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WEAK HARNACK INEQUALITY FOR THE NON–NEGATIVE WEAK

SUPERSOLUTION OF QUASILINEAR ELLIPTIC EQUATION

RENÉ ERLÍN CASTILLO

Abstract. We introduce and study the classes P̃p (Rn) as well as Pp (Rn) , which are gener-
alization of the Kato class. We also obtain a Fefferman inequality for the class P̃p (Rn) and
derive the weak Harnack inequality.
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