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QUADRATIC INEQUALITIES AND A
CHARACTERIZATION OF INNER PRODUCT
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Abstract. Let X be a real linear space and let @ € R, a # 0, be fixed. Assuming that the
functions g,k : X — R satisfy the inequalities g(ax+y) +h(x —ay) < a®g(x) + g(v) + h(x) +
2 ; ; 6 _
a*h(y) for all x,y € X, and some subhomogeneity type conditions, we prove that h = g, the
function g is a quadratic functional, and there exists a unique symmetric biadditive function
S: X% — R such that g(x) = S(x,x) forall x € X.
A motivation in the theory of orthogonal additive functions is presented.

1. Introduction

According to the well known Jordan and von Neumann Theorem [4], a linear
normed space (X, ||-]|) is an inner product space iff the function g := ||-||* satisfies the
parallelogram equality

glx+y)+glx—y)=2g(x)+28(y), xyeX.

This equation is also referred to as a quadratic functional equation (cf. for instance
J. Dhombres, J. Aczél [1]). M.M. Day [3] proved that this result remains true if the
parallelogram equality is replaced by the inequality in either direction (cf. also D. Amir
[2], p- 47).

In this paper we consider the functional inequalities of the form

glax+y) +h(x—ay) < a’g(x) +g(y) + h(x) + a*h(y)

where g,h: X — R are unknown functions and a is a fixed real parameter. In a very
special case, when h = g and a = 1, this inequality reduces to the inequality

glx+y)+glx—y) <2g(x) +2g(y).

Applying Theorem | with @ =1 we obtain the following result. Let X be a real linear
space. If the functions g,/h: X — R satisfy the inequality

gx+y)+h(x—y) <gx)+g(y) +hx)+hly), xyeX,
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g is even, and 4g(x) < g(2x), 4h(x) < h(2x) for all x € X, then h =g and g is
a quadratic functional; moreover there exists a unique symmetric biadditive function
S:X — R such that g(x) = S(x,x) for all x € X. If g satisfies some weak regularity
conditions then S is bilinear, and in the case when g > 0, the function ||-||: X — R
defined by ||x|| := /g(x) is a seminorm in X (Theorem 2). Moreover, if g(x) # 0 for
x# 0, then § is an inner product and ||-|| is a norm generated by S.

To give a motivation denote by (-|-) the usual inner product in R?. Suppose that
F : R? — R is orthogonally additive, i.e. such that

ulv=Fu+v)=F(u)+F(v), u,veR",

where ulv denotes that (u|v) = 0. Put e¢; := (1,0), e; := (0,1) and define g,h :
R—R by
g(t) :=F(t,0), h(t) == F(0,1), teR.

Since for any x,y € R, the vectors xe; and ye; are orthogonal, we have
F((x,y)) = F(xe1 +yez) = F(xe1) + F(yez) = g(x) + h(y)

for all x,y. Let us fix a € R, a # 0. Since for any x,y € R the vectors (ax,—ay) and
(y,x) are orthogonal, we have

glax+y) +h(x —ay) =F(ax+y,x — ay) = F((ax, —ay) + (,x)) =
= F((ax, —ay)) + F(y,x)) = g(ax) + h(—ay) +8(y) +h(x).
Hence, if & is even and g(ax) < a’g(x), h(ax) < a®h(x), we obtain the above inequal-

ity. In the last section we show that the power 2 occurring in these inequalities cannot
be replaced by a different one.

2. Results
We begin with the following

PROPOSITION 1. Let X be a real linear space and let a € R, a # 0, be fixed. If
the functions g,h : X — R satisfy the inequalities

glax+y) +h(x—ay) < a’g(x) +g(y) + h(x) + ah(y), x,y€X, (1)
(ax+y)+g( ay) < a*h(x)+h(y) +g(x) +a’g(y), x,y€X, )
(1+a*)? <g((1+ x), (1—|—a2)2h(x)<h((l—|—a2)x), xeX, @
then
h=g,

and g satisfies the functional equation

glax+y)+g(x—ay)=(1+a>)g(x)+g(v)], xyeX. 4)
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Proof. Replacing x by ax+y and y by x —ay in (1), we obtain
g((1 —|—a2)x) +h((1 —|—a2)y)
<d[g(ax+y) +h(x—ay)] +hax+y) +glx - ay),
for all x,y € X. Hence, by (3), (1) and (2),
(1+a® g (x) +h(y)]
<a?[a’g(x) +g(y) +h(x) +@h(y)] + a*h(x) + h(y) +g(x) + a8 (),
for all x,y € X, which reduces to the inequality
h(y)—g(y) <h(x)—glx),  xyeX.

It follows that 7 — g = ¢ for some ¢ € R. Setting x =y =0 in (1) and (3) gives,
respectively, g(0) +(0) > 0, and g(0) <0, /#(0) <0, whence ¢ = 0. Consequently
h =g and, by (1),

glax+y) +glx—ay) < (1+a”)[gx) +g0)],  xyeX. 5)

Replacing in this inequality x by ax+y and y by x —ay we get
g((L+a®)x) +g((1+a’)y) < (1+d”)[glax+y) +g(x—ay)l, xyeX,
whence, by (3),
(1+a*)?[g(x) + 8] < (1 +a)[g(ax+y) +g(x—ay)], xyeX,

and, consequently,

(1+a”)[g(x) +g0)] < glax+y) +glx—ay),  xyeX. (6)
Now (5) and (6) imply that

glax+y) +glx—ay)= (1+a’)gx) +g0)],  xyeX,
which completes the proof. [

Applying Proposition 1 with 7 = g we obtain

COROLLARY 1. Let X be a real linear space and let a € R, a # 0, be fixed. If a
function g : X — R satisfies the inequalities

glax+y)+g(x—ay) < (a®+1)[gx) +g()], xyEX,

(1+a*)g(x) Sg((l—kaz)x), xeX,

then
glax+y)+g(x—ay)=(1+a>)g(x)+g(v)], xyeX.



574 JANUSZ MATKOWSKI

PROPOSITION 2. Let X be a real linear space and let a € R, a # 0, be fixed. If
the functions g,h : X — R are even and satisfy the inequalities

glax+y) +h(x—ay) < a’g(x) +g(y) + h(x) + ah(y), x,y€X,

(1+a*)’g(x) <g((1+a*)x), (1+a*)?h(x)<h((1+d*)x), x€X,

then
h=g,

and g satisfies the functional equation
glax+y)+g(x—ay) = (1+a*)[g(x) +g()], xyeX.

Proof. Replacing x by y and y by —x in the first of the assumed inequalities we
obtain

glay—x) +h(y+ax) <a’g(y) +g(—x) +h(y) + a’h(—x), xyeX
As g and h are even, we hence get
h(ax+y) +g(x —ay) < a*h(x) + h(y) + g(x) + a’g(y), x,yE€X.

Thus g and £ satisfy all the assumptions of Proposition 1. [

PROPOSITION 3. Let X be a real linear space and let a € R, a # 0, be fixed. If
the functions g,h : X — R satisfy the inequalities

glax+y) +h(x—ay) < a’g(x) +g(y) + h(x) +a’h(y), xy€X,
(1+a*)?g(x) <g((1+ddx), (1+a*)*h(x)<h((1+d>)x), x€X,
a®h(x) < h(ax), xeX,

and g is even, then
h=g,

and g satisfies the functional equation
glax+y)+g(x—ay)=(1+a*)[g(x) +g()], xyeX.

Proof. In the same way as in the proof of Proposition 1 we can show that g(0) =
h(0) = 0. Setting x = 0 in the first of assumed inequalities we get

h(—ay) <a’h(y), yeX.

Since a’h(x) < h(ax) for all x € X, we hence get a’h(—y) < a®h(y) for all y € X,
whence
h(=y) <h(y), yeX.

Replacing y by —y gives the opposite inequality and proves that / is even. Now the
result follows from Proposition 2. [
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REMARK 1. If g = ||-|* where |-|| is a seminorm in X, then inequalities (3) are
satisfied.

PROPOSITION 4. Let X be a real linear space. If the functions g,h: X — R
satisfy the inequality
glx+y) +h(x—y) <glx)+8(y) +hlx)+h(y), xyeX,
4g(x) < g(2x), 4h(x) < h(2x), xeX,

and g is even, then
h=g,

and g is a quadratic functional, that is

glx+y) +glx—y)=2g(x)+2¢(y), xyeX.

Proof. 1t is easy to check that g(0) = h(0) = 0. Setting x = 0 in the first of the
assumed inequalities we get

h(=y) <h(y), ye€X,

which implies that % is even. Now it enough to apply Proposition 2 with a=1. U

As a special case of a more general result (cf. for instance [5], Theorem 9.5) we
have the following

LEMMA 1. Assume that X is a real linear space, n € N a fixed positive integer
and ap,by € R, k=0,...,n, suchthat by -...-b, # 0. If the functions f, fo,f1,---,fn:
X — R satisfy the functional equation

f(x)Zka(akx+bky)7 x,yeX,
k=0

then f is a generalized polynomial of degree at most n, i.e., there exist a unique con-
stant Ag € R and unique symmetric k-additive functions Ay : X* - R for k=1,....,n
such that

f(x):ZAk(x7...,x), xeX.
k=0
Now we prove the following
THEOREM 1. Let X be a real linear space, a € R, a #0, be fixed, and g,h: X —
Suppose that
(i) the triple (g,h,a) satisfies the assumptions of one of Propositions 1-3;

Then
h=g;
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the function g is a quadratic functional, i.e.
gx+y)+8lx—y)=2¢(x)+2¢(y), xyeX;
and there exists a unique symmetric biadditive function S : X*> — R such that
g(x) = S(x,x), xeX,

and
S(ax,y) = S(x,ay), S(ax,ax) = azS()c,x)7 x,y€eX. (7)

Proof. By (i) the functions g,h and the number a satisfy the assumptions of

Proposition j for some j € {1,2,3}. Applying Proposition j, we infer that h = g
and g satisfies equation (4), that is

glax+y)+g(x—ay)=(1+a)[g(x)+g(y), xyEX,

whence

gx)= g(ax+y)+ glx—ay)—g(y), xyeX.

a’+1 a?+1

Since a #0, by Lemma 1, the function ¢ must be a generalized polynomial of degree at
most 2, i.e., there exist a unique constant ¢ € R, a unique additive function A : X — R,
and a unique symmetric biadditive function S : X? — R such that

gx)=c+A(Xx)+S(x,x), xeX. (8)
Setting this function into equation (4) gives

c+A(ax+y)+S(ax+y,ax+y)|+c+Ax—ay)+S(x—ay,x—ay)] (9
= (1+a) {[c+AX)+Sxx)]+[c+AY) +S3Y)]}

forall x,y € X.
Setting here x = y = 0 and taking into account that A (0) = S(0,0) =0, we hence
get 2c = 2¢ (14 a*), whence, as a # 0, we obtain

c=0. (10)
From (9) and (10), as S is biadditive, we get

Aax+y)+A(x—ay)— (1 —|—a2) [A(x)+A()]

=a*[S (x,x) + 5 (.)] = § (ax,ax) - S (ay,ay) (11)
—S(ax,y) — S (y,ax) + S (x,ay) + S (ay,x)

forall x,y € X.
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Onreplacing x by —x and y by —y, the right-hand side remains unchanged, while,
by the oddness of A, the left-hand side changes its sign. It follows that
Alax+y)+A(x—ay)— (1+a®) [A(x) +A())] =0, xy€EX. (12)
Since A (0) = 0, setting here y = 0, we get
Alax) =d*A(x), x€X,
whence, by the additivity of A, from (12) we obtain 2a’A (y) = 0 forall y € X, i.e.
A=0. 13)
From (8), (10) and (13) we obtain
glx)=S(xx), xeX,
which proves that g is a quadratic function, that is that
glr+y)+g(x—y)=2¢(x)+2¢(y)=0, xyeX.
From (11) and (13), by the symmetry of S, we get
@[S (x,x) + S (,y)] — S (ax,ax) — S (ay,ay) = 2[S (x,ay) — S (ax,y)] (14)

forall x,y € X.
Setting here y = x we get (by the symmetry of S),

S(ax,ax) = a*S (x,x), x€X,
whence, applying (14),

S(x,ay) =S (ax,y), x,yeX.
This completes the proof. [

Taking a = 1 in Theorem 1 and applying Proposition 4 we obtain

COROLLARY 2. Let X be areal linear space. If the functions g,h: X — R satisfy
the inequalities

gx+y)+h(x—y) <glx) +g(y) +hlx)+hr(y), xyeX, (15)
4g(x) < g(2x), 4h(x) < h(2x), xeX,

and g is even, then
h=g,

g is a quadratic functional, i.e.
gx+y)+elr—y)=2¢(x)+2¢(y), xyeX,
and there exists a unique symmetric biadditive function S : X* — R such that

g(x) = S(x,x), xeX.
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Proof. The assumed inequalities imply that g(0) = A(0) = 0. Setting x =0 in (15)
gives h(—y) < h(y) for all y € X, which obviously implies that % is even. Since, by
assumption, g is even, replacing in (15) y by —y we get

gx—y) +h(x+y) <g(x) +8(=y) +hlx) +h(-y),  xyeX,
and, consequently,

gx—y)+h(x+y) <glx)+g(y)+h(x)+hly), xyeX.

Now the result follows from Proposition 4 and Theorem 1. [

REMARK 2. Theorem 1 as well as all other results remain true if the assumed
inequalities are reversed.

THEOREM 2. Let X be a real linear space and let a € R, a+# 0, be fixed. Suppose
that the functions g,h : X — R satisfy all the conditions of Theorem 1.

If for any x € X\{0} and for any y € X, there exists a subset Iy of a positive
Lebesgue measure in R and a positive constant M, such that

|g(rx+Y)|<MX,ya rel,

then h = g, where g is a quadratic functional, and there exists a unique symmetric
bilinear function S : X*> — R such that

g(x) = S(x,x), xeX.
If, moreover, g > 0 then ||-|| : X — R defined by
||| := /S (x,x) xeX,

is a seminorm in X .

Proof. By Theorem 1 we have & = g and there is a biadditive function S: X> — R
such that g(x) = S(x,x) forall x € X. For x,y € X, x#0,define f:R— R by f(A):=
S(Ax,y), A € R. The biadditivity of S implies that f is additive. From the definition
of S and the assumption we get

1 1
A< 7 (8(Ax+y)+lgAx—y))) < 3 (Mey+Myy), A€l

that is f is bounded on a set of positive Lebesgue measure. Thus (cf. for instance [1],
p. 15) f(t) =Af(1) forall A € R,i.e. S(Ax,y) = AS(x,y) forall A € R, which proves
that § is bilinear.

Now the “moreover” statement is obvious. [J
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3. Final remarks

PROPOSITION 5. Let X be a real linear space and let p,q € R be fixed. Suppose
that the functions g,h : X — R satisfy the inequalities

glax+y) +h(x—ay) < a’g(x) +g(y) +h(x) +a’h(y), x,yeX, (16)
h(ax+y) +g(x—ay) <a’h(x) +h(y) +g(x) +a’8(y), xyeX, (17)
(1+a*)7g(x) <g((1—|—a2)x), (14 a®)7h(x) Sh((l—l—az)x), x€X, (18)

for a =1 and for some a >0, a # 1. If the function g+ h takes both positive and
negative values, then p =q =72.

Proof. Replacing x by ax+y and y by x—ay in (16) and then applying (17), (18)
and again (17), we obtain

g ((1 —|—a2)x) +h ((1 +a2)y)
< a’[glax+y) +h(x—ay)]+h(ax+y) + g(x—ay),

for all x,y € X. Hence, by (3), (1) and (2),
(1+a*)g (x) +h ()] < (@ + 1)[g(x) +h(y)] +2a"[h(x) + ()],
for all x,y € X . Interchanging x and y we get
(1+a*)g (v) +h ()] < (@ + 1) [g(v) +h(x)] +2a"[h(y) + g (x)],
for all x,y € X. Adding these inequalities by sides gives
[(1+a®)7 = (a” + 1)*][g (x) +h(x) +5(y) +h ()] <O,
for all x,y € X. Since g+ h takes both positive and negative values, we infer that

(14+a?)?— (a?+1)* = 0. Taking a = 1 we get ¢ = 2. Now, taking a >0, a # 1, we
get (1+a*)? = (a? + 1) whence p =2 follows. [

REMARK 3. Proposition 5 explains why in the inequalities (1), (2), (3), as well as
in some other inequalities, the numbers a®> and (1 +a?)? appear.

REMARK 4. If r = p in (16)-(18) then the assumption that the range of the func-
tions contains positive as well as negative numbers can be omitted.
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