)) vt 61)

Since R>r>1>1 so that f(Re®®) #0 for 0 < 6 <27 and {i% > £, from in-
equality (31), we obtain

, R+1
|f(Re’9><r+il> |f(re®)] R>r>1 and 0< 60 < 2. (32)

Equivalently,

> (251) )

for |zl =1 and R > r > 1. Hence for every real or complex number o with |ot| <
and R>r > 1, we have

|[f(Rz) — aef(rz)| = |f(R2)| — |ex]|f (r2)]

A (E) -tatb el 2= (3)

Also, inequality (32) can be written in the form

. 1\" .
0] < (7 ) Wtk 64)

)" < 1, from in-

forevery R>r > 1 and 0 < 6 < 27. Since f(Re®) # 0 and (=
equality (34), we obtain for 0 < 6 <2m and R>r > 1,

|£(re®| < |f(Re™).
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Equivalently,
[f(r2)] <|f(Rz)| for |z] = 1.

Since all the zeros of f(Rz) lie in |z] < (1/R) < 1, a direct application of Rouche’s
theorem shows that the polynomial f(Rz) — ot f(rz) has all its zeros in |z| < 1 for every
real or complex number o with || < 1. Applying Rouche’s theorem again, it follows
from (33) that for arbitrary real or complex numbers o, § with || < 1,|B]| < 1 and
R > r > 1, all the zeros of the polynomial

1) = 1(&) - af)+ p{ (£11 ) ~ e b

1
= [P(Rz) —oP(rz)+ P { (%)n - |a|}P(rz)}
-1 [F(Rz) —oF(rz)+p { (%)n — |a|}F(rz)}

= [P(Rz) + ¢(R,r,0, B)P(rz)] — A [F(Rz) + ¢(R, 1,00, B)F (rz))
liein |z] < 1 with |A]| > 1. This implies
[P(Rz) + ¢ (R, 1,0, B)P(rz)| < |F(Rz) + ¢ (R, r, 00, B)F (rz)| (35)

for |zl > 1 and R > r > 1. If inequality (35) is not true, then there a point z =w with
|[w| > 1 such that

|P(Rw)+ ¢ (R,r,0, B)P(rw))| > |F(Rw) + ¢(R,r, 00, B)F (rw)].

But all the zeros of F(Rz) lie in |z]| < 1, therefore, it follows (as in case of f(z)) that
all the zeros of F(Rz)+ ¢ (R,r, ¢t,B)F(rz) liein |z] < 1. Hence

F(Rw)+¢(R,r,0,B)F (rw) #0
with |w| > 1. We take

P(Rw) +¢(R, 1, &, B)P(rw)

F(Rw)+ ¢ (R,r, 0, B)F (rw)’

then A is a well defined real or complex number with |[A| > 1 and with this choice of
A, we obtain T(w) =0 where |w| > 1. This contradicts the fact that all the zeros of
T(z) liein |z < 1. Thus

|P(Rz) + ¢(R,r, 0, B)P(rz)| < |F(Rz) + ¢ (R, r, 00, B)F (rz)|
for |z] > 1 and R > r > 1. This proves Lemma 2. [

Next we describe a result of Arestov. '
For 6 = (8y,01,--,0,) and P(z) = Z’;:Oajzf € P,, we define

AsP(z) = Y, 8jajz’.
=0
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The operator Ay is said to be admissible if it preserves one of the following prop-
erties:

(i) P(z) hasallits zerosin {z € C: |z| < 1},

(ii) P(z) hasallits zerosin{z € C:|z] > 1}.

The result of Arestov may now be stated as follows.

LEMMA 3. [2, Th. 4] Let ¢(x) = y(logx) where ¥ is a convex nondecreasing
Sfunction on R. Then for all P € P, and each admissible operator Ag,

[ oasPe)a0 < [ oc(smipe?)))ao,

where C(8,n) = max(|d|,|0|).

In particular, Lemma 3 applies with ¢ : x — x? for every p € (0,e0). Therefore,
we have

{ / 2”<|A5P<ef">ﬂ>de}1/p <C(B.n) { [ |P<e"9>ﬂde}l/p. (36)

We use (36) to prove the following interesting result.

LEMMA 4. If P€ P, and P(z) does not vanish in |z| <1, then for arbitrary
real or complex numbers o, B with || <1, |B| <1, R>r>=1, p>0 and v redl,

2 . .
|7 1P+ 9 (R 1t BP(e))
0
+e7(R"P(¢"° /R) + 0 (R, 1, @, B)r"P(" /r))|Pd6
, _ 2r .
IR+ 0(Ror0B)”) + (1 +-0(RETB)I [ P db.
Proof of Lemma 4. By hypothesis P(z) does not vanish in |z| < 1, therefore, the
polynomial Q(z) = z"P(1/7) of degree n has all its zeros in |z| < 1 and |P(z)| = |Q(2)]

and |z| = 1. Applying Lemma 2 with F(z) replaced by Q(z), we get for arbitrary real
or complex numbers «, f with |oc <1, |B|<1,R>r>1and |[7]=1,

|P(Rz) + ¢ (R, 1,00, B)P(rz)| < |Q(Rz) + (R, 1,00, B)O(r7)]|
= [R"P(z/R)+ ¢(R,r, &, B)"P(z/r)|.

Now (as in the proof of Lemma 2), the polynomial

H(z) = O(Rz) + ¢(R, 1, e, B)Q(r2)

=R'7"P(1/R2) + ¢(R,1,ct, B)r"Z"P(1/r2)

has all its zeros in |z| < 1 for arbitrary real or complex numbers o, f with |a| < 1,
|B] <1 and R > r, therefore, it follows that the polynomial

Z'H(1/2) = R'P(2/R) + ¢ (R, .0, B)r"P(z/r)
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has all its zeros in |z| > 1. Hence the function

P(Rz)+ ¢(R,r,a, B)P(r2)
R'P(z/R)+ ¢(R,r, 00, B)r"P(z/r)

f(z) =

is analytic in |z] < 1 and |f(z)| < 1 for |z] = 1. Since f(z) is not a constant, it follows
by the maximum modulus principle that

If(z)| <1 for || <1,

or equivalently, for |z] < 1,

|P(Rz) + ¢(R,r, 00, B)P(rz)| < |R"P(z/R) + ¢ (R, 1,0, B)r"P(z/7)]|. 37)

A direct application of Rouche’s theorem shows that

z/R )+<P(R o B)r"P(Z/r))
B+
B)r"))ao

does not vanish in |z] < 1 forevery a, B with || < 1,|B| <1, R>r>1 and ¥ real.
Therefore, Ag is an admissibe operator. Applying (36) of Lemma 3, the desired result
follows immediately for each p > 0. This completes the proof of Lemma 4. [J

AsP(z) = (P(Rz) + ¢(R,r,0, B)P(rz)) + €7 (R"P(z
= (R"+oR,r,o,B)r" + (1 + (R, 1,0
+(1+¢(R,r, 0, B) + (R + ¢(R, 1,0

From lemma 4, we deduce the following more general lemma which is a result of
independent interest with variety of applications.

LEMMA 5. If P € B,, then for arbitrary real or complex numbers o, B with
| < L|BI<SL,R>r>1, p>0and v redl,

[ 1P+ ok )P
LI RP(® /R) + 6 (R, B)rP( /7)) 7B
. _ 2n .
SR+ 0k 1.0 B)) + 71+ 9 (Rr B [P0,

The result is sharp and the extremal polynomial is P(z) = AZ", A # 0.

Proof of Lemma 5. Since P(z) is a polynomial of degree n, we can write

k n
P(z) =P =[lG-z) [] z=z), k>1,

j=1 Jj=k+1

where all the zeros of Pj(z) lie in |z| > 1 and all the zeros of Py(z) lie in |z] < 1.
First we suppose that Pj(z) has no zero on |z] = 1 so that all the zeros of P;(z) lie
in |z] > 1. Let Qx(z) = 2" *Py(1/Z), then all the zeros of Q(z) lie in |z| > 1 and
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|02(z)| = |P>(z)] for |z] = 1. Now consider the polynomial

~

n

G(z) =P =[1G:z-z) [] 0-z).k>1,

j=1 Jj=k+1

then all the zeros of G(z) liein |z] > 1 and for |z] =1,
1G(2)| = |P1(2)]|Q2(2)| = [P1(2)| [P2(2)| = [P(2)]. (38)
By the Maximum Modulus Principle, it follows that
|P(2)] < |G(2)| for |z < 1. (39)

We now claim that the polynomial H(z) = P(z) + AG(z) does not vanish in |z| < 1 for
every A with |[A| > 1. If this is not true, then there is some zo with |z| < 1 such that
H(z9) = 0. This gives

|P(z0)| = [AlIG(z0)]- (40)

Since G(z9) #0 and |A| > 1, (40) implies
P(z0)] > [G(z0)1,

which clearly contradicts (39). Thus the polynomial H(z) does not vanish in |z| < 1
for every A with |A| > 1 so that all the zeros of H(z) lie in |z| > p for some p > 1,
or equivalently, all the zeros of H(pz) lie in |z| > 1. Applying (37) to the polynomial

H(pz), we get
|H(Rpz) + ¢(R,r,a, B)H (rpz)| < |R"H(pz/R) + ¢ (R, r, &, Br'"H (pz/r)| for |z| < 1.
Taking z = ¢ /p,0< 6 < 27, then |z] = (1/p) <1 as p > 1 and we get
[H(R'®) + (R, 1,0, B)H (re®)| < |[R"H (e /R) + 9(R,r. &, B)r"H (e /)],

for0< 0 <2m,R>r>1and |o| < 1,|B| < 1. This implies

|H(Rz) + ¢ (R, r,a, B)H (rz)| < |R"H(z/R) + ¢ (R, r, &, B)r"H(z/r)| for |z| = 1.
An application of Rouche’s theorem shows that the polynomial

T(z) = (H(Rz) + ¢(R,r, o, B)H (r2)) + € (R"H(z/R) + ¢ (R, 1,0, B)r"H (z/7))

does not vanish in |z] < 1 forevery a, B with | <1, |B]| <1,R>r>1 and ¥ real.
Replacing H(z) by P(z) +AG(z), it follows that the polynomial

T(z)= {P(Rz) + 0 (R, 1, B)P(rz) + €7 (R"P(z/R) + ¢ (R, 1,2, B)rﬂP(z/r))}

2 {(G(R2) + 9(R. 1,2, B)G(r2)) + ¢ (R'G(2/R) + 9(R, @ B)r"G(z/r)) }
(@41)
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does not vanish in |z| < 1 for every o, 3,4 with |o| < 1,|B]| <1 and |A| > 1. This
implies

|(P(Rz) + ¢ (R, 1, 00, B)P(r2)) + € (R"P(z/R) + ¢ (R, 1,0, B)r" P(2/1))]

< (G(Rz)+ 0 (R, 1,0, B)G(r2)) + €7 (R"G(z/R) + 0 (R, 1,0, B)"G(z/r))|  (42)

for |z] <1, || < 1,|B] < 1, R>r>1 and ¥ real. If inequality (42) is not true, then
there is a point z = zp with \zo\ < 1 such that

|(P(Rz0) + ¢ (R, 1,00, B)P(rz0)) + ¢ (R"P(z0/R) + ¢ (R, .0, B)r" P20/ 7))

> |(G(Rz) + ¢ (R. 1.0, B)G(r20)) + €7 (R"G(20/R) + ¢ (R, 1, 0. B)r" G(z0/ 1)) |-

Since all the zeros of polynomials G(z) lie in |z| > 1, it follows (as before) that all the
zeros of polynomial

(G(Rz) + ¢(R, 7,0, B)G(rz)) + € (R"G(z/R) + ¢ (R, 1,0, B)r"G(z/r))

also lie in |z| > 1 forevery o, B with || < 1,|B| <1, R>r>1 and 7y real. Hence

G(Rz) + ¢(R,r, 0, B)G(rz0)) + eiy(RnG(ZO/R) +¢(R,r,a,B)r"G(z0/7)) #0

|zo] < 1. We take

4 _ (P(Rz) + &(R,r, 0, B)P(rzo 20)) +e"(R"P(z0/R) + § (R, a,E_)V"P(m/r))
(G(Rz0) + ¢ (R, 1,0, B)G(r20)) + €7 (R"G(20/R) + ¢ (R, 1,0, B)r"G(20/7))

so that A is a well-defined real or complex number with [A| > 1 and with this choice
of A, from (41) we get T(z9) = 0 with |z9| < 1. This clearly is a contradiction to the
fact that T'(z) does not vanish in |z] < 1. Thus for every a, 8 with |or| < 1,|B] < 1,
R > r and 7y real,

|(P(R2)P(rz)) +"(R"P(2/R) + ¢ (R, r,@, B)r"P(z/r))]

<|(G(R2) + 0 (R, .. B)G(r2)) + € (R"G(z/R) + ¢ (R,, &, B)r"G(z/ 1))

for |z] < 1, which in particular gives for each p >0 and 0 < 6 < 27,

[ 1P + ok, 5P
+e(R"P(" /R) + ¢ (R, 1,00, )" P(' /1)) |PdO
< [T1GR®) + 9(R,r 0, B)G ()
+e7(R"G (" /R) + ¢ (R, 1,00, B)r"" G (e /r))|Pd6.
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Using lemma 4 and (38), it follows that for every o, B with |a| < 1,|B| <1, R>r,
p >0 and 7y real,

2 0 0

| 1R+ 6 R r.0 )P
+e"(R"P(e" /R) + ¢ (R, r, @, B)r"P(e”® /1)) |PdO
. _ 2n .
<|(R"+0(R, 10, B)r") +e(1 +¢(R,rﬁ,ﬂ))\”/ G(e"%)|Pdo
0

=[(R"+ ¢ (R, 1,0, B)r") + (1 +¢(R,r7a,3>>|"/02” P(e)Pd0.  (43)

Now, if Pi(z) has a zero on |z = 1, then applying (43) to the polynomial P*(z) =
Py(tz)P>(z) where t < 1, we get for every o, § with | < 1,|B|<1,R>r, p>0
and v real,

2 . .
|1 R+ 0 (R 1.0 )P ()
TR [R)+ 9 (R, T B)P (¢ 1)) "8
. _ 2n .
<R +0(R 10 B)”) + 1+ 0R TN [P ()b,

Letting + — 1 in (44) and using continuity, the desired result follows immediately and
this proves Lemma 5. [J

3. Proofs of the theorems

Proof of Theorem 1. Since P(z) is a polynomial of degree n, we can write

n

k
P(z) = P =[1Ge-z) II =z
Jj=1 Jj=k+1
where all the zeros of P;(z) lie in |z] < 1 and all the zeros of P»(z) lie in |z] > 1. First
we suppose that P;(z) has no zero on |z] = 1 so that all the zeros of lie in |z] < 1. Let
02(z) = 2" *Py(1/7), then all the zeros of Q,(z) liein |z] < 1 and |Q2(z2)| = |P2(2)]
for |z] = 1. Now consider the polynomial

k n
F(z)=P H 7—2zj) H (1-2z),

j=1 Jj=k+1

then all the zeros of F(z) liein |z] < 1 and for |z] =1,

[F(2)] = [P1(2)]1Q2(2)] = |P1(2)| [Pa(2)] = P (2)]. (44)

By the Maximum Modulus Principle, it follows that

[P()| < [F(2)] for [z[ > 1
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Since F(z) # 0 for |z| > 1, therefore, for every A with |A| > 1, a direct application
of Rouche’s theorem shows that the polynomial H(z) = P(z) + AF(z) has all its zeros
in |z| < 1. Applying lemma 1 to the polynomial H(z) and noting that all the zeros of
H(Rz) liein |z] < § < 1, we deduce (as before) that for every o, B, A with |a| <1,
|B] <1 and |A| > 1, all the zeros of polynomial

G(z) = H(Rz) + ¢(R,r,t, B)H (rz)
= (P(R2) + ¢(R,r,0t,B)P(rz)) + A(F(RZ) + ¢(R,r, 00, B)F (rz2))

lie in |z| < 1. This implies (as in the case of Lemma 2)
[P(Rz) + ¢ (R, 1,0, B)P(rz)| < |F(Rz) + ¢(R, 1, 0, B)F (r2)|

for |z] > 1 and R > r > 1, which in particular gives for R>r > 1 and p > 0,
2n , .
| IP®RE®) + 0 (R0, B)P(r®) a0
0
21 . .
< [T RE®) + (R, BIF () . (45)
0
Again, since all the zeros of F(z) lie in |z] < 1, as before, the polynomial

F(Rz)+ ¢(R,r,at, B)F (rz)

has all its zeros in |z < 1 for every real or complex number 3 with |3| < 1. Therefore,
the operator A, defined by

AyF(z) = F(Rz) + ¢ (R,r, 0, B)F (rz)
= (R"+o(R,r,0, B)")bpd" + -+ (1 + (R, 1,00, B)r")by

is admissible. Hence by (36) of Lemma (3), for each p > 0, we have

IR 4 0. BE ()P0 < R+ 0 (R By [ IF ().

(46)
Combining inequalities (45) and (46) and noting that |F(¢'®)| = |P(¢®)|, we obtain
2n . ) 1/p
{7 @) + ok ppierac)
0

21 . I/p

<l +ownapyel{ [pErae) @
0

In case Pj(z) has a zero on |z| = 1, the inequality (47) follows by using similar argu-
ment as in the case of Lemma 5. This completes the proof of Theorem 1. [l

Proof of Theorem 2. By hypothesis P € P, and P(z) does not vanish in |z] < 1,
therefore, by Lemma 2 for every real or complex number o, § with || <1, |B| <1,
0<O6<2mrandR>r>1,

IP(R'®) + ¢ (R, 1,0, B)P(re®)| < |R"P(¢”® /R) + ¢(R, 1,0, B)"P(e® /r)].  (48)
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Also, by Lemma 5,
b4 .
/ F(6) +¢7G(6)|7d6
0
. _ 2r .
<I(R"+¢(R,r,a,ﬁ)r")e”+(1+¢(R,rﬁ,ﬁ)|”/ P(e®)|PdO,  (49)
0
where

F(6) = P(Re"®) + ¢ (R, 1,0, B)P(re”)

and
G(8) =R"P(¢"® /R)+ ¢(R,r, @, B)r"P(® /r).

Integrating both sides of (49) with respect to y from 0 to 2w, we get for each
p>0,R>r>1 and y real,

2r 21 .
/ / F(6) +¢7G(6)|"dyd6
0 0

< {/02” (R" + ¢ (R,r, 0, B)r")e + (1 +<P(R,r,ﬁ,3)|pd7/} {/027[ P(e’”)l”de}

(50)
Now for every real 7, t > 1 and p > 0, we have

2 . 2 .
/ |t+e”’|pd7/>/ [1+e"|Pdy.
0 0

If F(0) #0, we take t = |G(0)|/|F(0)|, then by (48) > 1 and we get

2 ; _ m i G(O) P
/0 IF(0) +¢7G(6)|Pdy = ‘F(e)‘p/o l—i—eYW dy

—F@PF [ | B+

P
dy

—iror [ | aa e

21 .
> \F(G)\P/ |1+ dy.
0

p
dy

For F(6) = 0, this inequality is trivially true. Using this in (50), we conclude that for
arbitrary real or complex numbers ¢, § with |ot| < 1,|8| <1, R>r>1 and ¥ real,

{/02”|1 +e’7l”dy} {/OMP(Re"")+¢(R, r,(x,ﬂ)P(reie)Pde}

< {/OZHKR"—HP(R,na,ﬁ)V") +e7(1 +¢(R»’7a’3>>|pdy} "

2r
x {/0 |P(ef9)1’de}. (51)
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Since

[ ok )+ 1+ ol B P

[T IR o B+ M+ ol B P

[ o B+ M+ oo ) P

[ IR ok ) 1+ 0 (R B P

—{ [T omna g omnaplarf, o)

the desired result follows immediately by combining (51) and (52). This completes the
proof of Theorem 2. [

Proof of Theorem 3. Since P(z) is self-inversive polynomial, we have P(z) =
uQ(z) forall z € C where |u| =1 and Q(z) = Z"P(1/z). Therefore, for arbitrary real
or complex numbers &, f and R>r > 1,

|P(Rz) + ¢ (R, 1,0, B)P(rz)| = |Q(Rz) + ¢ (R, 1,00, B)Q(r2)| forallzeC

so that
P(Re™®) + ¢(R, 7,0, B)P(re®)

1G(6)/F(0)] = KPR 5 6(RraByPeen)|

Using this in (50) and proceeding similarly as in the proof of Theorem 2, we get the
desired result. This completes the proof of Theorem 3. [

Acknowledgement

Authors are thankful to the referee for his suggestions.

REFERENCES

[1] N.C. ANKENY AND T. J. RIVLIN, On a theorm of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.

[2] V. V. ARESTOV, On integral inequalities for trigonometric polynimials and their derivatives, 1zv.
Akad. Nauk SSSR Ser. Mat. 45 (1981), 3-22 [in Russian]. English translation; Math. USSR-Izv. 18
(1982), 1-17.

[3]1 A. Aziz, A new proof and a generalization of a theorem of De Bruijn, Proc. Amer Math. Soc. 106
(1989), 345-350.

[4] A. Aziz AND N. A. RATHER, L? inequalities for polynomials, Glasnik Matematicki 32 (1997), 39—
43.

[5]1 A. Aziz AND N. A. RATHER, On an inequality of S. Bernstein and Gauss-Lucas theorem, Analytic
and Geometric inequalities, Kluwer Acad. Pub., 1999, 29-35.

[6] A. Aziz AND N. A. RATHER, Some compact generalization of Zygmund-type inequalities for poly-
nomials, Nonlinear studies 6 (1999), 241-255.



486

[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]
[18]

[19]

[20]

A. Az1Z AND N. A. RATHER

R. P. BOAS, JR., AND Q. I. RAHMAN, L? inequalities for polynomials and entire functions, Arch.
Rational Mech. Anal. 11 (1962), 34-39.

N. G. BRUNN, Inequalities concerning polynomials in the complex domain, Nederal. Akad. Wetensch.
Proc. 50 (1947), 1265-1272.

K. K. DEWAN AND N. K. GOVIL, An inequality for self-inversive polynomials, J. Math. Anal. Appl.
45 (1983), 490.

G. H. HARDY, The mean value of the modulus of an analytic function, Proc. London Math. Soc. 14
(1915), 269-277.

V. K. JAIN, Generalization of certain well-known inequalities for polynomials, Glasnik Matematicki
32 (1997), 45-51.

P. D. LAX, Proof of a conjecture of P.Erdds on the derivative of a polynomial, Bull. Amer. Math. Soc.
50 (1944), 509-513.

G. V. MILOVANOVIC, D. S. MITRINOVIC AND TH. M. RASSIAS, Topics in Polynomials: Extremal
Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore, 1994.

G. POLYA AN G. SZEGO, Aufgaben und lehrsditze aus der Analysis, Springer-Verlag, Berlin, 1925.
Q. I. RAHMAN AND G. SCHMEISSER, Les Inequalitués de Markoff et de Bernstein, Presses Univ.
Montréal, Montréal, Quebec, 1983.

Q. I. RAHMAN AND G. SCHMESSIER, L? inequalities for polynomials, J. Approx. Theory 53 (1988),
26-32.

Q. I. RAHMAN AND G. SCHMESSIER, Analytic theory of polynomials, Claredon Press, Oxford, 2002.
M. RIESZ, Formula d’interpolation pour la dérivée d’un polynome trigonométrique, C. R. Acad. Sci,
Paris, 158 (1914), 1152-1254.

A. C. SCHAFFER, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions,
Bull. Amer. Math Soc. 47 (1941), 565-579.

A.ZYGMUND, Aremark on conjugate series, Proc. London Math. Soc. 34 (1932), 292-400.

(Received June 7, 2010) A. Aziz

P. G. Department of Mathematics
Kashmir University

Hazratbal

Srinagar-190006

India

N. A. Rather

P. G. Department of Mathematics
Kashmir University

Hazratbal

Srinagar-190006

India

e-mail: dr .narather@gmail.com

Mathematical Inequalities & Applications



