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Abstract. Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) �
μn−1 (G) � · · · � μ1 (G) . In this paper, we establish some upper and lower bounds for the
algebraic connectivity and the largest Laplacian eigenvalue of G .

1. Introduction

Let G = (V,E) be a simple graph with the vertex set V = {v1,v2, · · · ,vn} and
edge set E. For vi ∈ V, the degree of vi and the average of the degrees of the vertices
adjacent to vi are denoted by di and mi, respectively. If viv j is an edge of G , then this
can be shown by i ∼ j . Also let Ni be the set of neighbours of vi. The diameter of G
is the maximum distance between any two vertices of G. Let A(G) be the adjacency
matrix of G and let D(G) be the diagonal matrix of vertex degrees. The Laplacian
matrix of G is L(G) = D(G)−A(G) . Clearly, L(G) is a real symmetric matrix. Thus,
its eigenvalues are nonnegative real numbers. Morever, since the sum of rows is 0,
it is clear that 0 is the smallest eigenvalue of L(G) with the all ones vector as an
eigenvector. The eigenvalues of L(G) are denoted by

μ1 (G) � μ2 (G) � · · · � μn−1 (G) � μn (G) = 0.

It is easy to show that μn−1 (G) = 0 if and only if G is not connected. The number
μn−1 (G) is known as the algebraic connectivity of the graph G which has a relation to
the classical connectivity parameters of a graph G (the vertex connectivity υ (G) and
the edge connectivity η (G) ) ([5]).

For simplicity, we write L(G) = L and μi (G) = μi, i = 1, · · · ,n , when no confu-
sion can arise. In addition, by the extremal non-trivial Laplacian eigenvalues we mean
μn−1 and μ1.

In [1, Theorem 1, p. 143], it is proved that if μ1 is an eigenvalue of L ; then, μ1 � n
and that the multiplicity of 0 equals the number of components of G.

The eigenvalues of the Laplacian matrix are important in the graph theory because
they have a relation to numerous graph invariants, including connectivity, expanding
property, isoperimetric number, maximum cut, independence number, genus, diameter,
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mean distance and bandwidth-type parameters of a graph (see for example, [3,10,11]
and the references therein). In many applications one needs good lower bound and
upper bound of extremal non-trivial Laplacian eigenvalues [3,10,11]. In addition to of
the reference above, we may also refer to the remarkable paper [13] since the authors
established the k -th largest Laplacian eigenvalue of a graph.

In this paper we always assume without loss of generality that G is a simple con-
nected graph of order n. Firstly, we give the lower and upper bounds of the largest
eigenvalue of L. Morever, we will give the upper and lower bounds for the k -th largest
eigenvalue μk of L.

Among the known upper bounds for μ1 are the following:

1. Anderson and Morley’s bound [1] :

μ1 � max
{
di +d j : i ∼ j

}
(1)

2. Li and Zhang’s bound [6]: If d1 � d2 � · · · � dn are the degrees of the vertices
of G (here, we are not assuming that di is the degree of vi ), then

μ1 � 2+
√

(d1 +d2−2)(d1 +d3−2). (2)

3. Another Li and Zhang’s bound [6]: If r is right-hand side of (1), if xy ∈ E is
such that dx +dy = r and if s = max

{
di +d j : i j ∈ E −{xy}} , then

μ1 � 2+
√

(r−2)(s−2). (3)

4. Merris’s bound [9]:

μ1 � max{di +mi : i ∈V} . (4)

5. In [7], Li and Zhang obtained the bound:

μ1 � max

{
du (du +mu)+dv (dv +mv)

du +dv
: uv ∈ E

}
. (5)

6. In [12], Rojo et al. obtained:

μ1 � max
{
di +d j −

∣∣Ni ∩Nj
∣∣ : 1 � i < j � n

}
, (6)

where di denotes the degree of vi and
∣∣Ni ∩Nj

∣∣ is the number of common neighbors
of vi and v j.

7. Das’s bounds [4]:

μ1 � max
{
di +d j −

∣∣Ni ∩Nj
∣∣ : 1 � i < j � n,viv j ∈ E

}
, (7)

where di denotes the degree of vi and
∣∣Ni ∩Nj

∣∣ is the number of common neighbours
of vi and v j. This upper bound for μ1 does not exceed n.

8. Another Das’s bound [4]:
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μ1 � max

{√
2
(
d2

i +dim
′
i

)
: 1 � i � n

}
, (8)

where

m
′
i =

∑
j

{
d j −

∣∣Ni ∩Nj
∣∣ : viv j ∈ E

}
di

,

di denotes the degree of vi and
∣∣Ni ∩Nj

∣∣ is the number of common neighbours of vi

and v j.

2. Estimating the extremal non-trivial Laplacian eigenvalues

To obtain the upper and lower bounds for extremal non-trivial Laplacian eigenval-
ues, we need the following lemma and theorem.

LEMMA 1. [2] Suppose that W , λ = (λ j) ∈ R
n are nonzero column vectors, the

n× n In is identity matrix and e = (1,1, · · · ,1)T . Let C = In − eeT

n , m = λ T e
n and

s2 = λ TCλ
n . Then,

1)
−s

√
nWTCW � WT λ −mWT e = WTCλ � s

√
nWTCW.

2)

∑
j

(λ j −λn)
2 = n

[
s2 +(m−λn)2] and ∑

j
(λ1−λ j)

2 = n
[

s2 +(λ1−m)2] .

3)

λn � m− s√
n−1

� m+
s√

n−1
� λ1.

4) Let W = 1
k

k
∑
j=1

e j − 1
n−r+1

n
∑
j=r

e j with k < r . Then

〈W,W 〉 =
1
k

+
1

n− r+1
, WT e = 0 and WTCW = WTW,

where e j is column vector whose j -th component is one and the other enries are
zero.

The following result can also be found in [2].

THEOREM 2. [2] Let A be an n× n complex matrix. A∗ denotes the conjugate
transpose of A. Let B = AA∗ with eigenvalues λn(B) � · · · � λ1(B). Then

m− s
√

n−1 � λn(B) � m− s√
n−1
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and
m+

s√
n−1

� λ1(B) � m+ s
√

n−1,

where m =
trB
n

and s2 =
trB2

n
−m2.

Now we are ready to show our main results.

THEOREM 3. Let G be a simple graph. Then,√
m+

s√
n−1

� μ1 �
√

m+ s
√

n−1, (9)

where

m =

n
∑
i=1

di (di +1)

n

and

s2 =

n
∑
i=1

(
d2

i +di
)2 +2 ∑

i< j,i∼ j
(di +d j)

(
di +d j −2

∣∣Ni ∩Nj
∣∣)+2 ∑

i< j

∣∣Ni ∩Nj
∣∣2

n
−m2.

Proof. Clearly

trL2 =
n

∑
i=1

di (di +1)

and

trL4 =
n

∑
i=1

(
d2

i +di
)2

+2 ∑
i< j,i∼ j

(di +d j)
(
di +d j −2

∣∣Ni ∩Nj
∣∣)+2∑

i< j

∣∣Ni ∩Nj
∣∣2 .

Since L is a real symmetric matrix, we obtain the result from Theorem 2. �

THEOREM 4. Let G be a simple graph order n, and let m, s2 be as above.

Suppose μ2
(k,r) =

r
∑
j=k

μ2
j

r−k+1 . Then,

m− s

√
k−1

n− k+1
� μ2

(k,r) � m+ s

√
n− r

r
. (10)

If we take r = k, then we have

m− s

√
k−1

n− k+1
� μ2

k � m+ s

√
n− k

k
. (11)
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Proof. In Lemma 1-1), we take

W =
r

∑
j=k

e j

r− k+1
. (12)

Hence we write
WT e = 1. (13)

Since WTCW = WTW − eTW
n = 〈W,W 〉− 1

n 〈e,W 〉 , from (12) we obtain

WTCW =

〈
r

∑
j=k

e j

r− k+1
,

r

∑
j=k

e j

r− k+1

〉
− 1

n

〈
e,

r

∑
j=k

e j

r− k+1

〉
(14)

and so

=
1

(r− k+1)2

r

∑
j=k

〈e j,e j〉− 1
n

1
r− k+1

r

∑
j=k

〈e,e j〉

=
1

r− k+1
− 1

n
.

Using the equalities (13) and (14), and by Lemma 1-1), we have

m− s

√
n− r+ k−1

r− k+1
� WT λ � m+ s

√
n− r+ k−1

r− k+1
.

Since WT λ = μ2
(k,r), we then write

m− s

√
n− r+ k−1

r− k+1
� μ2

(k,r) � m+ s

√
n− r+ k−1

r− k+1
. (15)

In the equality (15), if k = 1,

m− s

√
n− r

r
� μ2

(1,r) � m+ s

√
n− r

r

and if r = n

m− s

√
k−1

n− k+1
� μ2

(k,n) � m+ s

√
k−1

n− k+1
.

Consequently, we have

m− s

√
k−1

n− k+1
� μ2

(k,n) � μ2
(k,r) � μ2

(1,r) � m+ s

√
n− r

r
. �

COROLLARY 5. Let G be a simple graph of order n. Let m and s2 be as defined
in Theorem 3. Then

m− s

√
n−2

2
� μ2

n−1 � m+ s

√
1

n−1
. (16)
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REMARK 6. In [8], Lu et al. showed that

μn−1 � 2n
2+n(n−1)d−2md

, (17)

where G is a connected simple graph of order n , size m and diameter d . The lower
bounds of (16) and (17) are incomparable. However we can see some graphs that the
lower bound (16) is better than (17) in some cases as in the following example.

EXAMPLE 7. Let G = (V,E) with V = {1,2,3,4} and edge set

E =
{ {1,2} ,{1,3} ,{1,4} ,

{2,4} ,{3,4}
}

.

For this graph, μn−1 = 2 and, by (16), μn−1 � 1.36, while by (17), μn−1 � 1.33.

THEOREM 8. Let G be a simple graph of order n and let s be as previously.
Then, for 1 � k � r � n,

μ2
k − μ2

r � s

√
n

(
1
k

+
1

n− r+1

)
. (18)

Proof. Define W as given in Lemma 1. For k < r , by Lemma 1-1), we write

− s
√

nWTCW � WT λ −mWT e � s
√

nWTCW . (19)

On the other hand, we have

WT λ = 〈W,λ 〉 =
1
k

k

∑
j=1

μ2
j −

1
n− r+1

n

∑
j=r

μ2
j

= μ2
(1,k) − μ2

(r,n).

Using (19), we get the result. �
As a consequence of the above theorem, we have the following corollary with the

same assumptions on G and s :

COROLLARY 9.

μ1 �
√

s
√

2n (20)

and

μn−1 �
√

sn√
n−1

. (21)

EXAMPLE 10. Let G = (V,E) with V = {1,2,3,4,5,6,7,8} and

E =
{ {1,2} ,{1,3} ,{2,3} ,{2,4} ,{3,4} ,{2,5} ,
{2,6} ,{2,8} ,{4,5} ,{4,6} ,{4,8} ,{6,7} ,{7,8}

}
.



BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES 535

EXAMPLE 11. For this graph, μ1 = 7.1. The upper bounds for μ1 are as follows:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (20)
G 11 9.93 9.93 9 9.05 8 8 9.38 7.86 8.36

The above table shows that in some cases, the bound (9) is the best among the
above mentioned upper bounds for μ1. But in a general sense, they are incomparable.

In the following, we will explain that why we did not choose to use Cauchy-
Schwartz ineuality as a method in the proofs of our results although it gives the required
bounds directly.

First, from Theorem 2, we get

s =

√
trL4

n
−

(
trL2

n

)2

=

√
n(trL4)− (trL2)2

n

=

√
∑1�i< j�n

(
μ2

i − μ2
j

)2

n
.

Therefore, inequality (9) is equivalent to

μ1 �

√√√√√∑n
i=1 μ2

i

n
+

√
(n−1)∑1�i< j�n

(
μ2

i − μ2
j

)2

n

which is the same as[
(n−1)μ2

1 −
n

∑
j=2

μ2
j

]2

� (n−1) ∑
1�i< j�n

(
μ2

i − μ2
j

)2
.

This follows immediately from the inequality[
n

∑
j=2

(
μ2

1 − μ2
j

)]2

� (n−1)
n

∑
j=2

(
μ2

1 − μ2
j

)2

which is true by Cauchy-Schwartz (C-S) inequality. In fact, by this approximation, it is
quite easy to see that equality happens if and only if μ2 = · · · = μn−1.

Secondly, the similar numerical approximations can also be applied to the inequal-
ity in (19). In fact, the inequality in (19) is equivalent to

n
2

μ4
1 � ∑

1�i< j�n

(
μ2

i − μ2
j

)2
.

This inequality follows from the fact that
(
μ2

1 − μ2
n

)2 = μ4
1 and

(
μ2

1 − μ2
j

)2
+

(
μ2

j − μ2
n

)2

� μ4
1
2 for 2 � j � n. Similarly, one can obtains inequality (19) by C-S inequality. Here,

the equality holds if and only if μ j = μ1
2 for each 2 � j � n.
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REMARK 12. Although C-S inequality seems easier than our method (used in
this paper), our choice here has more advantages than C-S inequality even the bounds
obtained for the Laplacian eigenvalues of G are very complicated in all our results. For
instance, if we did prefer C-S inequality in this paper, then we would not have a relation
between graph invariants (μ1 , degree of vertices etc.) since our bounds depend not only
on the degree sequence of G , but also on the quantities

∣∣Ni ∩Nj
∣∣ for each i 
= j , where

Ni denotes the set of neighbours of the vertex i of G .
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