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SOLVING THE MATRIX INEQUALITY AXB+(AXB)∗ � C

YONGGE TIAN AND DIETRICH VON ROSEN

Abstract. A pair of complex Hermitian matrices A and B of the same size are said to satisfy an
inequality A � B in the Löwner partial ordering if A−B is nonnegative definite. In this note, we
first derive the general solutions in closed-form for the linear matrix equation AXB+(AXB)∗ =C
by using generalized inverses of matrices, and then derive general solutions of the linear matrix
inequality AXB+(AXB)∗ � C when C is a Hermitian nonnegative definite matrix.
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