
Mathematical
Inequalities

& Applications

Volume 15, Number 3 (2012), 537–548 doi:10.7153/mia-15-47

SOLVING THE MATRIX INEQUALITY AXB+(AXB)∗ � C
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Abstract. A pair of complex Hermitian matrices A and B of the same size are said to satisfy an
inequality A � B in the Löwner partial ordering if A−B is nonnegative definite. In this note, we
first derive the general solutions in closed-form for the linear matrix equation AXB+(AXB)∗ =C
by using generalized inverses of matrices, and then derive general solutions of the linear matrix
inequality AXB+(AXB)∗ � C when C is a Hermitian nonnegative definite matrix.

1. Introduction

Throughout this note, Cm×n and Cm
H stand for the sets of all m×n complex ma-

trices and all m×m complex Hermitian matrices, respectively. The symbols A∗ , r(A)
and R(A) stand for the conjugate transpose, rank and range (column space) of a matrix
A ∈ Cm×n , respectively; Im denotes the identity matrix of order m ; [A, B ] denotes a
row block matrix consisting of A and B . The inertia of a Hermitian matrix A is defined
to be the triplet In(A) = { i+(A), i−(A), i0(A)}, where i+(A) , i−(A) and i0(A) are the
numbers of positive, negative and zero eigenvalues of A counted with multiplicities,
respectively. We write A � 0 (A > 0) if A is Hermitian nonnegative definite (posi-
tive definite). Two Hermitian matrices A and B of the same size are said to satisfy
the inequality A � B (A > B) in the Löwner partial ordering if A−B is nonnegative
definite (positive definite). For a matrix A ∈ C

m×m , the matrix H (A) = (A+A∗ )/2 is
called the Hermitian part of A . The matrix A is said to be Re-nonnegative definite if
H (A) � 0. The Moore–Penrose inverse of A ∈ Cm×n , denoted by A† , is defined to be
the unique solution X satisfying the four matrix equations

(i) AXA = A, (ii) XAX = X , (iii) (AX)∗ = AX , (iv) (XA)∗ = XA.

Further, the symbols EA and FA stand for the two orthogonal projectors EA = Im−AA†

and FA = In−A†A . Their ranks are given by r(EA) = m− r(A) and r(FA) = n− r(A) .
Results on the Moore–Penrose inverse can be found, e.g., in [1, 2, 7].

The Löwner partial ordering is one of the most basic concepts for characterizing
relations between two complex Hermitian (real symmetric) matrices. A challenging
research topic on Hermitian matrices is to solve matrix inequalities induced from the
Löwner partial ordering, which can generally be stated as:
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PROBLEM. For a given matrix function f (X) that satisfies f (X) = f ∗(X), estab-
lish necessary and sufficient conditions for the matrix inequalities

f (X) � 0, f (X) > 0, f (X) � 0, f (X) < 0 (1.1)

to be feasible, respectively, and find solutions X of the matrix inequalities.
When the f (X) in (1.1) is a linear matrix function, for instance, f (X) = A−BXB∗

and f (X) = A−BX − (BX)∗ , it is usually called linear matrix inequalities (LMI) in the
literature. Recall that for a Hermitian matrix A of order m , A > 0 (A < 0) if and only
if i+(A) = m (i−(A) = m) ; A � 0 (A � 0) if and only if i−(A) = 0 (i+(A) = 0) .
Hence, it is possible to characterize the solvability of a matrix inequality in the Löwner
partial ordering by using the inertia of Hermitian matrix. In recent papers [17, 18],
Tian established some closed-form formulas for calculating the global maximum and
minimum ranks and inertias of the two linear matrix functions A−BXB∗ and A−BX−
(BX)∗ with respect to a variable matrix X , and used these formulas to characterize the
existence of solutions of the following LMIs:

BXB∗ > A (� A, < A, � A), BX +(BX)∗ > A (� A, < A, � A).

As an extension, we solve in this note the following LMI:

AXB+(AXB)∗ � C, (1.2)

where A ∈ Cm×p, B ∈ Cq×m and 0 � C ∈ Cm
H are given, and X ∈ Cp×q is a vari-

able matrix. This inequality may occur in the investigation of Hermitian parts and
Re-nonnegative definiteness of triple matrix products. For example, H (AXB) � C
is equivalent to AXB+ (AXB)∗ � 2C . Some previous work on the solvability of the
LMI in (1.2) and its special cases can be found in [3, 6, 8, 15], while the work on
Re-nonnegative definiteness of a complex matrix and its applications can be found in
[4, 9, 19, 20].

Matrix equations and matrix inequalities have been main objects of study in ma-
trix theory and applications. Generalized inverses, ranks, inertias and ranges of ma-
trices were successfully used to represent solvability conditions and general solutions
of matrix equations and inequalities. The following are some known results on matrix
equations, which will be used in the latter part of this note.

LEMMA 1.1. ([10]) Let A, B ∈ Cm×n be given. Then,

(a) There exists an X ∈ C
n
H such that

AX = B (1.3)

if and only if R(B)⊆R(A) and AB∗ = BA∗ . In this case, the general Hermitian
solution of (1.3) can be written in the following parametric form

X = A†B+(A†B)∗ −A†BA†A+FAWFA, (1.4)

where W ∈ C
n
H is arbitrary.
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(b) There exists an X ∈ Cn×n such that

AXX∗ = B (1.5)

if and only if R(B) ⊆ R(A), AB∗ = BA∗ � 0 and r(AB∗) = r(B) . In this case,
the general solution of (1.5) can be written in the following parametric form

XX∗ = B∗(AB∗)†B+FAWW ∗FA, (1.6)

where W ∈ Cn×n is arbitrary.

LEMMA 1.2. ([14]) Let A ∈ Cm×p, B ∈ Cq×n and C ∈ Cm×n be given. Then,
there exists an X ∈ Cp×q such that

AXB = C (1.7)

if and only if R(C)⊆ R(A) and R(C∗) ⊆ R(B∗) . In this case, the general solution of
(1.7) can be written as

X = A†CB† +FAW1 +W2EB, (1.8)

where W1, W2 ∈ Cp×q are arbitrary.

LEMMA 1.3. Let A1 ∈ Cm×p, B1 ∈ Cq×n, A2 ∈ Cm×r, B2 ∈ Cs×n and C ∈ Cm×n

be given. Then,

(a) [13] There exist X ∈ Cp×q and Y ∈ Cr×s such that

A1XB1 +A2YB2 = C (1.9)

if and only if the following four rank equalities

r[C, A1, A2 ] = r[A1, A2 ], r

⎡
⎣C
B1

B2

⎤
⎦ = r

[
B1

B2

]
, (1.10)

r

[
C A1

B2 0

]
= r(A1)+ r(B2), r

[
C A2

B1 0

]
= r(A2)+ r(B1) (1.11)

hold, or equivalently,

[A1, A2 ][A1, A2 ]†C = C, C

[
B1

B2

]† [
B1

B2

]
= C, EA1CFB2 = 0, EA2CFB1 = 0.

(1.12)

(b) [16] Under (1.10) and (1.11), the general solutions of (1.9) can be decomposed
as

X = X0 +X1X2 +X3 and Y = Y0−Y1Y2 +Y3, (1.13)

where X0 and Y0 are a pair of special solutions of (1.9), X1, X2, X3 and Y1, Y2, Y3

are the general solutions of the following four homogeneous matrix equations

A1X1 +A2Y1 = 0, X2B1 +Y2B2 = 0, A1X3B1 = 0, A2Y3B2 = 0. (1.14)
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By using generalized inverses of matrices, (1.13) can be written in the following
parametric forms

X = X0 +[ Ip, 0 ]FGWEH

[
Iq
0

]
+FA1W1 +W2EB1 , (1.15)

Y = Y0− [0, Ir ]FGWEH

[
0
Is

]
+FA2W3 +W4EB2 , (1.16)

where G = [A1, A2 ], H =
[
B1

B2

]
, the five matrices W, W1, W2, W3 and W4 are

arbitrary.

LEMMA 1.4. ([12]) Let A ∈ Cm×n, B∈ Cm×k and C ∈ Cl×n . Then, the following
rank expansion formulas hold

r[A, B ] = r(A)+ r(EAB) = r(B)+ r(EBA), (1.17)

r

[
A
C

]
= r(A)+ r(CFA) = r(C)+ r(AFC), (1.18)

r

[
A B
C 0

]
= r(B)+ r(C)+ r(EBAFC), (1.19)

r

[
AA∗ B
B∗ 0

]
= r[A, B ]+ r(B). (1.20)

2. General solution of AXB+(AXB)∗ � C

We first solve the matrix equation

AXB+(AXB)∗ = C, (2.1)

where A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm
H are given. Using the notation for Hermitian

part of a matrix, (2.1) can be rewritten as

H (AXB) = C/2. (2.2)

Eq. (2.1) and its applications in control theory were studied by some authors; see, e.g.,
[5, 21].
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THEOREM 2.1.

(a) [21] There exists an X ∈ Cp×q such that (2.1) holds if and only if

R(C) ⊆ R[A, B∗ ], r

[
C A
A∗ 0

]
= 2r(A), r

[
C B∗
B 0

]
= 2r(B), (2.3)

or equivalently,

[A, B∗ ][A, B∗ ]†C = C, EACEA = 0, FBCFB = 0. (2.4)

(b) Under (2.3), the general solution of (2.1) can be written as

X =
1
2
(U +V ∗ ), (2.5)

where U and V are general solutions of the equation AUB+B∗VA∗ =C, or can
explicitly be written as

X = X0 +[ Ip, 0 ]FGWEH

[
Iq
0

]
− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB, (2.6)

where X0 is a special solution of (2.1), G = [A, B∗ ], H =
[

B
A∗

]
, and the three

matrices W ∈ C(p+q)×(p+q) and W1, W2 ∈ Cp×q are arbitrary.

(c) The solution X of (2.1) is unique if and only if r(A) = p, r(B) = q and R(A)∩
R(B∗) = {0} .

(d) The matrix AXB satisfying (2.1) is unique if and only if R(A)∩R(B∗) = {0} .

Proof. If (2.1) is consistent, then AXB+B∗YA∗ =C is consistent as well. Hence,
the following three rank equalities

r[C, A, B∗ ] = r[A, B∗ ], r

[
C A
A∗ 0

]
= r(A)+ r(A∗), r

[
C B∗
B 0

]
= r(B)+ r(B∗)

hold by Lemma 1.3(a), which are further equivalent to (2.3) and (2.4) by Lemma 1.4.
Conversely, if (2.3) holds, there exist U and V such that AUB+B∗VA∗ =C by Lemma
1.3(a). Taking the conjugate transpose of this equality gives B∗U∗A∗ + AV ∗B = C .
Adding these two equalities and dividing by 2 yield

A

(
U +V ∗

2

)
B+B∗

(
U +V ∗

2

)∗
A∗ = C.

This equality implies that for any pair of solutions of AUB + B∗VA∗ = C , (2.5) is a
solution of (2.1). Moreover, assume that X0 is any solution of (2.1). Then, AUB +
B∗VA∗ = C has a pair of solutions U = V ∗ = X0 . Thus, X0 can be rewritten as

X0 =
1
2
(X0 +X0 ) =

1
2
(U +V ∗ ).
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This expression implies that (2.5) is the general solution of (2.1). From Lemma 1.3(b),
the general solution of AUB+B∗VA∗ = C can be written as

U = U0 +[ Ip, 0 ]FGWEH

[
Iq
0

]
+FAW1 +W2EB, (2.7)

V = V0− [0, Iq ]FGWEH

[
0
Ip

]
+FB∗W3 +W4EA∗ , (2.8)

where U0 and V0 are a pair of special solutions of AUB+B∗VA∗ = C , G = [A, B∗ ] ,

H =
[

B
A∗

]
, and the five matrices W, W1, W2, W3 and W4 are arbitrary. It is easy to verify

that

EA∗ = Ip−A∗(A∗)† = Ip−A†A = FA, FB∗ = Iq− (B∗)†B∗ = Iq−BB† = EB.

Substituting (2.7) and (2.8) into (2.5) yields

X =
1
2
(U +V ∗ ) =

1
2
(U0 +V ∗

0 )+
1
2
[ Ip, 0 ]FGWEH

[
Iq
0

]

− 1
2
[0, Ip ]EHW ∗FG

[
0
Iq

]
+

1
2
FA(W1 +W∗

4 )+
1
2
(W2 +W ∗

3 )EB,

which can equivalently be represented as (2.6) due to the arbitrariness of W, W1, W2, W3

and W4 . Results (c) and (d) follow from applying (1.17) and (1.18) to the coefficient
matrices of W , W1 and W2 in (2.6). �

A special case of Theorem 2.1 for C � 0 in (2.1) is given below.

COROLLARY 2.2. Let A ∈ Cm×p, B ∈ Cq×m and C ∈ Cm×m be given, and define
G = [A, B∗ ] and H = [B∗, A ]∗ . Then, the following three statements are equivalent :

(a) There exists an X ∈ Cp×q such that

AXB+(AXB)∗ = CC∗. (2.9)

(b) There exists a Y ∈ Cp×q such that

AYB = CC∗. (2.10)

(c) R(C)⊆R(A) and R(C)⊆R(B∗) or equivalently, EACC∗ = 0 and FBCC∗ = 0 .

In this case, the general solution of (2.9) can be written as

X =
1
2
A†CC∗B† +[ Ip, 0 ]FGWEH

[
Iq
0

]
− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB, (2.11)

where W ∈ C(p+q)×(p+q) and W1, W2 ∈ Cp×q are arbitrary, or equivalently,

X =
1
2
Y +Z, (2.12)

where Y is the general solution of (2.10), and Z is the general solution of AZB +
(AZB)∗ = 0 .
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Proof. Replacing C with CC∗ in the latter two rank equalities in (2.3) and apply-
ing (1.20), we obtain the two reduced rank equalities r[A, C ] = r(A) and r[B∗, C ] =
r(B), which are obviously equivalent to R(C) ⊆R(A) and R(C) ⊆R(B∗) . Thus, we
obtain the equivalence of (a), (b) and (c) from Lemma 1.2 and Theorem 2.1. In this
case, AA†CC∗B†B = CC∗ holds, which means that 1

2A†CC∗B† is a special solution of
(2.9), so that (2.6) can be written as (2.11). Also by Lemma 1.2, the general solution of
(2.10) can be written as Y = A†CC∗B† +FAW1 +W2EB . Comparing this formula with
(2.11) leads to (2.12). �

Under C � 0, we write (1.2) equivalently as

AXB+(AXB)∗ � CC∗. (2.13)

It was recently shown in [11] that

max
X∈Cp×q

i+[CC∗ −AXB− (AXB)∗ ] = min{r[A, C ], r[B∗, C ]}, (2.14)

max
X∈Cp×q

i−[CC∗ −AXB− (AXB)∗ ] = min{r(A), r(B)}, (2.15)

min
X∈Cp×q

i+[CC∗ −AXB− (AXB)∗ ] = max{r[A, C ]− r(A), r[B∗, C ]− r(B)}, (2.16)

min
X∈Cp×q

i−[CC∗ −AXB− (AXB)∗ ] = 0. (2.17)

These formulas enable us to derive necessary and sufficient conditions for (2.13) to
have a solution.

THEOREM 2.3. Let A ∈ C
m×p, B ∈ C

q×m and C ∈ C
m×m be given, and define

M = [EA, FB ], G = [A, B∗ ] and H = [B∗, A ]∗ . Then,

(a) (i) There exists an X ∈ Cp×q that satisfies (2.13) if and only if

R(C) ⊆ R(A) and R(C) ⊆ R(B∗). (2.18)

(ii) Under (2.18), the general solution of (2.13) and the corresponding AXB+
(AXB)∗ can be written in the following parametric from

X =
1
2
A†CC∗B† +A†EMUU∗EMB† +[ Ip, 0 ]FGWEH

[
Iq
0

]

− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB, (2.19)

AXB+(AXB)∗ = CC∗ +2EMUU∗EM, (2.20)

where U ∈ Cm×m, W ∈ C(p+q)×(p+q) and W1, W2 ∈ Cp×q are arbitrary.
Further, (2.13) can equivalently be written as

X = A†EMUU∗EMB† +
1
2
Y +Z, (2.21)

where Y is the general solution of AYB = CC∗, and Z is the general solu-
tion of AZB+(AZB)∗ = 0 .
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(iii) Under (2.18), let

S = {X ∈ C
p×q | AXB+(AXB)∗ � CC∗ }. (2.22)

Then,

max
X∈S

r[AXB+(AXB)∗ ] = r

[
A 0 C
0 B∗ C

]
− r[A, B∗ ], (2.23)

min
X∈S

r[AXB+(AXB)∗ ] = r(C), (2.24)

max
X∈S

r[AXB+(AXB)∗−CC∗ ] = r(A)+ r(B)− r[A, B∗ ]. (2.25)

(b) There exists an X ∈ Cp×q such that

AXB+(AXB)∗ > CC∗ (2.26)

if and only if r(A) = r(B) = m. In this case, the general solution of (2.26) and the
corresponding AXB+(AXB)∗ can be written in the following parametric from

X =
1
2
A†CC∗B† +A†UU∗B† +[ Ip, 0 ]FGWEH

[
Iq
0

]

− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB, (2.27)

AXB+(AXB)∗ = CC∗ +2UU∗, (2.28)

where U ∈ Cm×m is any matrix with r(U) = m, and W ∈ C(p+q)×(p+q) and
W1, W2 ∈ Cp×q are arbitrary. Further, (2.27) can equivalently be written as

X = A†UU∗B† +
1
2
Y +Z, (2.29)

where Y is the general solution of AYB = CC∗, and Z is the general solution of
AZB+(AZB)∗ = 0 .

(c) There exists an X ∈ Cp×q such that

AXB+(AXB)∗ � −CC∗ (2.30)

if and only if (2.18) holds. In this case, the general solution of (2.30) and the
corresponding AXB+(AXB)∗ can be written as

X = −1
2
A†CC∗B† −A†EMUU∗EMB† +[ Ip, 0 ]FGWEH

[
Iq
0

]

− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB, (2.31)

AXB+(AXB)∗ = CC∗ −2EMUU∗EM, (2.32)

where U ∈ C
m×m, W ∈ C

(p+q)×(p+q) and W1, W2 ∈ C
p×q are arbitrary.
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(d) There exists an X ∈ Cp×q such that

AXB+(AXB)∗ < −CC∗ (2.33)

if and only if r(A) = r(B) = m. In this case, the general solution of (2.33) can be
written as

X = −1
2
A†CC∗B†−A†UU∗B† +[ Ip, 0 ]FGWEH

[
Iq
0

]

− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB, (2.34)

AXB+(AXB)∗ = CC∗ −2UU∗, (2.35)

where U ∈ Cm×m is any matrix with r(U) = m, and W ∈ C(p+q)×(p+q) and
W1, W2 ∈ Cp×q are arbitrary.

Proof. Note that (2.13) can be rewritten as CC∗ −AXB− (AXB)∗ � 0, which is
obviously equivalent to

min
X∈Cp×q

i+[CC∗ −AXB− (AXB)∗ ] = 0. (2.36)

Setting the right-hand side of (2.16) to zero, we see that (2.36) holds if and only if
r[A, C ] = r(A) and r[B∗, C ] = r(B), which are equivalent to (2.18). On the other hand,
(2.13) is equivalent to the following quadratic matrix equation

AXB+(AXB)∗ = CC∗ +VV ∗. (2.37)

From Corollary 2.2(a) and (c), this equation is solvable for X if and only if

EA(VV ∗ +CC∗ ) = 0 and FB(VV ∗ +CC∗ ) = 0,

that is, [
EA

FB

]
VV ∗ = −

[
EA

FB

]
CC∗. (2.38)

From Lemma 1.1(b), (2.38) is solvable for VV ∗ if and only if
[
EA

FB

]
CC∗[EA, FB ] � 0 and r

([
EA

FB

]
CC∗[EA, FB ]

)
= r

([
EA

FB

]
CC∗

)
,

both of which are obviously equivalent to EACC∗ = FBCC∗ = 0, i.e., (2.18) holds. In
this case, the general solution of (2.38), by Lemma 1.1(b), can be written as

VV ∗ = 2(Im − [EA, FB ][EA, FB ]†)UU∗(Im − [EA, FB ][EA, FB ]†) = 2EMUU∗EM,

where U ∈ Cm×m is arbitrary. Substituting this VV ∗ into (2.37) gives

AXB+(AXB)∗ = CC∗ +2EMUU∗EM. (2.39)
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From Corollary 2.2, the general solution of (2.39) is given by

X =
1
2
A†CC∗B† +A†EMUU∗EMB† +[ Ip, 0 ]FGWEH

[
Iq
0

]
− [0, Ip ]EHW ∗FG

[
0
Iq

]

+FAW1 +W2EB,

establishing (2.19).
It can be seen from (2.39) that

r[AXB+(AXB)∗ ] = r[C∗, EMU ], r[AXB+(AXB)∗−CC∗ ] = r(EMU). (2.40)

It can be derived by (1.18) that

r(CM) = r(C[EA, FB ]) = r

⎡
⎣C C
A∗ 0
0 B

⎤
⎦− r(A)− r(B) = r

[
A 0 C
0 B∗ C

]
− r(A)− r(B), (2.41)

r(M) = r[EA, FB ] = r

[
A 0 Im
0 B∗ Im

]
− r(A)− r(B) = m+ r[A, B∗ ]− r(A)− r(B).

(2.42)

Thus, we have

max
X∈S

r[AXB+(AXB)∗ ] = r[C∗, EM ] = r(CM)+m− r(M) = r

[
A 0 C
0 B∗ C

]
− r[A, B∗ ],

min
X∈S

r[AXB+(AXB)∗ ] = (C),

max
X∈S

r[AXB+(AXB)∗−CC∗ ] = r(EM) = r(A)+ r(B)− r[A, B∗ ],

establishing (2.23)–(2.25).
It is obvious that (1.19) holds if and only if

max
X∈Cp×q

i−[CC∗ −AXB− (AXB)∗ ] = m,

which is equivalent to r(A) = r(B) = m by (2.15). In this case, EM = Im, and therefore
(b) follows from (a). Replacing X with −X in (a) and (b) leads to (c) and (d). �

Two simple consequences of Corollary 2.2 and Theorem 2.3 are given below.

COROLLARY 2.4. (a) The general solution of X +X∗ = In can be written as

X =
1
2
In +W −W∗,

where W ∈ Cn×n is arbitrary.

(b) The general solution of X +X∗ � In can be written as

X =
1
2
In +UU∗+W −W∗,

where U, W ∈ C
n×n are arbitrary.
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Setting C = 0 in (2.13), we obtain from Theorem 2.3 the analytical solution of
H (AXB) � 0 as follows.

COROLLARY 2.5. Let A∈Cm×p and B∈Cq×m be given, and define M = [EA, FB ],
G = [A, B∗ ] and H = [B∗, A ]∗ . Then,

(a) The general solution of
AXB+(AXB)∗ � 0 (2.43)

can be written in the parametric from

X = A†EMUU∗EMB†+[ Ip, 0 ]FGWEH

[
Iq
0

]
− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1+W2EB,

(2.44)
where U ∈ Cm×m, W ∈ C(p+q)×(p+q) and W1, W2 ∈ Cp×q are arbitrary.

(b) There exists an X ∈ Cp×q such that

AXB+(AXB)∗ > 0 (2.45)

if and only if r(A) = r(B) = m. In this case, the general solution of (2.45) can be
written as

X = A†UU∗B† +[ Ip, 0 ]FGWEH

[
Iq
0

]
− [0, Ip ]EHW ∗FG

[
0
Iq

]
+FAW1 +W2EB,

(2.46)
where U ∈ Cm×m is any matrix with r(U) = m, and W ∈ C(p+q)×(p+q) and
W1, W2 ∈ Cp×q are arbitrary.

If the C in (1.2) is a general Hermitian matrix, then (1.2) can equivalently be
written as

AXB+(AXB)∗ = C+VV ∗ (2.47)

for some matrix V . From Theorem 2.1(a), this equation is solvable for X if and only if
VV ∗ satisfies

EGVV ∗ = −EGC, EAVV ∗EA = −EACEA, FBVV ∗FB = −FBCFB, (2.48)

where G = [A, B∗ ] . However, we do not know how to solve for VV ∗ analytically from
the triple matrix equations, and therefore, we are unable to generally give an analytical
solution of the LMI in (1.2).

The Moore–Penrose inverses and Löwner partial ordering for linear operators on
a Hilbert space or elements in a ring with involution were defined and their algebraic
properties were extensively studied in the literature. In most cases, the conclusions on
the complex matrices and their counterparts in general algebraic settings are analogous.
Also, note that the results in this note are derived from ordinary algebraic operations of
the given matrices and their Moore–Penrose inverses. Hence, it is no doubt that most of
the conclusions in this note can trivially be extended to the corresponding equations and
inequalities for linear operators on a Hilbert space or elements in a ring with involution.
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