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POINTWISE AND INTEGRAL ESTIMATES FOR THE
FRACTIONAL INTEGRALS ON THE LAGUERRE HYPERGROUP

V. S. GULIYEV, N. N. GARAKHANOVA AND I. EKINCIOGLU

(Communicated by Yong Zhou)

Abstract. Let K = [0,00) x R be the Laguerre hypergroup which is the fundamental manifold
of the radial function space for the Heisenberg group. In this paper, some pointwise and integral
estimates for the fractional integrals in terms of the maximal and fractional maximal functions on
the Laguerre hypergroup are obtained. Basing on these results, we prove interpolation theorems
for the fractional maximal functions and fractional integrals, and the Sobolev theorem on the
Laguerre hypergroup.

1. Introduction

In this paper, we define the fractional maximal function and fractional integral us-
ing harmonic analysis on Laguerre hypergroups which can be seen as a deformation
of the hypergroup of radial functions on the Heisenberg group (see, for example [2],
[51, [6], [9]-[12]). We obtain some pointwise and integral estimates that give a rela-
tion between the maximal and fractional maximal functions and fractional integrals on
the Laguerre hypergroup and extend the available results to the objects of a more gen-
eral nature. Based on these results, we prove interpolation theorems for the fractional
maximal functions and fractional integrals, and the Sobolev theorem on the Laguerre
hypergroup.

The paper is organized as follows. In Section 2, we present some definitions and
auxiliary results. In section 3, we give polar coordinates in the Laguerre hypergroup.
In the last section, we give the main results such as Sobolev’s theorem, interpolation
theorems for the fractional maximal function and fractional integrals on the Laguerre
hypergroup.

Let mg be the weighted Lebesgue measure on K = [0,0) X R, given by

X2 gxdy

dmg(x,t) = ———— o
a(®1) al(a+1) — 7
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We denote by L,(K) = L,(K;dmg) the spaces of complex-valued functions f mea-
surable on K such that

/p
iy = ([ Wl dmatr)) <o it pelte)

and

1fll.. iy = esssup|f(x, 1) if p = oo,
(x1)eK

For 1 < p < o we denote by WL,(K), the weak L,(K) spaces defined as the set of
locally integrable functions f with the finite norm

I lhwe, 0 = Sup 7 (e (x,0) €€ = (7 x,0)] > 7).

Let |(x,)|x = (x*+4¢%)/* be the homogeneous norm of (x,7) € K. For r> 0, we will
denote by §,(x,) = (rx,r’t) the dilation of (x,7) € K, and by B,(x,t) the ball centered
at (x,7) with radius r, i.e., the set of B.(x,¢) = {(y,5) € K: |[(x —y,t —s)|g < r},

CBr()c,t) =K\ B,(x,7), and by B, the ball B,(0,0). We denote by

Sty = et 7 (8, (xr))

the dilated of the function f defined on K preserving the mean of f with respect to the
measure dmy, , in the sense that

/ £t )dme (x, ) = / Fe,1)dma (x,1), Vr>0and f € Ly(K).
K K
For (x,1),(y,s) € K and 6 € [0,2x[, r € [0,1], let

((x,1),(3,8))0.r = <(x2 +y? 4 2xyrcos 0) 12 ,t + s+ xyrsin 6) .
The generalized translation operator T(Ecog
for a suitable function f by

2
= [ () baan) ao. a=0.

%/01 (/Ohf(((x,t),(y,s))ar) d@) r(1—r)*dr, a > 0.

We define the fractional maximal function on the Laguerre hypergroup by

defined on the Laguerre hypergroup is given

T f(vs) =

M f(x,1) = sup(mqB,) %+ ‘/ T (1) (.5 dmaly.s), 0< P <2a+4

r>0

and the fractional integral by

Igf(x,t) = /T (y,9) ﬁ 2o 4f(y,s)dma(y,s), 0<B<20+4.
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If B =0, then M = My is the Hardy-Littlewood maximal operator on the Laguerre
hypergroup (see [5]).
The following theorem is proved in [5].

THEOREM 1. 1. If f € Li(K), then Mf € WL,(K) and

IMfllwe, ) <AL, )

where A| > 0 is independent of f.
2.If feL,(K), 1 <p<eoo, then Mf € L,(K) and

IMf|z, ) < ApllflL, )

where A, > 0 is independent of f.

COROLLARY 1. If f € Lj,.(K), then

}T(l)maB / ’T ) — f(x,1)| dmg(y,s) =0

forae. (x,t) e K.

2. Preliminaries

Consider the following partial differential operators system:

0
Dl - 57
b _8_2 2004+1 9 5 9?
27 o2 x  Ox aﬂ’
(x,1) €]0,00[xR and o € [0,00[.

For oo =n—1, ne N \{0}, the operator D, is the radial part of the sub-Laplacian
on the Heisenberg group Hi, .
For (A,m) € R x N, the initial problem

Diu=ilu,
1
Dzu——4|l\(m+%)u7
P)
1(0,0) =1, 8“(0 1)=0 forall 7€R,

has a unique solution ¢, ,, given by

Orm(r) =MLY (AIR), (v1) €K,
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where f,ﬁa) is the Laguerre functions defined on R by
L () = e L (x) /L7 (0)

and Lﬁna) is the Laguerre polynomial of degree m and order o (see [2]).
For f € L;(K), the Fourier-Laguerre transform .# is defined by

FNm) = [ o rm(wa)f(x.0)dma(x.1)

such that
| Z (Nlee) < IfllLy k)
(see [2, 10]).
The generalized translation operators TEC‘;)
the following properties (see [2, 10])

on the Laguerre hypergroup satisfies

T F(8) = T F06), T F(005) = £ (3:9),
7'% < forall feL,(K), 1<p<oo 1
1Tl < Il forall feLy(K), 1<p<ee, (1)

F (T ) Asm) = F () (Aom) @z n(x,1).
The translation operator T(Ecog is defined by

T8 109) = [ F@mWal(n), (5), (2))2 dzd,
k K

where dzdv is the Lebesgue measure on K, and Wy, is an appropriate kernel satisfying

[ Wl 005), ()22 dzav = 1

(see [9]). For all (A,m) € R x N, the function ¢, (x,?) satisfies the following product
formula

(Pl,m(xat) (Pl,m(yas) = T(E(Og (Pl,m(yas>'

By using the generalized translation operators T(ECO;;, (x,1) € K, we define a gen-

eralized convolution product * on K by

(8tea) * 83) (1) =T £(3:9),

where &, is the Dirac measure at (x,1).
We define the convolution product on the space Mj(K) of bounded Radon mea-
sures on K by

() = [ T s duln) aviv.s)

KxK 50
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If u=h-myg and v =g-mg, then we have

wxv=_(hxg) -my, with g(y,s) =gy, —s),

where, h and g belong to the space L; (KK) of the integrable functions on K with respect
to the measure dmg(x,), and hx* g is the convolution product defined by

(hxg)(x,1) = /K T(Efgh(y 5)g(y,—s)dmg(y,s), forall (x,r)eK.

Note that, for the convolution operators the Young inequality is valid: If 1 < p, r <
g<e, 1/p'+1/g=1/r, f€L,(K), and g € L,(K), then fxg € L,(K) and

18l ) < 11z, ) 18], ) > 2

where p'=p/(p—1).

(M (K), *,i) is an involutive Banach algebra, where i is the involution on K given
by i(x,t) = (x,—t) and the convolution product * satisfies all the conditions of Jewett
(see [3], [8]). Hence (K, x,i) is a hypergroup in the sense of Jewett and the functions
@3, are characters of K. If B =n— 1 is a nonnegative integer, then the Laguerre hy-
pergroup K can be identified with the hypergroup of radial functions on the Heisenberg
group 7.

3. Polar coordinates in Laguerre hypergroup

Let X =2, be the unit sphere in K. We denote by @, the surface area of X and
by Q, its volume (see [4, 5]). For & = (x,¢) € K, consider the transformation given by

12

x=r(cos@)/? = r’sing,

where —m/2< @ < 71/2, r=|E|x and &' = ((cos@)'/2,sing) € X.

The Jacobian of the above transformation is r2%+3(

K, then

cos ). If f is integrable in

/2

fe,t)dmg(x,t) = cq
K

/ f(r(cos @) /2, sing) r***3(cos @) “drd .
—n/2.J0

1 /2
where ¢q = A1) Since ca/_n/z(cosq))o‘d(p = /zd’g", we get

/K Fx,t)dme (x,t) = /)S /0 PO f(5,E")drdE'. 3)
Here d&' is the surface area element on X.

LEMMA 1. [4,5] The following equalities are valid

r(e) r(et)
o

2 92:

N CETN GRS NN CES)Y RS
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Note that for any x € K and r > 0, the area of the sphere S, (x,?) is **"?@, and
2a+4 D2

its volume is r2%H4Q, = r .
2 200+4

4. Estimates of fractional integrals on the Laguerre hypergroup

We first prove a lemma in the following which is being pointwise estimate for
fractional integrals /g f(x,?). Such type estimates are given in [1].

LEMMA 2. Let 0 < B <2044, 1 <p< 3 Then for any locally summable
Sunction f, and for every r >0 and (x,t) € K the following inequality is valid

_A
I11001) < Co P (M) (1) +Co P70 (M f)(x.0), 4)
2o4+4 917 m H20td— %
where C} = 95123 —, C =2 ;
- 1285

Proof. For any r > 0, we have
e = ( [+ f, )TN0 00 dmats)
=J1(x,t,r) +Jo(x,t,r).

Firstly, we estimate J; (x, ). Summarizing on all k£ > 0, we get

) < T 08)09) 672 dma(y,s)

I
Ms =

I 1% U 0os) 092 )
By jr1,\Byk,

k=1
o B—20—4

<3 () 7L 1£(0.9)] (1)
IZI< ) Byi+1,\By—, () ’

=

2rﬁMf ot 2 < )/3—2a—4 <27k+1>2a+4

=022 By e,y Y 27 <P Mf(x, ). (5)

M s

k=1

Therefore
T (x,1,7) < CrPMf(x,). (6)
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Secondly, we estimate J,(x,7,7).

Dt = [ T 1009 dma ()

- B—20—4

< T F9)] |92 dma ()

JZZ)/BZkH,\sz,
<y (2kp)B-20-4 /
k=0 B

- Skt 1, \B ok,

T\ £ (v.5)ldme(v.5)

| i A
<@y "M, () 3 @)@
k=0

p—24
<G rw M&f(x7t)a
P
where 3 — % < 0. Therefore
A
B(xt,r) <GP M, f(x,1). (7
P

Then from (6) and (7) we get the inequality (4). Therefore the proof of Lemma 2 is
completed.

THEOREM 2. Let 0< B <A, 1 <p< %, 1 <r<eo, and}}z —%—I—%. Then
forany f € L,(K) and M, f € L,.(K) the following estimation is valid.:
P

— T =

1-Be o 1B
13 ey ) < (€ €A™ Mo ey 11 (®)
Proof. Taking
Mif(xvt) %
. _ P
r=r(x,t)= <7Mf(x,t) ) ,
in (4) for every (x,7) € K we have
3 ;
_bBr
) < €+ (M) )% ©
Integrating on K and applying Holder’s inequality to inequality (9) we get
[ pllesoyama ) < €+ o [ (s ) " 056 ot
P
Bras’ l/.\"

<(CL+O) /K (Mﬁf(x,t)> " dmg(x,1)

% (/K (Mf(x7t))(f1ﬁfq)-vdma(xﬁ))l/x,
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_ /s __ Ar
=P S =517 Bpg

where (g — %)s =-— %4— Bp Then we have

Q=
=

1/sq

(/K |Iﬁf(x,t)|qdma(x,t))l/q <(C1+G) ( K(Mf(x,t))”dma(x,t)>

x (/K (Mﬁf(xj))rdma(xj)) P

P 1/sq
<(@reaaf ([ 1renranse)

x (/K (Mﬁf(x,t)ydma(xj))

=l

>

=

P
r

>

and therefore

Bp
i "
171,y < (€ +CAF 171 Hmf e
%?
< (Ci+G)Ap - HfHL
Ly (K)

Thus the proof of Theorem 2 is completed. [l

THEOREM 3. Let 0 < B <20+4, 1<p< 20;3—+4 and f € L,(K). Then for any
(x,1) € K the following estimation is valid

Iglfl(er) < (c1+c3>uf||2“+4 (Mf (1)) 25 (10)

I
where C3 = (%) .
P(;—m)

Proof. As in the proof of Lemma 2, we write
Ig|f1(x,1) = J1(x,2,7) + T2 (x,2,7).

For estimating J(x,#,r), we use Holder’s inequality, and inequality (1). Then we get

ntxan) < (f, (11509 anatr) :
<, 10982 )
<[],y (91 amatr)”

<Wler (109087 amats))

~|-

=~
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Passing to spherical coordinates, we have

(/GB 0, )(ﬁ 20-4)p' dme(y,s ) (// 203+ (B—20—4)p/ dtdé)

:C3rl3_2af’_+4.
Hence 2a+4
Bt ) <GPl m) (11)
Thus from (5) and (11), we get
g f1(x,1) < <CiPMf(x,0)+CorP ™ Hf||L,,
Minimizing at r = | (M f(x,1)) " ”fHL,,(]K wr , we have

<D _bBr
I 1(e,1) < (Cr+C)IIFI) (Mf ()~ 2e
Theorem 3 is proved. [J

THEOREM 4. Let 0 < B <20+ 4. Then for any measurable functions f >0 and
0< 6 <1 forany (x,t) € K the following estimates

Igof(x,1) < (Ca+1) (Igf(x,0))® (M (x,1))' 79, (12)
and o
Igof(x,1) < (Ca+Cs) (Mg f(x,1))" (Mf(x,1))"° (13)
,020+4 91720,%#220#47/3

are valid, where Cy = 92139—1, Cs="——p5—
Proof. We have
Iﬁef X, t / T |
(4

v / s ) N2 dmy.)
I (x7t7r)+12(x7tvr)

) BO2% % g (v, )

Firstly, we prove the inequality (12). Consider I (x,z,r). Since 0 < 6 < 1, then
B6—pB <0 and |(y,s)|£efﬁ < 9B forany (y,s) € CB,. Hence

bier) = [ T 0:9]000) [ dma(y.s)

<A LT 08| )

< rﬁe*ﬁlﬁf(x,t). (14)
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Taking into account (5) and (14) we have
L (x,t,7r) < CarPOM [ (x.1), (15)
bx,t,r) < PO Prgf(x,r). (16)
Thus from (15) and (16), we get
Igof(x,1) < CarPO Mf(x,0)+rPO=P 15 f(x,1). a7

1

Minimizing at r = | (Mf(x,1)) " Iﬁf(x,t)} ? we have

Ipof(x,t) < (Ca+ 1) (Igf (1)) (MF(x,1))'7°.

Secondly, we prove inequality (13). Consider I(x,z,r). Summing over every j > 0,
we get

0—-20—4
blx.1.r) < / 1))l dma(r.9)
Byit1, \BZJr

2j+1,

< ;)(zfr)ﬁ‘”“*“ /B 7% £(3,5)dma (3,5)
22a+4 ﬁQI 2a+4 8O- ﬁMﬁfxt z 2(BO—P)j

< GCs BB Mpf(x,t).

Hence
b(x,t,r) < Cs rPOP Mg f(x1). (18)

Taking into account (15) and (18) we have

Igof(x,1) < Cy PO Mf(x,t)+Cs rPOB Mp f(x,1).
Minimizing at r = | (M f(x,1)) " M,;f(x,t)] s , we get
Ipof (x,1) < (Ca+Cs) (Mpf(x,0)” (Mf(x.1)'°.
Thus Theorem 4 is proved. [
THEOREM 5. Let 0 < B <20+4, feL,(K), I<p< 2%—*“. Then

g0 NlLree) < (Ca+ DAL MgIFIIE, ) 17 Gy (19

and
ge sl ) < (Cat+Cs)AL® IMpfIIE, ) IS1IL ey (20)

where 0 < 0 <1, 0 < g < oo, l:g+%

7
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Proof. We prove inequality (19). Inequality (20) can be proved similarly. From
(12) and Holder’s inequality we have
0 -6
1o f L, x) < (Ca+ 1) (I51£1) (Mf)! (k)
6 _
<@+ D TN ey )l M) o)

Enter the following designation: p=(1-0)rt, q=6r7’, where ¥ = -;. Then

obviously, # =1 pe and T,

= Z . Hence we obtain
17goflz,x) < (Ca+ l)Hlﬁ\f\\\Eq(K>IIMin;("K>

From the last inequality and Theorem 1, we have
gofle, ) < (Ca+ DAL 1 LA 117, ) NI ey-

Theorem 5 is proved. [

By using Lemma 2 and Theorems 1 and 4, it can be easily proved that the following
Hardy-Littlewood-Sobolev theorem for fractional integrals on the Laguerre hypergroup
is valid (see [6]).

THEOREM 6. Let 0 < B <20 +4 and 1 < p < 2%—*“.

DIFL<p<2, fel,(K)and £ — %=L then Igf € L,(K) and

HIﬁfHL <(C1+C)AS I 1, e

2)If feLi(K) and 1 — then Igf € WL,(K) and

2al3+4’
HIﬁfHWLq(K) <ql(q— l)l/qilcll/q(CZ)l*l/qu||fHL1(K)
Proof. i) For r=co, A =20 +4 from (1) and (8), we have
£y < (Cr+Ca) AT HM2a+4fHL HfIIL,,

<(Cr+Co)A Y ess sup [T A1l b 11

(xr)eK

< (G +C2)A1§ 11z, x)
ii) From (4) for p =1 and A = 20 + 4, we obtain
Ig|f1(x,t) S CuP MF(x,0) + CorP 294 Mg 4 f (x,1)

1

< qlg— D)V M £ (x,0)) 0 (Magaaflx,1))

<qlg— 1)V UC) M PN (]
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Then applying Theorem 1, we get

Ha {(x,1) €K : g fl(x,0) > 1}/

_g V4
<o { (60) €K M) > g7 q — 177171 C) 9 £y |

- 1744
<qlg—1)"7'C €)' -

Therefore the proof of the theorem is completed. [
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