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Abstract. In this paper, we consider a problem of investigating the dependence of∥∥∥∥P(Rz)−αP(rz)+β
{(

R+1
r +1

)n

−|α |
}∥∥∥∥

p

on ‖P(z)‖p for arbitrary real or complex numbers α , β with |α | � 1 , |β | � 1 , R > r � 1 ,
p > 0 and present certain sharp compact generalizations of some well-known Zygmund-type
inequalities for polynomials, from which a variety of interesting results follows as special cases.

1. Introduction and statements of results

Let Pn(z) denote the space of all complex polynomials P(z) = ∑n
j=0 a jz j of degree

n . For P ∈ Pn , define

‖P(z)‖p :=
{

1
2π

∫ 2π

0

∣∣∣P(eiθ )
∣∣∣p

}1/p

, 1 � p < ∞

and
‖P(z)‖∞ := Max

|z|=1
|P(z)| .

A famous result known as Bernstein’s inequality (for reference, see [13, p. 531],
[17, p. 508] or [19]) states that if P ∈ Pn , then∥∥P′(z)

∥∥
∞ � n‖P(z)‖∞ , (1)

whereas concerning the maximum modulus of P(z) on the circle |z| = R > 1, we have

‖P(Rz)‖∞ � Rn‖P(z)‖∞, (2)

(for reference, see [13, p. 442] or [14, vol. I, p. 137]). Inequalities (1) and (2) can be
obtained by letting p → ∞ in the inequalities∥∥P′(z)

∥∥
p � n‖P(z)‖p , p � 1 (3)

Mathematics subject classification (2010): 30D15, 41A17.
Keywords and phrases: polynomials, inequalities in the complex domain Zygmund’s inequality.

c© � � , Zagreb
Paper MIA-15-41

469



470 A. AZIZ AND N. A. RATHER

and
‖P(Rz)‖p � Rn ‖P(z)‖p , R > 1, p > 0, (4)

respectively. Inequality (3) was found by Zygmund [20] whereas inequality (4) is a
simple consequence of a result of Hardy [10] (see also [15, Th. 5.5]). Since inequality
(3) was deduced from M. Riesz’s interpolation formula [18] by means of Minkowski’s
inequality, it was not clear, whether the restriction on p was indeed essential. This
question was open for a long time. Finally Arestov [2] proved that (3) remains true for
0 < p < 1 as well.

If we restrict ourselves to the class of polynomials P ∈ Pn having no zero in |z| <
1, then inequalities (1) and (2) can be respectively replaced by∥∥P′(z)

∥∥
∞ � n

2
‖P(z)‖∞ (5)

and

‖P(Rz)‖∞ � Rn +1
2

‖P(z)‖∞. (6)

Inequality (5) was conjectured by Erdös and later verified by Lax [12]. Ankeny and
Rivlin [1] used inequality (5) to prove inequality (6).

Both the inequalities (5) and (6) can be obtain by letting p→ ∞ in the inequalities

∥∥P′(z)
∥∥

p � n
‖P(z)‖p

‖1+ z‖p
, p � 0 (7)

and

‖P(Rz)‖p �
‖Rnz+1‖p

‖1+ z‖p
‖P(z)‖p , R > 1, p > 0. (8)

Inequality (7) is due to De-Bruijn [8] for p � 1. Rahman and Schmeisser [16] extended
it for 0 < p < 1 whereas the inequality (8) was proved by Boas and Rahman [7] for
p � 1 and later it was extended for 0 < p < 1 by Rahman and Schmeisser [16].

Jain [11] generalized both the inequalities (5) and (6) and proved that if P(z) �= 0
in |z| < 1, then for every real or complex number β with |β | � 1, |z| = 1 and R � 1,∣∣∣∣zP′(z)+

nβ
2

P(z)
∣∣∣∣ � n

2

{∣∣∣∣1+
β
2

∣∣∣∣+
∣∣∣∣β
2

∣∣∣∣
}
‖P(z)‖∞ (9)

and∣∣∣∣P(Rz)+ β
(

R+1
2

)n

P(z)
∣∣∣∣ � 1

2

{∣∣∣∣Rn + β
(

R+1
2

)n∣∣∣∣+
∣∣∣∣1+ β

(
R+1

2

)n∣∣∣∣
}
‖P(z)‖∞ .

(10)
Recently authors in [5] (see also [6]) investigated the dependence of

‖P(Rz)−αP(z)‖∞ on ‖P(z)‖∞

for every real or complex number α with |α| � 1 and R > 1. As a compact general-
ization of inequalities (1) and (2), they have shown that if P ∈ Pn , then for every real or
complex number α with |α| � 1, R > 1 and |z| � 1,

|P(Rz)−αP(z)| � |Rn−α| |z|n ‖P(z)‖∞ . (11)
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As a compact generalization of inequalities (5) and (6), authors [5] have also
proved that if P(z) �= 0 in |z| < 1, then for every real or complex number α with
|α| � 1, |z| � 1 and R > 1,

|P(Rz)−αP(z)| � |Rn−α| |z|n + |1−α|
2

‖P(z)‖∞ . (12)

In the present paper, we consider a more general problem of investigating the
dependence of∥∥∥∥P(Rz)−αP(rz)+ β

{(
R+1
r+1

)n

−|α|
}

P(rz)
∥∥∥∥

p
on ‖P(z)‖p

for arbitrary real or complex numbers α , β with |α| � 1, |β | � 1, R > r � 1, p > 0
and develop a unified method for arriving at these results. We first present the following
interesting result, which is a compact generalization of inequalities (1), (2), (3), (4), (9),
(10) and an extension of (11) to Lp mean of |P(z)| .

THEOREM 1. If P ∈ Pn , then for arbitrary real or complex numbers α , β with
|α| � 1 , |β | � 1 , R > r � 1 and p > 0,

‖P(Rz)+ φ(R,r,α,β )P(rz)‖p � |Rn + φ(R,r,α,β )rn| ‖P(z)‖p , (13)

where

φ(R,r,α,β ) := β
{(

R+1
r+1

)n

−|α|
}
−α. (14)

The result is best possible and equality in (13) holds for P(z) = azn , a �= 0.

A variety of interesting results can be deduced from Theorem 1 as special cases.
Here we mention a few of these.

Taking β = 0 in (13), we get the following compact generalization of inequalities
(3), (4) and (11).

COROLLARY 1. If P∈Pn , then for every real or complex number α with |α|� 1 ,
R > r � 1 and p > 0,

‖P(Rz)−αP(rz)‖p � |Rn−αrn|‖P(z)‖p . (15)

The result is best possible and equality in (15) holds for P(z) = azn , a �= 0.

REMARK 1. For α = 0, Corollary 1 reduces to inequality (4). If we divide the
two sides of (15) by R− r with α = 1 and let R → r , we get∥∥P′(rz)

∥∥
p � nrn−1‖P(z)‖p , p > 0. (16)

For r = 1, it reduces to inequality (3) due to Zygmund [20] for each p > 0.
Next, if we divide the two sides of (13) by R− r with α = 1 and let R → r , we

obtain:
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COROLLARY 2. If P∈ Pn , then for every real or complex number β with |β |� 1 ,
r � 1 and p > 0 ,∥∥∥∥zP′(rz)+

nβ
r+1

P(rz)
∥∥∥∥

p
� n

∣∣∣∣rn−1 +
β rn

r+1

∣∣∣∣‖P(z)‖p . (17)

The result is best possible.

The following result immediately follows from Theorem 1 by letting p → ∞ in
(13).

COROLLARY 3. If P ∈ Pn , then for arbitrary real or complex numbers α , β with
|α| � 1 , |β | � 1 , R > r � 1 and |z| = 1 ,

|P(Rz)+ φ(R,r,α,β )P(rz)| � |Rn + φ(R,r,α,β )rn|Max
|z|=1

|P(z)| . (18)

The result is sharp and equality in (18) holds for P(z) = azn , a �= 0.

REMARK 2. For β = 0, r = 1, we get inequality (11). If we divide the two sides
of (18) by R− r with α = 1 and let R → r , we obtain:

COROLLARY 4. If P∈ Pn , then for every real or complex number β with |β |� 1 ,
r � 1 and |z| = 1 ,∣∣∣∣zP′(rz)+

nβ
r+1

P(rz)
∣∣∣∣ � n

∣∣∣∣rn−1 +
β rn

r+1

∣∣∣∣Max
|z|=1

|P(z)| . (19)

The result is best possible.

For β = 0 and r = 1, inequality (19) reduces to inequality (1) due to Bernstein.
We next present the following multifaceted generalization for polynomials P ∈ Pn

not vanishing in |z| < 1 which among other interesting results include inequalities (5),
(6), (7), (8), (9), (10) and (12) as special cases.

THEOREM 2. If P ∈ Pn and P(z) does not vanish in |z| < 1 , then for arbitrary
real or complex numbers α , β with |α| � 1, |β | � 1 , R > r � 1 and p > 0,

‖P(Rz)+ φ(R,r,α,β )P(rz)‖p � Cp

‖1+ z‖p
‖P(z)‖p , (20)

where
Cp = ‖(Rn + φ(R,r,α,β )rn)z+(1+ φ(R,r,α,β ))‖p (21)

and φ(R,r,α,β ) is defined by (14). The result is best possible and equality in (20)
holds for P(z) = azn +b, |a| = |b| = 1.

REMARK 3. For α = β = 0, Theorem 2 reduces to inequality (8). If we divide
the two sides of (20) by R− r with α = 1 and let R → r , we easily get:
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COROLLARY 5. If P∈ Pn and P(z) does not vanish in |z|< 1 , then for every real
or complex number β with |β | � 1 , r � 1 and p > 0,∥∥∥∥zP′(rz)+

nβ
1+ r

P(rz)
∥∥∥∥

p
� n

∥∥∥∥
(

rn−1 +
β rn

1+ r

)
z+

β
1+ r

∥∥∥∥
p

‖P(z)‖p

‖1+ z‖p
. (22)

Next corollary follows by taking α = 0 in Theorem 2.

COROLLARY 6. If P∈ Pn and P(z) does not vanish in |z|< 1 , then for every real
or complex number β with |β | � 1 , r � 1 and p > 0,

‖P(Rz)+ ψ(R,r,β )P(rz)‖p �
‖(Rn + ψ(R,r,β )rn)z+(1+ ψ(R,r,β )rn)‖p

‖1+ z‖p
‖P(z)‖p ,

(23)
where ψ(R,r,β ) = φ(R,r,0,β ) .

For r = 1, inequalities (22) and (23) extend inequalities (9) and (10) to the Lp

mean of |P(z)| .
The following corollary immediately follows from Theorem 2 by taking β = 0.

COROLLARY 7. If P∈ Pn and P(z) does not vanish in |z|< 1 , then for every real
or complex number α with |α| � 1 , R > r � 1 and p > 0,

‖P(Rz)−αP(rz)‖p �
‖(Rn −αrn)z+(1−α)‖p

‖1+ z‖p
‖P(z)‖p . (24)

The result is sharp and equality in (24) holds for P(z) = azn +b, |a| = |b| = 1.

REMARK 4. For α = r = 1, if we divide the two sides of (24) by R− 1 and let
R → 1, we immediately get De-Bruijn’s theorem (inequality (7)) for each p > 0. For
α = 0, Corollary 7 reduces to inequality (8) for each p > 0.

Next, we mention the following compact generalization of a theorem of Erdös
and Lax [12] and a result of Ankeny and Rivlin [1], which immediately follows from
Corollary 7 by letting p → ∞ in (19).

COROLLARY 8. If P∈ Pn and P(z) does not vanish in |z|< 1 , then for every real
or complex numbers α with |α| � 1 and R > r � 1 ,

|P(Rz)−αP(rz)| � |Rn−αrn|+ |1−α|
2

Max
|z|=1

|P(z)| for |z| = 1. (25)

The result is best possible and equality in (25) holds for P(z) = azn +b, |a| = |b| = 1.

A polynomial P ∈ Pn is said to be self-inversive if P(z) = uQ(z) for all z ∈ C
where |u| = 1 and Q(z) = znP(1/z) . It is known [3, 9] that if P ∈ Pn is self-inversive
polynomial, then for every p � 1,

∥∥P′(z)
∥∥

p � n
‖P(z)‖p

‖1+ z‖p
. (26)

Finally, we present the following result which include some well-known results
for self-inversive polynomials as special cases.
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THEOREM 3. If P ∈ Pn is self-inversive polynomial, then for arbitrary real or
complex numbers α , β with |α| � 1 , |β | � 1 , R > r � 1 and p > 0,

‖P(Rz)+ φ(R,r,α,β )P(rz)‖p � Cp

‖1+ z‖p
‖P(z)‖p ,

where
Cp = ‖(Rn + φ(R,r,α,β )rn)z+(1+ φ(R,r,α,β ))‖p

and φ(R,r,α,β ) is defined by (14).

COROLLARY 9. If P∈ Pn is self-inversive polynomial, then for every real or com-
plex number α with |α| � 1 , R > r � 1 and p > 0,

‖P(Rz)−αP(rz)‖p �
‖(Rn −αrn)z+(1−α)‖p

‖1+ z‖p
‖P(z)‖p . (27)

The result is best possible and equality in (27) holds for P(z) = zn +1 .

REMARK 5. Many interesting results can be deduced from Theorem 3 in exactly
the same way as we have deduced from Theorem 2.

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

LEMMA 1. If P ∈ Pn and P(z) has all its zeros in |z| � k where k � 1 , then for
every R � r � 1 and |z| = 1 ,

|P(Rz)| �
(

R+ k
r+ k

)n

|P(rz)| . (28)

Proof of Lemma 1. Since all the zeros of P(z) lie in |z| � k , we write

P(z) = C
n

∏
j=1

(
z− r je

iθ j

)
,

where r j � k . Now for 0 � θ < 2π , R > r � 1, we have

∣∣∣∣Reiθ − r jeiθ j

reiθ − r jeiθ j

∣∣∣∣ =

{
R2 + r2

j −2RrjCos(θ −θ j

r2 + r2
j −2rr jCos(θ −θ j

}1/2

�
{

R+ r j

r+ r j

}
�

{
R+ k
r+ k

}
, j = 1,2, · · · ,n.

Hence ∣∣∣∣P(Reiθ )
P(reiθ )

∣∣∣∣ =
n

∏
j=1

∣∣∣∣Reiθ − r jeiθ j

reiθ − r jeiθ j

∣∣∣∣
�

n

∏
j=1

(
R+ k
r+ k

)
=

(
R+ k
r+ k

)n
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for 0 � θ < 2π . This implies for |z| = 1 and R > r � 1,

|P(Rz)| �
(

R+ k
r+ k

)n

|P(rz)| ,

which completes the proof of Lemma 1. �

LEMMA 2. If F ∈ Pn has all its zeros in |z| � 1and P(z) is a polynomial of
degree at most n such that

|P(z)| � |F(z)| for |z| = 1,

then for arbitrary real or complex numbers α , β with |α| � 1 , |β | � 1 , R > r � 1 ,
and |z| � 1 ,

|P(Rz)+ φ(R,r,α,β )P(rz)| � |F(Rz)+ φ(R,r,α,β )F(rz)| , (29)

where φ(R,r,α,β ) is defined by (14).

Proof of Lemma 2. In case R = r , we have nothing to prove. Henceforth, we
assume that R > r . Since the polynomial F(z) of degree n has all its zeros in |z| � 1
and P(z) is a polynomial of degree at most n such that

|P(z)| � |F(z)| for |z| = 1, (30)

therefore, if F(z) has a zero of multiplicity s at z = eiθ0 , then P(z) has a zero of
multiplicity at least s at z = eiθ0 . If P(z)/F(z) is a constant, then the inequality (29)
is obvious. We now assume that P(z)/F(z) is not a constant, so that by the maximum
modulus principle, it follows that

|P(z)| < |F(z)| f or |z| > 1 .

Suppose F(z) has m zeros on |z| = 1 where 0 � m � n , so that we can write

F(z) = F1(z)F2(z)

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and F2(z) is a
polynomial of degree exactly n−m having all its zeros in |z| < 1. This implies with
the help of inequality (30) that

P(z) = P1(z)F1(z)

where P1(z) is a polynomial of degree at most n−m . Now, from inequality (30), we
get

|P1(z)| � |F2(z)| for |z| = 1

where F2(z) �= 0 for |z| = 1. Therefore for every real or complex number λ with
|λ |> 1, a direct application of Rouche’s theorem shows that the zeros of the polynomial
P1(z)−λF2(z) of degree n−m � 1 lie in |z| < 1 Hence the polynomial

f (z) = F1(z)(P1(z)−λF2(z)) = P(z)−λF(z)
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has all its zeros in |z| � 1 with at least one zero in |z| < 1, so that we can write

f (z) = (z− teiδ )H(z)

where t < 1 and H(z) is a polynomial of degree n− 1 having all its zeros in |z| � 1.
Applying Lemma 1 to the polynomial f(z) with k = 1, we obtain for every R > r � 1
and 0 � θ < 2π ,

| f (Reiθ )| = |Reiθ − teiδ ||H(Reiθ )|

� |Reiθ − teiδ |
(

R+1
r+1

)n−1

|H(reiθ )|

=
(

R+1
r+1

)n−1 |Reiθ − teiδ |
|reiθ − teiδ | |(re

iθ − teiδ)H(reiθ )|

�
(

R+1
r+1

)n−1 (
R+ t
r+ t

)
| f (reiθ )|.

This implies for R > r � 1 and 0 � θ < 2π ,(
r+ t
R+ t

)
| f (Reiθ )| �

(
R+1
r+1

)n−1

| f (reiθ )|. (31)

Since R > r � 1 > t so that f (Reiθ ) �= 0 for 0 � θ < 2π and 1+r
1+R > r+t

R+t , from in-
equality (31), we obtain

| f (Reiθ | >
(

R+1
r+1

)n

| f (reiθ )| R > r � 1 and 0 � θ < 2π . (32)

Equivalently,

| f (Rz)| >
(

R+1
r+1

)n

| f (rz)|

for |z| = 1 and R > r � 1. Hence for every real or complex number α with |α| � 1
and R > r � 1, we have

| f (Rz)−α f (rz)| � | f (Rz)|− |α|| f (rz)|

>

{(
R+1
r+1

)n

−|α|
}
| f (rz)|, |z| = 1. (33)

Also, inequality (32) can be written in the form

| f (reiθ)| <
(

r+1
R+1

)n

| f (Reiθ )| (34)

for every R > r � 1 and 0 � θ < 2π . Since f (Reiθ ) �= 0 and
(

r+1
R+1

)n
< 1, from in-

equality (34), we obtain for 0 � θ < 2π and R > r � 1,

| f (reiθ | < | f (Reiθ ).
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Equivalently,
| f (rz)| < | f (Rz)| for |z| = 1.

Since all the zeros of f (Rz) lie in |z| � (1/R) < 1, a direct application of Rouche’s
theorem shows that the polynomial f (Rz)−α f (rz) has all its zeros in |z|< 1 for every
real or complex number α with |α| � 1. Applying Rouche’s theorem again, it follows
from (33) that for arbitrary real or complex numbers α , β with |α| � 1, |β | � 1 and
R > r � 1, all the zeros of the polynomial

T (z) = f (Rz)−α f (rz)+ β
{(

R+1
r+1

)n

−|α|
}

f (rz)

=
[
P(Rz)−αP(rz)+ β

{(
R+1
r+1

)n

−|α|
}

P(rz)
]

−λ
[
F(Rz)−αF(rz)+ β

{(
R+1
r+1

)n

−|α|
}

F(rz)
]

= [P(Rz)+ φ(R,r,α,β )P(rz)]−λ [F(Rz)+ φ(R,r,α,β )F(rz)]

lie in |z| < 1 with |λ | � 1. This implies

|P(Rz)+ φ(R,r,α,β )P(rz)| � |F(Rz)+ φ(R,r,α,β )F(rz)| (35)

for |z| � 1 and R > r � 1. If inequality (35) is not true, then there a point z = w with
|w| � 1 such that

|P(Rw)+ φ(R,r,α,β )P(rw))| > |F(Rw)+ φ(R,r,α,β )F(rw)|.
But all the zeros of F(Rz) lie in |z| < 1, therefore, it follows (as in case of f (z)) that
all the zeros of F(Rz)+ φ(R,r,α,β )F(rz) lie in |z| < 1. Hence

F(Rw)+ φ(R,r,α,β )F(rw) �= 0

with |w| � 1. We take

λ =
P(Rw)+ φ(R,r,α,β )P(rw)
F(Rw)+ φ(R,r,α,β )F(rw)

,

then λ is a well defined real or complex number with |λ | > 1 and with this choice of
λ , we obtain T (w) = 0 where |w| � 1. This contradicts the fact that all the zeros of
T (z) lie in |z| < 1. Thus

|P(Rz)+ φ(R,r,α,β )P(rz)| � |F(Rz)+ φ(R,r,α,β )F(rz)|
for |z| � 1 and R > r � 1. This proves Lemma 2. �

Next we describe a result of Arestov.
For δ = (δ0,δ1, · · · ,δn) and P(z) = ∑n

j=0 a jz j ∈ Pn , we define

Λδ P(z) =
n

∑
j=0

δ ja jz
j.
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The operator Λδ is said to be admissible if it preserves one of the following prop-
erties:

(i) P(z) has all its zeros in {z ∈C : |z| � 1} ,
(ii) P(z) has all its zeros in{z ∈C : |z| � 1} .
The result of Arestov may now be stated as follows.

LEMMA 3. [2, Th. 4] Let φ(x) = ψ(logx) where ψ is a convex nondecreasing
function on R. Then for all P ∈ Pn and each admissible operator Λδ ,

∫ 2π

0
φ(|Λδ P(eiθ )|)dθ �

∫ 2π

0
φ(C(δ ,n)|P(eiθ )|)dθ ,

where C(δ ,n) = max(|δ0|, |δn|).
In particular, Lemma 3 applies with φ : x → xp for every p ∈ (0,∞) . Therefore,

we have {∫ 2π

0
(|Λδ P(eiθ )|p)dθ

}1/p

� C(δ ,n)
{∫ 2π

0
|P(eiθ )|pdθ

}1/p

. (36)

We use (36) to prove the following interesting result.

LEMMA 4. If P ∈ Pn and P(z) does not vanish in |z| < 1 , then for arbitrary
real or complex numbers α , β with |α| � 1 , |β | � 1 , R > r � 1 , p > 0 and γ real,

∫ 2π

0
|(P(Reiθ )+ φ(R,r,α,β )P(reiθ ))

+eiγ(RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r))|pdθ

� |(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β ))|p
∫ 2π

0
|P(eiθ )|pdθ .

Proof of Lemma 4. By hypothesis P(z) does not vanish in |z| < 1, therefore, the
polynomial Q(z) = znP(1/z) of degree n has all its zeros in |z|� 1 and |P(z)| = |Q(z)|
and |z| = 1. Applying Lemma 2 with F(z) replaced by Q(z) , we get for arbitrary real
or complex numbers α , β with |α � 1, |β | � 1, R > r � 1 and |z| = 1,

|P(Rz)+ φ(R,r,α,β )P(rz)| � |Q(Rz)+ φ(R,r,α,β )Q(rz)|
=

∣∣∣RnP(z/R)+ φ(R,r,α,β )rnP(z/r)
∣∣∣ .

Now (as in the proof of Lemma 2), the polynomial

H(z) = Q(Rz)+ φ(R,r,α,β )Q(rz)
= RnznP(1/Rz)+ φ(R,r,α,β )rnznP(1/rz)

has all its zeros in |z| < 1 for arbitrary real or complex numbers α , β with |α| � 1,
|β | � 1 and R > r , therefore, it follows that the polynomial

znH(1/z) = RnP(z/R)+ φ(R,r,α,β )rnP(z/r)
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has all its zeros in |z| > 1. Hence the function

f (z) =
P(Rz)+ φ(R,r,α,β )P(rz)

RnP(z/R)+ φ(R,r,α,β )rnP(z/r)

is analytic in |z| � 1 and | f (z)| � 1 for |z| = 1. Since f (z) is not a constant, it follows
by the maximum modulus principle that

| f (z)| < 1 for |z| < 1,

or equivalently, for |z| < 1,

|P(Rz)+ φ(R,r,α,β )P(rz)| <
∣∣∣RnP(z/R)+ φ(R,r,α,β )rnP(z/r)

∣∣∣ . (37)

A direct application of Rouche’s theorem shows that

Λδ P(z) = (P(Rz)+ φ(R,r,α,β )P(rz))+ eiγ(RnP(z/R)+ φ(R,r,α,β )rnP(z/r))
= (Rn + φ(R,r,α,β )rn + eiγ(1+ φ(R,r,α,β )))anz

n + · · ·
+(1+ φ(R,r,α,β )+ eiγ(Rn + φ(R,r,α,β )rn))a0

does not vanish in |z| < 1 for every α , β with |α| � 1, |β | � 1, R > r � 1 and γ real.
Therefore, Λδ is an admissibe operator. Applying (36) of Lemma 3, the desired result
follows immediately for each p > 0. This completes the proof of Lemma 4. �

From lemma 4, we deduce the following more general lemma which is a result of
independent interest with variety of applications.

LEMMA 5. If P ∈ Pn , then for arbitrary real or complex numbers α , β with
|α| � 1, |β |� 1,R > r � 1 , p > 0 and γ real,

∫ 2π

0
|(P(Reiθ )+ φ(R,r,α,β )P(reiθ ))

+eiγ(RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r))|pdθ

� |(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β )rn)|p
∫ 2π

0
|P(eiθ )|pdθ .

The result is sharp and the extremal polynomial is P(z) = λ zn , λ �= 0.

Proof of Lemma 5. Since P(z) is a polynomial of degree n , we can write

P(z) = P1(z)P2(z) =
k

∏
j=1

(z− z j)
n

∏
j=k+1

(z− z j), k � 1,

where all the zeros of P1(z) lie in |z| � 1 and all the zeros of P2(z) lie in |z| < 1.
First we suppose that P1(z) has no zero on |z| = 1 so that all the zeros of P1(z) lie
in |z| > 1. Let Q2(z) = zn−kP2(1/z) , then all the zeros of Q2(z) lie in |z| > 1 and
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|Q2(z)| = |P2(z)| for |z| = 1. Now consider the polynomial

G(z) = P1(z)Q2(z) =
k

∏
j=1

(z− z j)
n

∏
j=k+1

(1− zz j),k � 1,

then all the zeros of G(z) lie in |z| > 1 and for |z| = 1,

|G(z)| = |P1(z)| |Q2(z)| = |P1(z)| |P2(z)| = |P(z)| . (38)

By the Maximum Modulus Principle, it follows that

|P(z)| � |G(z)| for |z| � 1. (39)

We now claim that the polynomial H(z) = P(z)+λG(z) does not vanish in |z| � 1 for
every λ with |λ | > 1. If this is not true, then there is some z0 with |z0| � 1 such that
H(z0) = 0. This gives

|P(z0)| = |λ ||G(z0)|. (40)

Since G(z0) �= 0 and |λ | > 1, (40) implies

|P(z0)| > |G(z0)|,
which clearly contradicts (39). Thus the polynomial H(z) does not vanish in |z| � 1
for every λ with |λ | > 1 so that all the zeros of H(z) lie in |z| � ρ for some ρ > 1,
or equivalently, all the zeros of H(ρz) lie in |z| � 1. Applying (37) to the polynomial
H(ρz) , we get

|H(Rρz)+ φ(R,r,α,β )H(rρz)| < |RnH(ρz/R)+ φ(R,r,α,β rnH(ρz/r)| for |z| < 1.

Taking z = eiθ /ρ ,0 � θ < 2π , then |z| = (1/ρ) < 1 as ρ > 1 and we get

|H(Reiθ )+ φ(R,r,α,β )H(reiθ )| < |RnH(eiθ /R)+ φ(R,r,α,β )rnH(eiθ /r)|,
for 0 � θ < 2π ,R > r � 1 and |α| � 1, |β | � 1. This implies

|H(Rz)+ φ(R,r,α,β )H(rz)| < |RnH(z/R)+ φ(R,r,α,β )rnH(z/r)| for |z| = 1.

An application of Rouche’s theorem shows that the polynomial

T (z) = (H(Rz)+ φ(R,r,α,β )H(rz))+ eiγ(RnH(z/R)+ φ(R,r,α,β )rnH(z/r))

does not vanish in |z| � 1 for every α , β with |α � 1, |β | � 1, R > r � 1 and γ real.
Replacing H(z) by P(z)+ λG(z) , it follows that the polynomial

T (z) =
{

P(Rz)+ φ(R,r,α,β )P(rz)+ eiγ(RnP(z/R)+ φ(R,r,α,β )rnP(z/r))
}

+λ
{
(G(Rz)+ φ(R,r,α,β )G(rz))+ eiγ (RnG(z/R)+ φ(R,r,α,β )rnG(z/r))

}
(41)
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does not vanish in |z| � 1 for every α,β ,λ with |α| � 1, |β | � 1 and |λ | > 1. This
implies

|(P(Rz)+ φ(R,r,α,β )P(rz))+ eiγ(RnP(z/R)+ φ(R,r,α,β )rnP(z/r))|

� |(G(Rz)+ φ(R,r,α,β )G(rz))+ eiγ(RnG(z/R)+ φ(R,r,α,β )rnG(z/r))| (42)

for |z| � 1, |α| � 1, |β | � 1, R > r � 1 and γ real. If inequality (42) is not true, then
there is a point z = z0 with |z0| � 1 such that

|(P(Rz0)+ φ(R,r,α,β )P(rz0))+ eiγ(RnP(z0/R)+ φ(R,r,α,β )rnP(z0/r))|

> |(G(Rz0)+ φ(R,r,α,β )G(rz0))+ eiγ(RnG(z0/R)+ φ(R,r,α,β )rnG(z0/r))|.
Since all the zeros of polynomials G(z) lie in |z| > 1, it follows (as before) that all the
zeros of polynomial

(G(Rz)+ φ(R,r,α,β )G(rz))+ eiγ (RnG(z/R)+ φ(R,r,α,β )rnG(z/r))

also lie in |z| > 1 for every α , β with |α| � 1, |β | � 1, R > r � 1 and γ real. Hence

G(Rz0)+ φ(R,r,α,β )G(rz0))+ eiγ(RnG(z0/R)+ φ(R,r,α,β )rnG(z0/r)) �= 0,

|z0| � 1. We take

λ = − (P(Rz0)+ φ(R,r,α,β )P(rz0))+ eiγ(RnP(z0/R)+ φ(R,r,α,β )rnP(z0/r))
(G(Rz0)+ φ(R,r,α,β )G(rz0))+ eiγ(RnG(z0/R)+ φ(R,r,α,β )rnG(z0/r))

so that λ is a well-defined real or complex number with |λ | > 1 and with this choice
of λ , from (41) we get T (z0) = 0 with |z0| � 1. This clearly is a contradiction to the
fact that T (z) does not vanish in |z| � 1. Thus for every α , β with |α| � 1, |β | � 1,
R > r and γ real,

|(P(Rz)P(rz))+ eiγ(RnP(z/R)+ φ(R,r,α,β )rnP(z/r))|

� |(G(Rz)+ φ(R,r,α,β )G(rz))+ eiγ (RnG(z/R)+ φ(R,r,α,β )rnG(z/r))|
for |z| � 1, which in particular gives for each p > 0 and 0 � θ < 2π ,

∫ 2π

0
|(P(Reiθ )+ φ(R,r,α,β )P(reiθ ))

+eiγ(RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r))|pdθ

�
∫ 2π

0
|(G(Reiθ )+ φ(R,r,α,β )G(reiθ ))

+eiγ(RnG(eiθ /R)+ φ(R,r,α,β )rnG(eiθ /r))|pdθ .



482 A. AZIZ AND N. A. RATHER

Using lemma 4 and (38), it follows that for every α , β with |α| � 1, |β | � 1, R > r ,
p > 0 and γ real,∫ 2π

0
|(P(Reiθ )+ φ(R,r,α,β )P(reiθ ))

+eiγ(RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r))|pdθ

� |(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β ))|p
∫ 2π

0
|G(eiθ )|pdθ

= |(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β ))|p
∫ 2π

0
|P(eiθ )|pdθ . (43)

Now, if P1(z) has a zero on |z| = 1, then applying (43) to the polynomial P∗(z) =
P1(tz)P2(z) where t < 1, we get for every α , β with |α � 1, |β | � 1, R > r , p > 0
and γ real,∫ 2π

0
|(P∗(Reiθ )+ φ(R,r,α,β )P∗(reiθ ))

+eiγ(RnP∗(eiθ /R)+ φ(R,r,α,β )rnP∗(eiθ /r))|pdθ

� |(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β ))|p
∫ 2π

0
|P∗(eiθ )|pdθ .

Letting t → 1 in (44) and using continuity, the desired result follows immediately and
this proves Lemma 5. �

3. Proofs of the theorems

Proof of Theorem 1. Since P(z) is a polynomial of degree n , we can write

P(z) = P1(z)P2(z) =
k

∏
j=1

(z− z j)
n

∏
j=k+1

(z− z j),

where all the zeros of P1(z) lie in |z| � 1 and all the zeros of P2(z) lie in |z| > 1. First
we suppose that P1(z) has no zero on |z| = 1 so that all the zeros of lie in |z| < 1. Let
Q2(z) = zn−kP2(1/z) , then all the zeros of Q2(z) lie in |z| < 1 and |Q2(z)| = |P2(z)|
for |z| = 1. Now consider the polynomial

F(z) = P1(z)Q2(z) =
k

∏
j=1

(z− z j)
n

∏
j=k+1

(1− zz j),

then all the zeros of F(z) lie in |z| < 1 and for |z| = 1,

|F(z)| = |P1(z)| |Q2(z)| = |P1(z)| |P2(z)| = |P(z)| . (44)

By the Maximum Modulus Principle, it follows that

|P(z)| � |F(z)| for |z| � 1.
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Since F(z) �= 0 for |z| � 1, therefore, for every λ with |λ | > 1, a direct application
of Rouche’s theorem shows that the polynomial H(z) = P(z)+ λF(z) has all its zeros
in |z| < 1. Applying lemma 1 to the polynomial H(z) and noting that all the zeros of
H(Rz) lie in |z| < 1

R < 1, we deduce (as before) that for every α , β , λ with |α| � 1,
|β | � 1 and |λ | > 1, all the zeros of polynomial

G(z) = H(Rz)+ φ(R,r,α,β )H(rz)
= (P(Rz)+ φ(R,r,α,β )P(rz))+ λ (F(Rz)+ φ(R,r,α,β )F(rz))

lie in |z| < 1. This implies (as in the case of Lemma 2)

|P(Rz)+ φ(R,r,α,β )P(rz)| � |F(Rz)+ φ(R,r,α,β )F(rz)|
for |z| � 1 and R > r � 1, which in particular gives for R > r � 1 and p > 0,∫ 2π

0
|P(Reiθ )+ φ(R,r,α,β )P(reiθ )|pdθ

�
∫ 2π

0
|F(Reiθ )+ φ(R,r,α,β )F(reiθ )|pdθ . (45)

Again, since all the zeros of F(z) lie in |z| < 1, as before, the polynomial

F(Rz)+ φ(R,r,α,β )F(rz)

has all its zeros in |z|< 1 for every real or complex number β with |β |� 1. Therefore,
the operator Λγ defined by

ΛγF(z) = F(Rz)+ φ(R,r,α,β )F(rz)
= (Rn + φ(R,r,α,β )rn)bnz

n + · · ·+(1+ φ(R,r,α,β )rn)b0

is admissible. Hence by (36) of Lemma (3), for each p > 0, we have∫ 2π

0
|F(Reiθ )+ φ(R,r,α,β )F(reiθ )|pdθ � |Rn + φ(R,r,α,β )rn|p

∫ 2π

0
|F(eiθ )|pdθ .

(46)
Combining inequalities (45) and (46) and noting that |F(eiθ )| = |P(eiθ )| , we obtain{∫ 2π

0
|P(Reiθ )+ φ(R,r,α,β )P(reiθ )|pdθ

}1/p

� |Rn + φ(R,r,α,β )rn|
{∫ 2π

0
|P(eiθ )|pdθ

}1/p

. (47)

In case P1(z) has a zero on |z| = 1, the inequality (47) follows by using similar argu-
ment as in the case of Lemma 5. This completes the proof of Theorem 1. �

Proof of Theorem 2. By hypothesis P ∈ Pn and P(z) does not vanish in |z| < 1,
therefore, by Lemma 2 for every real or complex number α , β with |α| � 1, |β | � 1,
0 � θ < 2π and R > r � 1,

|P(Reiθ )+ φ(R,r,α,β )P(reiθ )| � |RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r)|. (48)
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Also, by Lemma 5,

∫ 2π

0
|F(θ )+ eiγG(θ )|pdθ

� |(Rn + φ(R,r,α,β )rn)eiγ +(1+ φ(R,r,α,β )|p
∫ 2π

0
|P(eiθ )|pdθ , (49)

where
F(θ ) = P(Reiθ )+ φ(R,r,α,β )P(reiθ )

and
G(θ ) = RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r).

Integrating both sides of (49) with respect to γ from 0 to 2π , we get for each
p > 0, R > r � 1 and γ real,

∫ 2π

0

∫ 2π

0
|F(θ )+ eiγG(θ )|pdγdθ

�
{∫ 2π

0
|(Rn + φ(R,r,α,β )rn)eiγ +(1+ φ(R,r,α,β )|pdγ

}{∫ 2π

0
|P(eiθ )|pdθ

}
.

(50)
Now for every real γ , t � 1 and p > 0, we have

∫ 2π

0
|t + eiγ |pdγ �

∫ 2π

0
|1+ eiγ |pdγ.

If F(θ ) �= 0, we take t = |G(θ )|/|F(θ )| , then by (48) t � 1 and we get

∫ 2π

0
|F(θ )+ eiγG(θ )|pdγ = |F(θ )|p

∫ 2π

0

∣∣∣∣1+ eiγ G(θ )
F(θ )

∣∣∣∣
p

dγ

= |F(θ )|p
∫ 2π

0

∣∣∣∣G(θ )
F(θ )

+ eiγ
∣∣∣∣
p

dγ

= |F(θ )|p
∫ 2π

0

∣∣∣∣
∣∣∣∣G(θ )
F(θ )

∣∣∣∣+ eiγ
∣∣∣∣
p

dγ

� |F(θ )|p
∫ 2π

0

∣∣1+ eiγ∣∣p
dγ.

For F(θ ) = 0, this inequality is trivially true. Using this in (50), we conclude that for
arbitrary real or complex numbers α , β with |α| � 1, |β | � 1, R > r � 1 and γ real,{∫ 2π

0

∣∣1+ eiγ∣∣p
dγ

}{∫ 2π

0
|P(Reiθ )+ φ(R,r,α,β )P(reiθ )|pdθ

}

�
{∫ 2π

0
|(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β ))|pdγ

}
×

×
{∫ 2π

0
|P(eiθ )|pdθ

}
. (51)
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Since {∫ 2π

0
|(Rn + φ(R,r,α,β )rn)+ eiγ(1+ φ(R,r,α,β ))|pdγ

}

=
{∫ 2π

0
||Rn + φ(R,r,α,β )rn|+ eiγ |1+ φ(R,r,α,β )||pdγ

}

=
{∫ 2π

0
||Rn + φ(R,r,α,β )rn|+ eiγ |1+ φ(R,r,α,β )||pdγ

}

=
{∫ 2π

0
||Rn + φ(R,r,α,β )rn|eiγ + |1+ φ(R,r,α,β )||pdγ

}

=
{∫ 2π

0
|(Rn + φ(R,r,α,β )rn)eiγ +(1+ φ(R,r,α,β ))|pdγ

}
, (52)

the desired result follows immediately by combining (51) and (52). This completes the
proof of Theorem 2. �

Proof of Theorem 3. Since P(z) is self-inversive polynomial, we have P(z) =
uQ(z) for all z ∈C where |u| = 1 and Q(z) = znP(1/z) . Therefore, for arbitrary real
or complex numbers α , β and R > r � 1,

|P(Rz)+ φ(R,r,α,β )P(rz)| = |Q(Rz)+ φ(R,r,α,β )Q(rz)| f or all z ∈C

so that

|G(θ )/F(θ )| =
∣∣∣∣∣ P(Reiθ )+ φ(R,r,α,β )P(reiθ )
RnP(eiθ /R)+ φ(R,r,α,β )rnP(eiθ /r)

∣∣∣∣∣ = 1.

Using this in (50) and proceeding similarly as in the proof of Theorem 2, we get the
desired result. This completes the proof of Theorem 3. �
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