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UNIVERSAL INEQUALITIES FOR EIGENVALUES OF QUADRATIC

POLYNOMIAL OPERATOR OF THE KOHN LAPLACIAN

HE-JUN SUN AND XUE-RONG QI

Abstract. In this paper, we investigate the Dirichlet weighted eigenvalue problem of quadratic
polynomial operator of the Kohn Laplacian on a bounded domain in the Heisenberg group H

n .
We establish two inequalities for eigenvalues of this problem. One of them implies an explicit
estimate for the upper bound of the (k + 1) -th eigenvalue in terms of the first k eigenvalues.
Moreover, as a special case, we give some universal inequalities and estimates for eigenvalues
of the bi-Kohn Laplacian.

1. Introduction

One of important research subjects in geometric analysis is to obtain some univer-
sal inequalities and bounds for eigenvalues of differential operators on various kinds of
manifolds. There have been some results (e.g., [1, 2, 3, 11, 9, 20, 21, 22, 23], etc.) for
the Laplacian, the biharmonic operator and elliptic operators with variable coefficients
on some Riemannian manifolds such as the Euclidean space, a unite sphere, a complex
projective space and so on.

Let H
n be an (2n+1)-dimensional Heisenberg group with coordinates (x,y,t) ∈

R
n×R

n×R and non-commutative group law given by

(x,y, t)(x′,y′,t ′) =
(
x+ x′,y+ y′,t + t ′+

1
2
(〈x′,y〉Rn −〈x,y′〉Rn)

)
,

where (x′,y′, t ′) ∈ R
n×R

n×R and 〈·, ·〉 denotes the inner product in R
n . The Heisen-

berg group is one of classical sub-Riemannian manifolds. Its geometric structure has
many differences with the Euclidean space. The Lie algebra H n of H

n has a basis
formed by 2n+1 left-invariant vector fields {Xj,Yj,T} for j = 1, · · · ,n, where

Xj =
∂

∂x j
+

y j

2
∂
∂ t

, Yj =
∂

∂y j
− x j

2
∂
∂ t

, T =
∂
∂ t

.

The Kohn Laplacian ΔHn on the Heisenberg group H
n is named after Kohn [13] (cf.

[12]). It is also called the sub-Laplacian and is defined by

ΔHn =
n

∑
j=1

(X2
j +Y2

j ) = ΔR
2n

xy +
1
4

(|x|2 + |y|2) ∂ 2

∂ 2t
+

∂
∂ t

n

∑
j=1

(
y j

∂
∂x j

− x j
∂

∂y j

)
. (1.1)
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As an invariant differential operator on H
n , the spectrum of ΔHn has strong background

in physics. Moreover, it has many connections with several complex variables and
partial differential equation (see [4, 19]). Unlike the Laplacian and the biharmonic
operator, ΔHn is non-elliptic. Therefore, it is significant to give some estimates for
eigenvalues of some problems relating to ΔHn .

The physical nature and intrinsic properties of H
n are decided by the Heisenberg

relations, that is
[Yj,Xi] = δi jT, for i, j = 1, · · · ,n, (1.2)

and all other commutators vanish. The non-commutativity of Xj and Yj makes it com-
plicated to estimate eigenvalues of ΔHn and the bi-Kohn Laplacian Δ2

Hn . Compared
with the Laplacian and the biharmonic operator, there were fewer references on esti-
mates for eigenvalues of ΔHn and Δ2

Hn . Let Ω be a bounded domain in H
n . Denote by

λr the r -th eigenvalue of the Dirichlet eigenvalue problem of ΔHn :{
−ΔHnu = λu, in Ω,

u|∂Ω = 0.
(1.3)

In 2003, Niu and Zhang [16] proved that eigenvalues of problem (1.3) satisfy

λk+1−λk � 2
nk

k

∑
r=1

λr. (1.4)

In 2009, Soufi, Harrel II and Ilias [18] obtained a sharper inequality

k

∑
r=1

(λk+1 −λr)2 � 2
n

k

∑
r=1

(λk+1−λr)λr. (1.5)

Compared to ΔHn , the difficulties caused by the non-commutativity of Xi and Yj be-
come more obvious to the Dirichlet eigenvalue problem of Δ2

Hn , which is described
by ⎧⎨

⎩
Δ2

Hnu = Γu, in Ω,

u|∂Ω =
∂u
∂ν

|∂Ω = 0,
(1.6)

where ν denotes the outward unit normal vector to ∂Ω . To the author’s knowledge, the
previous main result for problem (1.6) was also derived by Niu and Zhang [16]. They
obtained an estimate for its gap of the consecutive eigenvalues:

Γk+1 −Γk � 4(n+1)
n2k2 (

k

∑
r=1

Γ
1
2
r )

1
2 . (1.7)

In this paper, we investigate the weighted eigenvalue problem of quadratic poly-
nomial operator of ΔHn , which is described by⎧⎨

⎩
Δ2

Hnu−aΔHnu+bu = Λρu, in Ω,

u|∂Ω =
∂u
∂ν

|∂Ω = 0,
(1.8)
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where ρ is a positive continuous function on Ω and the constants a,b � 0. As we
know (see [5, 7]), this problem has a real and discrete spectrum:

0 < Λ1 � Λ2 � · · · � Λr � · · · ↗ ∞,

where each eigenvalue is repeated with its multiplicity. It characterizes the vibration
problem of a clamped plate in H

n . In 1997, Guo [8] derived some priori estimates
for eigenvalues of the polynomial operator of the Kohn Laplacian, which relate to the
Pólya’s conjecture for the Laplacian. For more references in this direction, we refer the
reader to [17, 14, 15].

The purpose of this paper is to obtain some inequalities and estimates for eigenval-
ues of problem (1.6) and problem (1.8). This paper is organized as follows: In Section
2, we establish some general inequalities for eigenvalues of problem (1.8). In Section
3, making use of these general inequalities, we obtain two inequalities for eigenvalues
of problem (1.8) in Theorems 3 and 4. Noticing that (3.1) is a quadratic inequality with
respect to Λk+1 , we give an upper bound of Λk+1 in terms of the first k eigenvalues
in Corollary 1. A significance of the preceding estimates lies in the convenience to
obtain some estimates for eigenvalues of problem (1.6). Since it is only a special case
of problem (1.8), we easily derive some results for eigenvalues of problem (1.6) (see
Corollaries 2-6). Even for this special case, our results is sharper than (1.7).

2. Some general inequalities

In this section, some general inequalities for eigenvalues of problem (1.8) are ob-
tained. They will play an important role in the proofs of Theorems 3 and 4 in Section 3.

LEMMA 1. Let Ω be a bounded domain in H
n . Denote by ur the weighted or-

thonormal eigenfunction corresponding to the r -th eigenvalue Λr of problem (1.8),
r = 1,2, · · · ,k . Namely, ur satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ2
Hnur −aΔHnur +bur = Λrρur, in Ω,

ur|∂Ω =
∂ur

∂ν
|∂Ω = 0,∫

Ω
ρurus = δrs.

(2.1)

Then we have

k

∑
r=1

(Λk+1−Λr)2
∫

Ω
u2

r �
k

∑
r=1

1
γr

(Λk+1 −Λr)
∫

Ω

1
ρ

(Xiur)2

+
k

∑
r=1

γr(Λk+1 −Λr)2
∫

Ω

[
4(Xiur)2 +2|∇Hnur|2 +au2

r

]
,

(2.2)

where ∇Hn is the gradient operator on H
n and the constants γr form a non-increasing

sequence of positive numbers.
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Proof. We define the trial functions

ϕrxi = xiur −
k

∑
s=1

arsxius, for i = 1, · · · ,n, and r = 1, · · · ,k. (2.3)

where
arsxi =

∫
Ω

ρxiurus.

Then it is not hard to check that for i = 1, · · · ,n , and r,s = 1, · · · ,k ,∫
Ω

ρϕrxius = 0. (2.4)

Moreover, it yields ∫
Ω

ρϕrxixiur =
∫

Ω
ρϕ2

rxi
. (2.5)

Since
Δ2

Hn(xiur) = 2ΔHnXiur +2XiΔHnur + xiΔ2
Hnur, (2.6)

we have

Δ2
Hnϕrxi −aΔHnϕrxi +bϕrxi

=2(ΔHnXiur +XiΔHnur −aXiur)+ Λrρxiur −
k

∑
s=1

arsxiΛsρus.
(2.7)

Substituting (2.7) into the Rayleigh-Ritz inequality

Λk+1 �
∫

Ω ϕrxi(Δ2
Hnϕrxi −aΔHnϕrxi +bϕrxi)∫

Ω ρϕ2
rxi

,

and using (2.4) and (2.5), we obtain

(Λk+1 −Λr)
∫

Ω
ρϕ2

rxi
� 2

∫
Ω

xiur(ΔHnXiur +XiΔHnur −aXiur)+2
k

∑
s=1

arsxibrsxi , (2.8)

where
brsxi = −

∫
Ω

us(ΔHnXiur +XiΔHnur −aXiur) = −bsrxi .

Using integration by parts and utilizing (2.6), we find

Λrarsxi =
∫

Ω
xius(Δ2

Hnur −aΔHnur +bur) = −2bsrxi + Λsarsxi .

That is
2brsxi = (Λr −Λs)arsxi . (2.9)

At the same time, since∫
Ω

xiurΔHnXiur = −2
∫

Ω
urX

2
i ur −

∫
Ω

urΔHnur −
∫

Ω
urxiXiΔHnur,
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we have∫
Ω

xiur(ΔHnXiur +XiΔHnur −aXiur) =
∫

Ω

[
2(Xiur)2 + |∇Hnur|2 +

a
2
u2

r

]
. (2.10)

Substituting (2.9) and (2.10) into (2.8), we deduce

(Λk+1 −Λr)
∫

Ω
ρϕ2

rxi
�

∫
Ω

[
4(Xiur)2 +2|∇Hnur|2 +au2

r

]
+

k

∑
s=1

(Λr −Λs)a2
rsxi

. (2.11)

Using integration by parts again, we have

−2
∫

Ω
ϕrxiXiur =

∫
Ω

u2
r +2

k

∑
s=1

arsxidrsxi , (2.12)

where
drsxi =

∫
Ω

usXiur = −dsrxi .

Multiplying (2.12) by (Λk+1−Λr)2 , using the Schwarz inequality and (2.4), we deduce

(Λk+1 −Λr)2
∫

Ω
u2

r +2
k

∑
s=1

(Λk+1 −Λr)2arsxidrsxi

=−2(Λk+1−Λr)2
∫

Ω

√
ρϕrxi

( 1√ρ
Xiur −√

ρ
k

∑
s=1

drsxius
)

�γr(Λk+1 −Λr)3
∫

Ω
ρϕ2

rxi
+

Λk+1−Λr

γr

∫
Ω

( 1√ρ
Xiur −√

ρ
k

∑
s=1

drsxius
)2

.

(2.13)

Substituting (2.11) into (2.13) and summing over r from 1 to k , we obtain

k

∑
r=1

(Λk+1−Λr)2
∫

Ω
u2

r +2
k

∑
r,s=1

(Λk+1−Λr)2arsxidrsxi

�
k

∑
r=1

γr(Λk+1−Λr)2
∫

Ω

[
4(Xiur)2 +2|∇Hnur|2 +au2

r

]
−

k

∑
r,s=1

1
γr

(Λk+1 −Λr)d2
rsxi

+
k

∑
r=1

1
γr

(Λk+1 −Λr)
∫

Ω

1
ρ

(Xiur)2 +
k

∑
r,s=1

γr(Λk+1 −Λr)2(Λr −Λs)a2
rsxi

.

(2.14)
Because the sequence {γr} is non-increasing, one can get

k

∑
r,s=1

γr(Λk+1 −Λr)2(Λr −Λs)a2
rsxi

� −
k

∑
r,s=1

γr(Λk+1 −Λr)(Λr −Λs)2a2
rsxi

. (2.15)

Moreover, it follows from arsxi = asrxi and drsxi = −dsrxi that

k

∑
r,s=1

(Λk+1−Λr)2arsxidrsxi = −
k

∑
r,s=1

(Λk+1−Λr)(Λr −Λs)arsxidrsxi . (2.16)
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Hence, using (2.15) and (2.16), we can eliminate the unwanted terms in both sides of
(2.14) and obtain (2.2). �

In order to make some estimates in Theorems 3 and 4 of Section 3, we need an-
other general inequality which contains the factor

∫
Ω(Yiur)2 . Now we define the trial

functions

ϕryi = yiur −
k

∑
s=1

arsyius, i = 1, · · · ,n and r = 1, · · · ,k, (2.17)

where
arsyi =

∫
Ω

ρyiurus.

Similarly to the proof of Lemma 1, we can get the following lemma:

LEMMA 2. Under the same assumptions as in Lemma 1, we have

k

∑
r=1

(Λk+1−Λr)2
∫

Ω
u2

r �
k

∑
r=1

1
γr

(Λk+1−Λr)
∫

Ω

1
ρ

(Yiur)2

+
k

∑
r=1

γr(Λk+1 −Λr)2
∫

Ω

[
4(Yiur)2 +2|∇Hnur|2 +au2

r

]
,

(2.18)

where the constants γr form a non-increasing sequence of positive numbers.

Combining Lemma 1 and Lemma 2, we can obtain one of two wanted general
inequalities.

THEOREM 1. Under the same assumptions as in Lemma 1, we have

k

∑
r=1

(Λk+1−Λr)2
∫

Ω
u2

r �
k

∑
r=1

1
2γr

(Λk+1 −Λr)
∫

Ω

1
ρ

[
(Xiur)2 +(Yiur)2

]

+
k

∑
r=1

γr(Λk+1 −Λr)2
∫

Ω

{
2

[
(Xiur)2 +(Yiur)2

]
+2|∇Hnur|2 +au2

r

}
,

(2.19)

where the constants γr form a non-increasing sequence of positive numbers.

We can derive another general inequality by making some modifications in the
proofs of Lemmas 1 and 2.

THEOREM 2. Under the same assumptions as in Lemma 1, we have

k

∑
r=1

(Λk+1 −Λr)2
∫

Ω
u2

r � 1
n

[ k

∑
r=1

(Λk+1−Λr)
∫

Ω

1
ρ
|∇Hnur|2

] 1
2

×
{ k

∑
r=1

(Λk+1 −Λr)2
[
4(n+1)

∫
Ω
|∇Hnur|2 +2na

∫
Ω

u2
r

]} 1
2

.

(2.20)
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Proof. Replacing γr in (2.14) by a positive constant γ , using (2.16) and the equal-
ity

k

∑
r,s=1

(Λk+1 −Λr)2(Λr −Λs)a2
rsxi

= −
k

∑
r,s=1

(Λk+1 −Λr)(Λr −Λs)2a2
rsxi

, (2.21)

we can also eliminate the unwanted terms. As a result of modifications in the proofs of
Lemmas 1 and 2, we can deduce

k

∑
r=1

(Λk+1 −Λr)2
∫

Ω
u2

r � 1
2γ

k

∑
r=1

(Λk+1−Λr)
∫

Ω

1
ρ

[
(Xiur)2 +(Yiur)2

]

+ γ
k

∑
r=1

(Λk+1−Λr)2
{

2
∫

Ω

[
(Xiur)2 +(Yiur)2

]
+2

∫
Ω
|∇Hnur|2 +a

∫
Ω

u2
r

}
.

(2.22)

Summing over i from 1 to n in (2.22), we can get

γ2
k

∑
r=1

(Λk+1−Λr)2
[
4(n+1)

∫
Ω
|∇Hnur|2 +2na

∫
Ω

u2
r

]

−2nγ
k

∑
r=1

(Λk+1−Λr)2
∫

Ω
u2

r +
k

∑
r=1

(Λk+1−Λr)
∫

Ω

1
ρ
|∇Hnur|2 � 0.

(2.23)

The left side of (2.23) is just a quadratic polynomial of γ . Therefore, its discriminant
must be nonpositive. This yields (2.20). �

3. Some inequalities for eigenvalues of problem (1.8)

In this section, we establish some inequalities for eigenvalues of problem (1.8) by
utilizing the general inequalities in Theorems 1 and 2.

THEOREM 3. Let Λr be the r -th eigenvalue of problem (1.8). Set σ =
(
min
x∈Ω

ρ(x)
)−1

and τ =
(
max
x∈Ω

ρ(x)
)−1

. Then we have

k

∑
r=1

(Λk+1 −Λr)2 � 4σ
n2τ2

k

∑
r=1

(Λk+1−Λr)
[
(n+1)Er +

naσ
2

]
Er, (3.1)

where

Er =
1
2

[
−aσ +

√
a2σ2 +4σ(Λr −bτ)

]
.

Proof. According to the assumptions, it is easy to find

0 < τ �
∫

Ω
u2

r � σ . (3.2)
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Noticing that the constants a,b � 0 and the weight function ρ > 0, and utilizing

∫
Ω
|∇Hnur|2 �

[∫
Ω

u2
r

∫
Ω
(ΔHnur)2

] 1
2

�
[

σ
∫

Ω
(ΔHnur)2

] 1
2

, (3.3)

we know that
a2σ2 +4σ(Λr −bτ) � 0.

Substituting (3.3) into

Λr =
∫

Ω
ur(Δ2

Hnur −aΔHnur +bur) =
∫

Ω
(ΔHnur)2 +a

∫
Ω
|∇Hnur|2 +b

∫
Ω

u2
r ,

we have
(
∫

Ω
|∇Hnur|2)2 +aσ

∫
Ω
|∇Hnur|2 −σ(Λr −bτ) � 0. (3.4)

This is a quadratic inequality of
∫

Ω |∇Hnui|2 . Solving it, we conclude that
∫

Ω
|∇Hnur|2 � Er. (3.5)

Summing over i from 1 to n in (2.19), we have

n
k

∑
r=1

(Λk+1−Λr)2
∫

Ω
u2

r �
k

∑
r=1

1
2γr

(Λk+1 −Λr)
∫

Ω

1
ρ
|∇Hnur|2

+
k

∑
r=1

γr(Λk+1 −Λr)2
[
2(n+1)

∫
Ω
|∇Hnur|2 +na

∫
Ω

u2
r

]
.

(3.6)

Substituting (3.2) and (3.5) into (3.6), we arrive at

nτ
k

∑
r=1

(Λk+1 −Λr)2

�
k

∑
r=1

γr(Λk+1 −Λr)2
[
2(n+1)Er +naσ

]
+

1
2

σ
k

∑
r=1

1
γr

(Λk+1−Λr)Er.

(3.7)

Now we minimize the right side of (3.7). For this goal, putting

γr =
γ

2(n+1)Er +naσ

in (3.7), we have

nτ
k

∑
r=1

(Λk+1−Λr)2

�γ
k

∑
r=1

(Λk+1−Λr)2 +
1
γ

σ
k

∑
r=1

(Λk+1 −Λr)
[
(n+1)Er +

naσ
2

]
Er.

(3.8)
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Then putting

γ =
[ k

∑
r=1

(Λk+1−Λr)2
]− 1

2
{

σ
k

∑
r=1

(Λk+1 −Λr)
[
(n+1)Er +

naσ
2

]
Er

} 1
2

in (3.8), it yields inequality (3.1). This completes the proof of Theorem 3. �
Substituting (3.2) and (3.5) into (2.20), we can derive the following result:

THEOREM 4. Under the same assumptions as in Theorem 3, we have

k

∑
r=1

(Λk+1 −Λr)2

�σ 1
2

nτ

[ k

∑
r=1

(Λk+1 −Λr)Er

] 1
2
{ k

∑
r=1

(Λk+1 −Λr)2
[
4(n+1)Er +2naσ

]} 1
2

.

(3.9)

We can get an explicit upper bound of Λk+1 in terms of the first k eigenvalues
from (3.1). In fact, (3.1) is a quadratic inequality of Λk+1 . Solving it, we have the
following corollary:

COROLLARY 1. Under the same assumptions as in Theorem 3, we have

Λk+1 � Ak +
√

A2
k −Bk, (3.10)

where

Ak =
1
k

{ k

∑
r=1

Λr +
σ

n2τ2

k

∑
r=1

[
2(n+1)Er +naσ

]
Er

}
,

Bk =
1
k

{ k

∑
r=1

Λ2
r +

2σ
n2τ2

k

∑
r=1

Λr

[
2(n+1)Er +naσ

]
Er

}
.

4. Some inequalities for eigenvalues of problem (1.6)

A significance of the estimates in Section 3 lies in the convenience to get some
results for some special cases of problem (1.8). Here we only give some universal
inequalities and estimates for problem (1.6).

COROLLARY 2. Let Γr be the r -th eigenvalue of problem (1.6). Then we have

k

∑
r=1

(Γk+1−Γr)2 � 4(n+1)
n2

k

∑
r=1

(Γk+1 −Γr)Γr. (4.1)

COROLLARY 3. Under the same assumptions as in Corollary 2, we have

k

∑
r=1

(Γk+1 −Γr)2 � 2(n+1)
1
2

n

[ k

∑
r=1

(Γk+1 −Γr)Γ
1
2
r

k

∑
r=1

(Γk+1−Γr)2Γ
1
2
r

] 1
2

. (4.2)
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From Corollary 1 or Corollary 2, we can obtain an estimate for the upper bound
of Γk+1 in terms of the first k eigenvalues.

COROLLARY 4. Under the same assumptions as in Corollary 2, we have

Γk+1 �
[
1+

2(n+1)
n2

]
1
k

k

∑
r=1

Γr

+
{[

2(n+1)
n2

1
k

k

∑
r=1

Γr

]2

−
[
1+

4(n+1)
n2

]
1
k

k

∑
s=1

(Γs − 1
k

k

∑
r=1

Γr)2
} 1

2

.

(4.3)

Furthermore, a simpler bound can be derived by using the Cauchy-Schwarz in-
equality.

COROLLARY 5. Under the same assumptions as in Corollary 2, we have

Γk+1 �
(n+1

n

)2 1
k

k

∑
r=1

Γr. (4.4)

At the same time, an explicit estimate on the gap of any two consecutive eigenval-
ues of problem (1.6) can also be obtained.

COROLLARY 6. Under the same assumptions as in Corollary 2, we have

Γk+1 −Γk � 2

{[
2(n+1)

n2

1
k

k

∑
r=1

Γr

]2

−
(n+2

n

)2 1
k

k

∑
s=1

(Γs − 1
k

k

∑
r=1

Γr)2
} 1

2

. (4.5)

These results are sharper than (1.7).
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[16] P. C. NIU AND H. Q. ZHANG, Payne-Pólya-Weinberger type inequalities for eigenvalues of nonellip-
tic operators, Pacific J. Math. 208 (2003), 325–345 .
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