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Abstract. In this paper we prove some properties regarding classical arithmetic functions and
the prime counting function in connection with polynomials. More specific, this paper deals
with composition between arithmetic functions or between the prime counting function and a
polynomial and we study when some of these kind of compositions are rational functions or an-
other polynomial. In the proofs of our results we shall use inequalities or estimates of arithmetic
functions and the prime counting function as well as some elementary inequalities.

1. Introduction & Main results

The importance of polynomials is well-known in the study of the properties of
arithmetic functions like: σ(n) = ∑

d/n

d , d(n) = ∑
d/n

1, Euler’s totient function φ(n) and

the prime counting function π(x) = ∑
p�x

1. Recall that a function R is rational if it can

be written in the form R(x) =
P(x)
Q(x)

, where P and Q are polynomial functions in x and

Q(x) is not the zero polynomial.
In this paper, we establish some new properties of the functions mentioned above

regarding rational functions and we study when the composition of an arithmetic func-
tion and a polynomial restricted to the domain of prime numbers is another polynomial.
Concerning this matter, we also prove that the composition between the prime counting
function and a polynomial restricted to the domain of prime numbers cannot be another
polynomial. There are many estimates of the arithmetic functions and the prime count-
ing function in the literature. In the proofs of our results, we shall use the following
classical estimates,

THEOREM 1.1. For the functions σ(n),d(n),φ(n) and π(x) defined above, the
following properties hold:

(1) σ(n) < n logn, for all n � 7 ;
(2) d(n) = o(nε) , for all ε > 0 ;

Mathematics subject classification (2010): 11K65, 11R09, 11N05, 11N13.
Keywords and phrases: polynomials, prime counting function, arithmetic function, Dirichlet theorem.

c© � � , Zagreb
Paper MIA-15-48

549

http://dx.doi.org/10.7153/mia-15-48


550 CEZAR LUPU AND VLAD MATEI

(3) π(x) ∼ x
logx

,x → ∞;

(4) φ(σ(n)) < nε , for all ε > 0 , except for a set of density 0 .

(5)
φ(n)

n
� 1

3loglogn
, for all n � 67 .

The proof of this theorem can be found in [8] (part (1), part (5)), [4], [8] (part(2)),
[2], [9] (part 4). Part (3) of the theorem is nothing else than the celebrated prime number
theorem. If we denote by pn the n -th prime number, then the prime number theorem
can be stated as pn ∼ n logn .

First of all, we state the following folklore

THEOREM 1.2. The prime counting function, π(x) cannot be a rational function
for all x positive integers.

The standard proof of theorem 1.2 involves algebraic properties of polynomials.
In the next section, we give another proof of this theorem based on elementary tools of
Real Analysis. This theorem appears as an exercise at page 101 in [4]. In this paper,
we will prove other theorems concerning polynomials and arithmetic functions and the
prime counting function, namely

THEOREM 1.3. There do not exist polynomials P,Q ∈ R[X ] such that

∫ logn

0

P(x)
Q(x)

dx =
n

π(n)
,

for all positive integers n � 1 .

THEOREM 1.4. Let f ∈ {σ(n),φ(n),d(n)} . If f (P(p)) = Q(p) for any prime
number p, where P,Q ∈ Z[X ] are monic polynomials, then P(X) = Xk , where k is
positive integer.

THEOREM 1.5. There do not exists polynomials P,Q∈Z[X ] such that π(P(p)) =
Q(p) , for any prime number p.

THEOREM 1.6. There do not exist polynomials P,Q ∈ R[X ] such that g(σ(n)) =
P(n)
Q(n)

, for all positive integers n � 1 , where g ∈ {φ(n),σ(n),d(n)} .

2. Proofs of the main results

In this section we prove our main results stated in the previous section. First of all,
we begin with the proof of Theorem 1.2, which can be summarised as it follows:

Proof of Theorem 1.2. We assume by contradiction that π(x) =
P(x)
Q(x)

, for all

positive integers x . By the prime number theorem (Theorem 1.1, (3)), we have that
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lim
x→∞

π(x)
x

= 0. This means that lim
x→∞

P(x)
xQ(x)

= 0 which implies that deg(P) < deg(Q)+

1. On the other hand, since lim
x→∞

π(x) = ∞ , we have that lim
x→∞

P(x)
Q(x)

= ∞ which means

that deg(P) > deg(Q) , false. �

REMARK. There exists an algebraic proof of the theorem as mentioned in the
previous section which perhaps is already a folkore. It is well-known that if π(n) >
π(n− 1) , then n is prime. Let us assume that n is a composite number. Thus,

π(n) = π(n− 1) . We argue by contradiction and assume that π(x) =
P(x)
Q(x)

, for all

positive integers x . Thus, for n composite we have
P(n)
Q(n)

=
P(n−1)
Q(n−1)

. Let S(x) =

P(x)Q(x− 1)− P(x− 1)Q(x) . From the above assumption, we have that S(n) = 0,
whenever n is composite. But this means that S has many infinitely zeroes and thus
S ≡ 0 and we deduce π(n) = π(n−1) , for all n , contradiction.

In [5], L. Panaitopol proved that for every n � 1429, the inequality π(n) >
n
Hn

holds true, where Hn = 1 +
1
2

+ . . . +
1
n

is the harmonic sequence. In fact, this was

observed for the first time by Locker-Ernst in [6] which stated that for n > 50, a good
approximation for π(n) is given by n/Hn . The proof given in [5] uses strong approx-
imations for the prime counting functions obtained by Rosser and Schoenfeld in [7].
The proof of the Theorem 1.3 that will be given in what will follow does not use ad-
vanced approximations for π(x) as described in [5] or [7].

Proof of Theorem 1.3. Suppose that such polynomials exist. Let R be that rational
function and put

f (x) =
1
x
·
∫ logx

0
R(t)dt.

Then we have f (n) = f (n + 1) whenever n+ 1 is composite. Thus f ′ vanishes in-
finitely many times by Rolle’s theorem, so there is a sequence cn between n and n+1
whenever n+1 is composite such that f ′(cn) = 0. Since

f (x)+ x f ′(x) =
1
x
R(logx),

this gives

R(log(cn)) =
∫ log(cn)

0
R(t)dt,

which means that by asymptotic cosiderations that R must be null, contradiction. �

The proof of the next theorem is quite elementary and involves rudiments of Real
Analysis and uses the celebrated Dirichlet’s theorem on arithmetic progressions.
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Proof of Theorem 1.4. First of all, we will prove that deg(P) = deg(Q) . Assume
that f = φ(n) and deg(Q) > deg(P) . Since φ(n) � n,n � 1 it follows immediately
that Q(p) > P(p) , so the polynomial Q(x)−P(x) is nonconstant and monic and thus,
we have that lim

x→∞
(Q(x)−P(x)) = ∞ . But this last assertion contradicts the inequality

Q(p)−P(p) � 0, whenever p is prime number. Thus deg(Q) � deg(P) . Now, we
will prove the converse inequality; deg(Q) � deg(P) . Assume by contradiction that
deg(Q) � deg(P)− 1. Then the polynomial 2P(x)− xQ(x) is nonconstant and monic
and like we did above, we have that lim

x→∞
(2P(x)− xQ(x)) = ∞ , so for sufficiently large

prime number p we have 2P(p)− pQ(p) � 0 which is equivalent to
Q(p)
P(p)

� 2
p

. On

the other hand, we have that

φ(P(p))
P(p)

= ∏
qprime
q|P(p)

(
1− 1

q

)
> e

−∑qprime
q|P(p)

1
q−1

.

Now, by the prime number theorem stated in the form pn ∼ n logn , there exists a con-

stant k ∈ N
∗ such that pn−1 >

n logn
k

, for all n � 1. This means that

n

∑
i=1

1
pi −1

� 1+ k
n

∑
i=2

1
i log i

.

By Lagrange’s mean value theorem applied to the function x �→ log logx , we have

1
n logn

< loglogn− loglog(n−1),

for all n � 2 and it follows that
n

∑
i=2

1
i log i

< 1+ loglogn . We obtain

n

∑
i=1

1
pi−1

< 1+ k+ k loglogn, ∀n � 2.

There is a t ∈ N which satisfies pt < P(p) < pt+1 and thus we obtain

∑
qprime
q|P(p)

1
q−1

� ∑
qprime
q�P(p)

1
q−1

< 1+ k+ k loglog t,

It is easy to see that t � P(p) , so

∑
qprime
q|P(p)

1
q−1

� 1+ k+ k loglogP(p).
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Using the inequality above and the fact that
φ(P(p))

P(p)
> e

−∑qprime
q|P(p)

1
q−1

, we obtain that

φ(P(p))
P(p)

> e1+k
(

1
logP(p)

)k

.

On the other hand, since
φ(P(p))

P(p)
� 2

p
, we have that p

1
k · e k+1

k 2−
1
k < logP(p) , and if

we denote the constant with A = e
k+1
k 2−

1
k we have eA k√p < P(p) . Now if we denote

with B(X) = P(Xk) we know that lim
x→∞

eAx

B(x)
= +∞ , since A > 0. This means that

for p big enough it holds eA k√p > B( k
√

p) which is in contradiction with eA k√p < P(p)
so our assumption deg(Q) � deg(P)− 1 fails. Thus deg(Q) � deg(P) , so deg(Q) =
deg(P) . Next, we prove that P(0) = 0. Assume by contradiction that P(0) �= 0. If we
take a prime q > |P(0)| , by the property above, we have P(q) ≡ P(0)(modq) which
means that (P(q),q) = 1. According to Dirichlet’s theorem, the arithmetic progression
q+ rP(q) contains many infinitely prime numbers. Let qm = q+ rmP(q) be the m-th
prime in this sequence. We have that

P(q+ rmP(q)) ≡ P(q)(modP(q)),

so P(q) divides P(qm) . Since
φ(a)

a
= ∏

qprime
q|a

(
1− 1

q

)
one can easily deduce that for

d|a one has
φ(a)

a
� φ(d)

d
. This implies

φ(P(qs))
P(qs)

� φ(P(q))
P(q)

which is equivalent to

Q(qs)
P(qs)

� φ(P(q))
P(q)

.

Let us note that lim
s→∞

qs = +∞ . We know that Q and P have the same degree and

both are monic polynomials, so lim
x→+∞

Q(x)
P(x)

= 1. This means that lim
s→+∞

Q(qs)
P(qs)

= 1.

Passing to limit when s → ∞ in
φ(P(qs))

P(qs)
� φ(P(q))

P(q)
we obtain 1 � φ(P(q))

P(q)
or

P(q) � φ(P(q)) . We conclude that P(q) = 1. But this can not hold for many infinitely
primes q , otherwise P≡ 1, in contradiction with our assumption that P is nonconstant.

Let P(X) = X jR(X) with R(0) �= 0. We now have φ(P(q)) = φ(q jR(q)) and for
q > |R(0)| we have (q,R(q)) = 1 so

φ(P(q)) = φ(q j) ·φ(R(q)) = q j−1(q−1) ·φ(R(q)).

Now let Q(X) = XiS(X) cu S(0) �= 0. We have that q j−1|qiS(q) . If i < j− 1 then
q|S(q) and since S(q) ≡ S(0)(modq) we have q|S(0) for infinitely many primes. This
leads to S(0) = 0, in contradiction with S(0) �= 0, and therefore i � j− 1. We also
have q− 1|qiS(q) and since (q,q− 1) = 1 we get q− 1|S(q) . We know that S(q) ≡
S(1)(mod(q− 1)) which combined with q− 1|S(q) we get q− 1|S(1) , for all primes
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q > |R(0)| . Thus S(1) = 0. This means Q(X) = Xi(X − 1)S1(X) so φ(R(q)) =
qi− j+1S1(q) and if we denote Xi− j+1S1(X) = L(x) we have a monic polynomial such
that φ(R(q)) = L(q) . Applying the same arguments for R and L if R is nonconstant we
would have R(0) = 0 in contradiction with R(0) �= 0. Thus R is constant and R≡ 1.We
conclude that the only solution is P(X) = X j with j � 1.

Now for the case when f = σ(n) , we assume that deg(P) > deg(Q) . Since
σ(n) > n,n � 2 it follows that Q(p) > P(p) for all p primes. From deg(P) > degQ we
deduce that P(x)−Q(x) is nonconstant and monic which implies lim

x→∞
(P(x)−Q(x)) =

+∞ . But this last assertion contradicts the inequality P(p)−Q(p) < 0, for all primes
p . Thus deg(P) � deg(Q) .

Now, we will prove the converse inequality deg(Q) � deg(P) . Assume by contra-
diction that deg(Q) � deg(P)+1. Then the polynomial 2Q(x)− xP(x) is nonconstant
and applying the same arguments as above, we have that lim

x→∞
(2Q(x)− xP(x)) = ∞ , so

for sufficiently large prime number p we have 2Q(p)− pP(p) � 0 which is equivalent

to
Q(p)
P(p)

� p
2

and further to
σ(P(p))

P(p)
� p

2
.

Since lim
x→∞

P(x) = ∞ , there is a p0 such that for all primes p � p0 we have P(p) �

7. Using Theorem 1.1 (part (1)) we have
σ(P(p))

P(p)
< logP(p) .

Combining with
σ(P(p))

P(p)
� p

2
we obtain logP(p) >

p
2

for all primes p � p0 .

Now we just have to notice that

lim
x→∞

logP(x)
x

= lim
x→∞

P′(x)
P(x)

= 0.

This provides the immediate contradiction to
logP(p)

p
>

1
2

for all primes p � p0 .

Thus the assumption deg(Q) � deg(P)+1 fails so deg(Q) � deg(P) and corrob-
orating with deg(Q) � deg(P) , we conclude that deg(Q) = deg(P) .

Next, we prove that P(0) = 0.
Assume by contradiction that P(0) �= 0. For a fixed prime q > |P(0)| , by the prop-

erty above, we have P(q) ≡ P(0)(modq) which means that (P(q),q) = 1. According
to Dirichlet’s theorem, the arithmetic progression q + rP(q) contains infinitely many
primes. Let qm be th m-th prime in this sequence. We have that P(q + rmP(q)) ≡
P(q)(modP(q)) , so P(q) divides P(qm) . For a positive integer a since we have

σ(a)
a

= ∏
qprime

q|a,υq(a)=αq

(
1+

1
q

+ ....+
1

qαq

)

(here υq(a) is the exponent of q in the decomposition of a in prime factors) one can

easily deduce that for a|d one has
σ(a)

a
� σ(d)

d
. This implies

σ(P(qs))
P(qs)

� σ(P(q))
P(q)

which is equivalent to
Q(qs)
P(qs)

� σ(P(q))
P(q)

.
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Let us note that lim
s→∞

qs = +∞ . We know that Q and P have the same degree and

both are monic polynomials so lim
x→+∞

Q(x)
P(x)

= 1. This means that lim
s→+∞

Q(qs)
P(qs)

= 1.

Passing to limit when s → ∞ in
σ(P(qs))

P(qs)
� σ(P(q))

P(q)
, we obtain 1 � σ(P(q))

P(q)
so

P(q) � σ(P(q)) which means P(q) = 1 for all prime numbers q so P ≡ 1. Thus our
assumption was false and let P(X)= X jR(X) with R(0) �= 0. Now, we have σ(P(q)) =
σ(q jR(q)) and for q > |R(0)| it follows that (q,R(q)) = 1 so

σ(P(q)) = (q j +q j−1 + . . .+1)σ(R(q)).

Let D(X) = X j +X j−1 + . . .+ 1. Since Q and D are monic we know that there
are C(X) and T (X) in Z[X ] such that Q(X) = D(X) ·C(X)+T(X) where deg(T ) <
deg(D) . We know that D(q)|Q(q) and it implies D(q)|T (q) .

Now since deg(T ) < deg(D) , we obtain lim
x→∞

T (x)
D(x)

= 0. This means that |T (q)| <
D(q) for all large q and from D(q)|T (q) we can conclude that T (q) = 0 for such
primes. So T has an infinity of roots thus T ≡ 0.

We have

(q j +q j−1 + . . .+1)σ(R(q)) = D(q)σ(R(q)) = D(q)C(q)

which leads to σ(R(q)) =C(q) and since R(0) �= 0 we obtain R ≡ 1,by looking at the
argument for the previous case. We conclude again that P(X) = X j with j � 1.

The last case is f = d(n) . From Theorem 1.1 (part (2)), we have Q(p) = o(Pε(p))

which is equivalent to the fact that lim
l→∞

Q(pl)
Pε(pl)

= lim
x→∞

Q(x)
Pε(x)

is finite for all ε > 0. Thus

we deduce that Q is constant, otherwise we could have chosen ε =
deg(Q)
2deg(P)

which

provides us a contradiction.
Now let us assume that P(0) �= 0. Again, we employ the well-known property

of polynomials which states that for all a,b ∈ Z one has a− b| f (a)− f (b) . For a
fixed prime q > |P(0)| , by the property above, we have P(q) ≡ P(0)(modq) which
means that (P(p), p) = 1. According to Dirichlet’s theorem, the arithmetic progression
q+ rP(q) contains many infinitely prime numbers. Let qm be the m-th prime in this
sequence. We have that P(q + rmP(q)) ≡ P(q)(modP(q)) so P(q) divides P(qm) .
Now if a|b and a < b we have d(a) < d(b) so if P is nonconstant d(P(q)) < d(P(qm))
which leads to Q(q) < Q(qm) , which contradicts the fact that Q is constant.

Thus P(X) = X jR(X) with R(0) �= 0. We now have d(P(q)) = d(q jR(q)) and
for q > |R(0)| we have (q,R(q)) = 1 so (P(q)) = d(q j) ·d(R(q)) = ( j +1) ·d(R(q)) .

This means that we have d(R(q)) =
Q(q)
j +1

so the polynomial R has the property that

d(R(q)) is constant for all primes q but R(0) �= 0 thus it is constant. So f (X) = cX j

with j � 1. �
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REMARK. In the case when f = φ(n) , we would have obtained easier the fact
that the polynomials have the same degree using the result from Theorem 1.1 (part (5)).

Proof of Theorem 1.5. From Theorem 1.1 (part (3)) we know that lim
n→∞

π(n)
n

= 0

so lim
p→∞

π(P(p))
P(p)

= lim
p→∞

Q(p)
P(p)

= 0 which is equivalent to lim
x→∞

Q(x)
P(x)

= 0. We deduce

that deg(Q) � deg(P)−1.

Again from Theorem 1.1 (part (3)), we have lim
n→∞

π(n) logn
n

= 1 and thus

lim
p→∞

Q(p) logP(p)
P(p)

= 1 which is equivalent to lim
x→∞

Q(x) logP(x)
P(x)

= 1.

Now since deg(Q) � deg(P)−1 the limit lim
x→∞

xQ(x)
P(x)

is finite. Morever we have

lim
x→∞

logP(x)
x

= lim
x→∞

P′(x)
P(x)

= 0

applying L’Hopital rule and using the fact that deg(P′) < deg(P) . Combining these two

observations, by multiplying, we get lim
x→∞

Q(x) logP(x)
P(x)

= 0. This ends the proof of the

theorem. �

In [9] and [10] many properties are proved about arithmetic functions especially
asymptotic estimates of composition of functions like: φ(σ(n)),σ(σ(n)) or d(σ(n)) .
In the proof of the theorem that will follow, we shall use our idea from the proof of the
Theorem 1.1.

Proof of Theorem 1.6. In all cases we proceed by the way of contradiction. This

means that g(σ(n)) =
P(n)
Q(n)

,n � 1. Firstly, we deal with the case when g = φ(n) . We

proceed as in the proof of Theorem 1.1. In [3] and [9] it is proved that lim
n→∞

φ(σ(n))
n

= 0

except for a set of density 0. This implies that lim
n→∞

P(n)
nQ(n)

= 0 and thus deg(P) <

1+deg(Q) . On the other hand, since lim
n→∞

φ(σ(n)) = ∞ , we have that lim
n→∞

P(n)
Q(n)

= ∞

which means that deg(P) > deg(Q) , contradiction.

For g = σ(n) . We know from [8] that limsup
n→∞

σ(n)
n

= ∞ so limsup
n→∞

σ(σ(n))
n

= ∞ .

Thus lim
x→∞

P(x)
xQ(x)

= ∞ and we deduce that deg(P) > deg(Q)+ 1. Now from Theorem

1.1 (part (1)), we have

σ(σ(n)) < σ(n) logσ(n) < n logn(logn+ loglogn)
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for n � 7. It folows immediately that lim
n→∞

σ(σ(n))
n2 = 0 and thus lim

x→∞

P(x)
x2Q(x)

= ∞

which gives deg(P) < deg(Q)+2, and this combined with deg(P) > deg(Q)+1 leads
to a contradiction.

Finally, when g = d(n) , we have (see [8], [4]) that d(n) � 2
√

n,n � 1. This

means that d(σ(n)) � 2
√

σ(n) so lim
n→∞

d(σ(n))
n

= 0 since lim
n→∞

σ(n)
n2 = 0 according

to Theorem 1.1 (part (1)). It follows that lim
x→∞

P(x)
xQ(x)

= 0 so we have deg(P) � deg(Q) .

Now we shall prove that limsup
n→∞

d(σ(n)) = ∞ . Let p1, . . . , pk the first k prime

numbers. According to Dirichlet’s theorem, the arithmetic progression rp1p2 . . . pk −1
with r ∈ N

∗ contains an infinity of primes and let q be one of them. We have that
d(σ(q)) = d(q + 1) = d(rp1p2 . . . pk) � 2k . Letting k be arbitrarly large we get the

desired result. Using limsup
n→∞

d(σ(n)) = ∞ , we deduce lim
x→∞

P(x)
Q(x)

= ∞ so deg(P) >

deg(Q) . This obviously contradicts deg(P) � deg(Q) . �

REMARK. The result limsup
n→∞

d(σ(n)) = ∞ appears also in [11, 12]. One can apply

the classical inequality d(m)σ(n) � m for m = σ(n) � n , and use the liminf result on
φ(σ(n))

n
.
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