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Abstract. Let X be a real linear space and let a ∈ R , a �= 0, be fixed. Assuming that the
functions g,h : X → R satisfy the inequalities g(ax+ y)+ h(x− ay) � a2g(x)+ g(y)+ h(x)+
a2h(y) for all x,y ∈ X , and some subhomogeneity type conditions, we prove that h = g, the
function g is a quadratic functional, and there exists a unique symmetric biadditive function
S : X2 → R such that g(x) = S(x,x) for all x ∈ X .

A motivation in the theory of orthogonal additive functions is presented.

1. Introduction

According to the well known Jordan and von Neumann Theorem [4], a linear
normed space (X ,‖·‖) is an inner product space iff the function g := ‖·‖2 satisfies the
parallelogram equality

g(x+ y)+g(x− y)= 2g(x)+2g(y), x,y ∈ X .

This equation is also referred to as a quadratic functional equation (cf. for instance
J. Dhombres, J. Aczél [1]). M.M. Day [3] proved that this result remains true if the
parallelogram equality is replaced by the inequality in either direction (cf. also D. Amir
[2], p. 47).

In this paper we consider the functional inequalities of the form

g(ax+ y)+h(x−ay)� a2g(x)+g(y)+h(x)+a2h(y)

where g,h : X → R are unknown functions and a is a fixed real parameter. In a very
special case, when h = g and a = 1, this inequality reduces to the inequality

g(x+ y)+g(x− y)� 2g(x)+2g(y).

Applying Theorem 1 with a = 1 we obtain the following result. Let X be a real linear
space. If the functions g,h : X → R satisfy the inequality

g(x+ y)+h(x− y)� g(x)+g(y)+h(x)+h(y), x,y ∈ X ,
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g is even, and 4g(x) � g(2x) , 4h(x) � h(2x) for all x ∈ X , then h = g and g is
a quadratic functional; moreover there exists a unique symmetric biadditive function
S : X → R such that g(x) = S(x,x) for all x ∈ X . If g satisfies some weak regularity
conditions then S is bilinear, and in the case when g � 0, the function ‖·‖ : X → R

defined by ‖x‖ :=
√

g(x) is a seminorm in X (Theorem 2). Moreover, if g(x) �= 0 for
x �= 0 , then S is an inner product and ‖·‖ is a norm generated by S.

To give a motivation denote by (·|·) the usual inner product in R
2. Suppose that

F : R
2 → R is orthogonally additive, i.e. such that

u⊥v ⇒ F(u+ v) = F(u)+F(v), u,v ∈ R
n,

where u⊥v denotes that (u|v) = 0. Put e1 := (1,0), e2 := (0,1) and define g,h :
R → R by

g(t) := F(t,0), h(t) := F(0,t), t ∈ R.

Since for any x,y ∈ R , the vectors xe1 and ye2 are orthogonal, we have

F((x,y)) = F(xe1 + ye2) = F(xe1)+F(ye2) = g(x)+h(y)

for all x,y. Let us fix a ∈ R , a �= 0. Since for any x,y ∈ R the vectors (ax,−ay) and
(y,x) are orthogonal, we have

g(ax+ y)+h(x−ay)= F(ax+ y,x−ay) = F((ax,−ay)+ (y,x)) =
= F((ax,−ay))+F(y,x)) = g(ax)+h(−ay)+g(y)+h(x).

Hence, if h is even and g(ax) � a2g(x), h(ax) � a2h(x), we obtain the above inequal-
ity. In the last section we show that the power 2 occurring in these inequalities cannot
be replaced by a different one.

2. Results

We begin with the following

PROPOSITION 1. Let X be a real linear space and let a ∈ R , a �= 0, be fixed. If
the functions g,h : X → R satisfy the inequalities

g(ax+ y)+h(x−ay)� a2g(x)+g(y)+h(x)+a2h(y), x,y ∈ X , (1)

h(ax+ y)+g(x−ay)� a2h(x)+h(y)+g(x)+a2g(y), x,y ∈ X , (2)

(1+a2)2g(x) � g
(
(1+a2)x

)
, (1+a2)2h(x) � h

(
(1+a2)x

)
, x ∈ X , (3)

then
h = g,

and g satisfies the functional equation

g(ax+ y)+g(x−ay)= (1+a2)[g(x)+g(y)], x,y ∈ X . (4)
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Proof. Replacing x by ax+ y and y by x−ay in (1), we obtain

g
(
(1+a2)x

)
+h

(
(1+a2)y

)

�a2[g(ax+ y)+h(x−ay)]+h(ax+ y)+g(x−ay),

for all x,y ∈ X . Hence, by (3), (1) and (2),

(1+a2)2[g(x)+h(y)]

�a2[a2g(x)+g(y)+h(x)+a2h(y)]+a2h(x)+h(y)+g(x)+a2g(y),

for all x,y ∈ X , which reduces to the inequality

h(y)−g(y) � h(x)−g(x), x,y ∈ X .

It follows that h− g = c for some c ∈ R. Setting x = y = 0 in (1) and (3) gives,
respectively, g(0)+ h(0) � 0, and g(0) � 0, h(0) � 0, whence c = 0. Consequently
h = g and, by (1),

g(ax+ y)+g(x−ay)� (1+a2)[g(x)+g(y)], x,y ∈ X . (5)

Replacing in this inequality x by ax+ y and y by x−ay we get

g((1+a2)x)+g((1+a2)y) � (1+a2)[g(ax+ y)+g(x−ay)], x,y ∈ X ,

whence, by (3),

(1+a2)2[g(x)+g(y)] � (1+a2)[g(ax+ y)+g(x−ay)], x,y ∈ X ,

and, consequently,

(1+a2)[g(x)+g(y)] � g(ax+ y)+g(x−ay), x,y ∈ X . (6)

Now (5) and (6) imply that

g(ax+ y)+g(x−ay)= (1+a2)[g(x)+g(y)], x,y ∈ X ,

which completes the proof. �
Applying Proposition 1 with h = g we obtain

COROLLARY 1. Let X be a real linear space and let a ∈ R , a �= 0, be fixed. If a
function g : X → R satisfies the inequalities

g(ax+ y)+g(x−ay)� (a2 +1)[g(x)+g(y)], x,y ∈ X ,

(1+a2)2g(x) � g
(
(1+a2)x

)
, x ∈ X ,

then
g(ax+ y)+g(x−ay)= (1+a2)[g(x)+g(y)], x,y ∈ X .
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PROPOSITION 2. Let X be a real linear space and let a ∈ R , a �= 0, be fixed. If
the functions g,h : X → R are even and satisfy the inequalities

g(ax+ y)+h(x−ay)� a2g(x)+g(y)+h(x)+a2h(y), x,y ∈ X ,

(1+a2)2g(x) � g
(
(1+a2)x

)
, (1+a2)2h(x) � h

(
(1+a2)x

)
, x ∈ X ,

then
h = g,

and g satisfies the functional equation

g(ax+ y)+g(x−ay)= (1+a2)[g(x)+g(y)], x,y ∈ X .

Proof. Replacing x by y and y by −x in the first of the assumed inequalities we
obtain

g(ay− x)+h(y+ax)� a2g(y)+g(−x)+h(y)+a2h(−x), x,y ∈ X

As g and h are even, we hence get

h(ax+ y)+g(x−ay)� a2h(x)+h(y)+g(x)+a2g(y), x,y ∈ X .

Thus g and h satisfy all the assumptions of Proposition 1. �

PROPOSITION 3. Let X be a real linear space and let a ∈ R , a �= 0, be fixed. If
the functions g,h : X → R satisfy the inequalities

g(ax+ y)+h(x−ay)� a2g(x)+g(y)+h(x)+a2h(y), x,y ∈ X ,

(1+a2)2g(x) � g
(
(1+a2)x

)
, (1+a2)2h(x) � h

(
(1+a2)x

)
, x ∈ X ,

a2h(x) � h(ax), x ∈ X ,

and g is even, then
h = g,

and g satisfies the functional equation

g(ax+ y)+g(x−ay)= (1+a2)[g(x)+g(y)], x,y ∈ X .

Proof. In the same way as in the proof of Proposition 1 we can show that g(0) =
h(0) = 0. Setting x = 0 in the first of assumed inequalities we get

h(−ay) � a2h(y), y ∈ X .

Since a2h(x) � h(ax) for all x ∈ X , we hence get a2h(−y) � a2h(y) for all y ∈ X ,
whence

h(−y) � h(y), y ∈ X .

Replacing y by −y gives the opposite inequality and proves that h is even. Now the
result follows from Proposition 2. �
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REMARK 1. If g = ‖·‖2 where ‖·‖ is a seminorm in X , then inequalities (3) are
satisfied.

PROPOSITION 4. Let X be a real linear space. If the functions g,h : X → R

satisfy the inequality

g(x+ y)+h(x− y)� g(x)+g(y)+h(x)+h(y), x,y ∈ X ,

4g(x) � g(2x) , 4h(x) � h(2x) , x ∈ X ,

and g is even, then
h = g,

and g is a quadratic functional, that is

g(x+ y)+g(x− y)= 2g(x)+2g(y), x,y ∈ X .

Proof. It is easy to check that g(0) = h(0) = 0. Setting x = 0 in the first of the
assumed inequalities we get

h(−y) � h(y), y ∈ X ,

which implies that h is even. Now it enough to apply Proposition 2 with a = 1. �
As a special case of a more general result (cf. for instance [5], Theorem 9.5) we

have the following

LEMMA 1. Assume that X is a real linear space, n ∈ N a fixed positive integer
and ak,bk ∈ R , k = 0, . . . ,n, such that b1 · . . . ·bn �= 0. If the functions f , f0, f1, . . . , fn :
X → R satisfy the functional equation

f (x) =
n

∑
k=0

fk (akx+bky) , x,y ∈ X ,

then f is a generalized polynomial of degree at most n, i.e., there exist a unique con-
stant A0 ∈ R and unique symmetric k -additive functions Ak : Xk → R for k = 1, . . . ,n
such that

f (x) =
n

∑
k=0

Ak (x, . . . ,x) , x ∈ X .

Now we prove the following

THEOREM 1. Let X be a real linear space, a∈R , a �= 0, be fixed, and g,h : X →
R .

Suppose that
(i) the triple (g,h,a) satisfies the assumptions of one of Propositions 1-3;
Then

h = g;
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the function g is a quadratic functional, i.e.

g(x+ y)+g(x− y)= 2g(x)+2g(y), x,y ∈ X ;

and there exists a unique symmetric biadditive function S : X2 → R such that

g(x) = S(x,x), x ∈ X ,

and
S(ax,y) = S(x,ay), S(ax,ax) = a2S(x,x), x,y ∈ X . (7)

Proof. By (i) the functions g,h and the number a satisfy the assumptions of
Proposition j for some j ∈ {1,2,3}. Applying Proposition j , we infer that h = g
and g satisfies equation (4), that is

g(ax+ y)+g(x−ay)= (1+a2)[g(x)+g(y)], x,y ∈ X ,

whence

g(x) =
1

a2 +1
g(ax+ y)+

1
a2 +1

g(x−ay)−g(y) , x,y ∈ X .

Since a �= 0, by Lemma 1, the function g must be a generalized polynomial of degree at
most 2, i.e., there exist a unique constant c ∈ R , a unique additive function A : X → R ,
and a unique symmetric biadditive function S : X2 → R such that

g(x) = c+A(x)+S (x,x) , x ∈ X . (8)

Setting this function into equation (4) gives

[c+A(ax+ y)+S (ax+ y,ax+ y)]+ [c+A(x−ay)+S (x−ay,x−ay)] (9)

=
(
1+a2){[c+A(x)+S (x,x)]+ [c+A(y)+S (y,y)]}

for all x,y ∈ X .
Setting here x = y = 0 and taking into account that A(0) = S (0,0) = 0, we hence

get 2c = 2c
(
1+a2

)
, whence, as a �= 0, we obtain

c = 0. (10)

From (9) and (10), as S is biadditive, we get

A(ax+ y)+A(x−ay)− (
1+a2) [A(x)+A(y)]

=a2 [S (x,x)+S (y,y)]−S (ax,ax)−S (ay,ay) (11)

−S (ax,y)−S (y,ax)+S (x,ay)+S (ay,x)

for all x,y ∈ X .
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On replacing x by −x and y by −y, the right-hand side remains unchanged, while,
by the oddness of A, the left-hand side changes its sign. It follows that

A(ax+ y)+A(x−ay)− (
1+a2) [A(x)+A(y)] = 0, x,y ∈ X . (12)

Since A(0) = 0, setting here y = 0 , we get

A(ax) = a2A(x) , x ∈ X ,

whence, by the additivity of A, from (12) we obtain 2a2A(y) = 0 for all y ∈ X , i.e.

A = 0. (13)

From (8), (10) and (13) we obtain

g(x) = S (x,x) , x ∈ X ,

which proves that g is a quadratic function, that is that

g(x+ y)+g(x− y) = 2g(x)+2g(y) = 0, x,y ∈ X .

From (11) and (13), by the symmetry of S, we get

a2 [S (x,x)+S (y,y)]−S (ax,ax)−S (ay,ay) = 2 [S (x,ay)−S (ax,y)] (14)

for all x,y ∈ X .
Setting here y = x we get (by the symmetry of S),

S (ax,ax) = a2S (x,x) , x ∈ X ,

whence, applying (14),

S (x,ay) = S (ax,y) , x,y ∈ X .

This completes the proof. �
Taking a = 1 in Theorem 1 and applying Proposition 4 we obtain

COROLLARY 2. Let X be a real linear space. If the functions g,h : X → R satisfy
the inequalities

g(x+ y)+h(x− y)� g(x)+g(y)+h(x)+h(y), x,y ∈ X , (15)

4g(x) � g(2x) , 4h(x) � h(2x), x ∈ X ,

and g is even, then
h = g,

g is a quadratic functional, i.e.

g(x+ y)+g(x− y)= 2g(x)+2g(y), x,y ∈ X ,

and there exists a unique symmetric biadditive function S : X2 → R such that

g(x) = S(x,x), x ∈ X .
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Proof. The assumed inequalities imply that g(0) = h(0) = 0. Setting x = 0 in (15)
gives h(−y) � h(y) for all y ∈ X , which obviously implies that h is even. Since, by
assumption, g is even, replacing in (15) y by −y we get

g(x− y)+h(x+ y)� g(x)+g(−y)+h(x)+h(−y), x,y ∈ X ,

and, consequently,

g(x− y)+h(x+ y)� g(x)+g(y)+h(x)+h(y), x,y ∈ X .

Now the result follows from Proposition 4 and Theorem 1. �

REMARK 2. Theorem 1 as well as all other results remain true if the assumed
inequalities are reversed.

THEOREM 2. Let X be a real linear space and let a∈R , a �= 0, be fixed. Suppose
that the functions g,h : X → R satisfy all the conditions of Theorem 1.

If for any x ∈ X\{0} and for any y ∈ X , there exists a subset Ix of a positive
Lebesgue measure in R and a positive constant Mx,y such that

|g(rx+ y)| � Mx,y, r ∈ Ix,

then h = g, where g is a quadratic functional, and there exists a unique symmetric
bilinear function S : X2 → R such that

g(x) = S(x,x), x ∈ X .

If, moreover, g � 0 then ‖·‖ : X → R defined by

‖x‖ :=
√

S(x,x) x ∈ X ,

is a seminorm in X .

Proof. By Theorem 1 we have h = g and there is a biadditive function S : X2 →R

such that g(x) = S(x,x) for all x∈ X . For x,y∈X , x �= 0,define f : R→R by f (λ ) :=
S(λx,y), λ ∈ R . The biadditivity of S implies that f is additive. From the definition
of S and the assumption we get

| f (λ )| � 1
4

(|g(λx+ y)|+ |g(λx− y)|) � 1
4

(Mx,y +Mx,−y) , λ ∈ Ix,

that is f is bounded on a set of positive Lebesgue measure. Thus (cf. for instance [1],
p. 15) f (t) = λ f (1) for all λ ∈ R , i.e. S(λx,y) = λS(x,y) for all λ ∈ R , which proves
that S is bilinear.

Now the “moreover” statement is obvious. �
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3. Final remarks

PROPOSITION 5. Let X be a real linear space and let p,q ∈ R be fixed. Suppose
that the functions g,h : X → R satisfy the inequalities

g(ax+ y)+h(x−ay)� apg(x)+g(y)+h(x)+aph(y), x,y ∈ X , (16)

h(ax+ y)+g(x−ay)� aph(x)+h(y)+g(x)+apg(y), x,y ∈ X , (17)

(1+a2)qg(x) � g
(
(1+a2)x

)
, (1+a2)qh(x) � h

(
(1+a2)x

)
, x ∈ X , (18)

for a = 1 and for some a > 0, a �= 1. If the function g + h takes both positive and
negative values, then p = q = 2 .

Proof. Replacing x by ax+y and y by x−ay in (16) and then applying (17), (18)
and again (17), we obtain

g
(
(1+a2)x

)
+h

(
(1+a2)y

)

� a2[g(ax+ y)+h(x−ay)]+h(ax+ y)+g(x−ay),

for all x,y ∈ X . Hence, by (3), (1) and (2),

(1+a2)q[g(x)+h(y)] � (a2p +1)[g(x)+h(y)]+2ap[h(x)+g(y)],

for all x,y ∈ X . Interchanging x and y we get

(1+a2)q[g(y)+h(x)] � (a2p +1)[g(y)+h(x)]+2ap[h(y)+g(x)],

for all x,y ∈ X . Adding these inequalities by sides gives

[(1+a2)q − (ap +1)2][g(x)+h(x)+g(y)+h(y)] � 0,

for all x,y ∈ X . Since g + h takes both positive and negative values, we infer that
(1+a2)q − (ap +1)2 = 0. Taking a = 1 we get q = 2. Now, taking a > 0, a �= 1, we
get (1+a2)2 = (ap +1) whence p = 2 follows. �

REMARK 3. Proposition 5 explains why in the inequalities (1), (2), (3), as well as
in some other inequalities, the numbers a2 and (1+a2)2 appear.

REMARK 4. If r = p in (16)-(18) then the assumption that the range of the func-
tions contains positive as well as negative numbers can be omitted.
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[1] J. ACZÉL & J. DHOMBRES, Functional equations in several variables, Encyclopedia of Mathematics
and its Applications, Cambridge University Press, Cambridge-New York-New Rochelle-Melbourne-
Sydney, 1989.

[2] D. AMIR, Characterization of inner product spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.
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