
Mathematical
Inequalities

& Applications

Volume 15, Number 3 (2012), 581–590 doi:10.7153/mia-15-51

A NOTE ON STOLARSKY, ARITHMETIC AND LOGARITHMIC MEANS

VANIA MASCIONI

(Communicated by Z. Páles)

Abstract. We present a way to study differences of some Stolarsky means as a way to discover
new inequalities, or place known inequalities in a wider context. In particular, as an application
we prove a very sharp upper bound for the difference between the arithmetic and the logarithmic
means of two positive numbers.

1. Introduction and main results

Alomari, Darus and Dragomir [1], as an application of Hadamard-Hermite type
inequalities, give some estimates for the difference between some generalized logarith-
mic means and power means (see Propositions 1, 2, and 3 in [1]). For example, they
prove ∣∣∣∣ bn+1−an+1

(n+1)(b−a)
− an +bn

2

∣∣∣∣� n(n−1)
12

(b−a)2 max{|a|n−2, |b|n−2},

where a < b are real and n � 2 is an integer. This inequality is very sharp, though the
authors do not specify if constants such as 12 are best possible. In our Theorem 2 below
(see part (c) in reference to the example we just quoted) we extend these inequalities
to the full range of powers p ∈ R , thus showing interesting reversals and changes that
occur when p falls in certain intervals, besides putting this kind of result in a broader,
perhaps more natural context (our proofs also show that the inequalities given here are
optimal within their natural category).

The broader context we suggest is the one provided by the large family of Sto-
larsky means (or difference means, as they are sometimes called — see below for the
definitions). With the notation to be introduced in Definition 1, the general idea is to
study differences of powers

Sp
(a,b)−Sq

(c,d)

of Stolarsky means for various parameters a,b,c,d, p,q , and derive inequalities for
them. To carry out the general program at once seems prohibitive because of the nature
of the calculations involved, but a large variety of special cases appear feasible and can
lead to new discoveries.
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On top of the example mentioned at the start, as an illustration of this method we
will prove Theorem 5, which in turn will produce a very sharp and unusual looking
upper bound for the difference between the arithmetic and the logarithmic means of
two positive numbers (see Theorem 8).

DEFINITION 1. For p,q ∈ R , q �= −1 and x �= y in R
+ we define the Stolarsky

mean of x and y by

S(p,q)(x,y) :=
(q(xp− yp)

p(xq − yq)

)1/(p−q)

(see [9, 10]). This notion offers the chance to unify an astonishing array of previously
known averages and means at the price of the introduction of more parameters, and
thus losing some transparency. In applications we are often interested in several special
cases. For example, taking the limit q → 0 we set

S(p,0)(x,y) :=
( xp− yp

ln(xp)− ln(yp)

) 1
p = L0(xp,yp)

1
p

(see further below for the definition of L0 ). Also, taking the limit q → p we set

S(p,p)(x,y) := exp
(xp lnx− yp lny

xp− yp − 1
p

)
,

Note that limp→0 S(p,p)(x,y) =
√

xy , which is the familiar geometric mean of x and y .
Often the special case S(p,1) (where we set q = 1) is considered, and is referred to

as the generalized logarithmic mean of x and y . The specialized notation then becomes

Lp(x,y) :=
( xp − yp

p(x− y)

)1/(p−1)

for p �∈ {0,1} , and (taking the limit p → 1)

L1(x,y) :=
1
e

(xx

yy

) 1
x−y

(the latter being the so-called identric mean of x and y). Taking the limit p → 0 we
also set

L0(x,y) :=
x− y

lnx− lny
,

which is the familiar logarithmic mean of x and y . Note that L−1(x,y) is again the
geometric mean of x and y . Other special cases of interest are

L2(xp,yp) = Mp(x,y)p,

L−∞(x,y) = min{x,y} = M−∞(x,y),

L∞(x,y) = max{x,y} = M∞(x,y),
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where of course the Mp(x,y) are the very familiar power means of x and y . Further, we
note that we can also obtain these power means with a different choice of parameters,
namely

S(2p,p)(x,y) =
(xp + yp

2

) 1
p = Mp(x,y),

Theorem 2 below generalizes the inequalities stated in Propositions 1,2, and 3 of
[1], in that it gives estimates for the difference

S(2p,p)(x,y)
p −S(p+1,1)(x,y)

p

for all values of the parameter p . The attentive reader will certainly notice that in
Theorem 2 and Lemma 3 we fail to mention any upper estimate in the case when p < 0.
The reason for this is that when p is negative then the difference we are estimating can
grow without bounds as either x or y is small enough, and the order of growth to
infinity obviously depends on the value of parameter p : thus, it seems like a losing
proposition to pursue an estimate in this case, since estimates are generally supposed to
be algebraically simpler than the original expression.

THEOREM 2. If x,y > 0 and p ∈ R , then we have the inequalities

(a) If p < 0 :

p(p−1)
12

(x− y)2 min{x,y}p−2 � Mp(x,y)p −Lp+1(x,y)p.

(b) If 0 < p < 1 :

p−1
2(p+1)

(x− y)2 min{x,y}p−2 � Mp(x,y)p −Lp+1(x,y)p

� p(p−1)
12

(x− y)2 min{x,y}p−2

� 0.

(c) If 2 < p:

p−1
2(p+1)

(x− y)2 max{x,y}p−2 � Mp(x,y)p−Lp+1(x,y)p

� p(p−1)
12

(x− y)2 max{x,y}p−2.

(d) If 1 < p < 2 :

p(p−1)
12

(x− y)2 min{x,y}p−2 � Mp(x,y)p −Lp+1(x,y)p

� p−1
2(p+1)

(x− y)2 min{x,y}p−2.
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Note that if p ∈ {0,1} we trivially have Mp(x,y)p = Lp+1(x,y)p , and if p = 2 the
identity Mp(x,y)p − Lp+1(x,y)p = 1

6 (x− y)2 is also immediate. In every other case
identity holds if and only if x = y.

Theorem 2 will follow easily from the following lemma, which we state separately
as it could be of independent interest.

LEMMA 3. If 0 � x � 1 , and p ∈ R , then we have the inequalities

(a) If p < 0 :
p(p−1)

12
(x−1)2 � Mp(x,1)p−Lp+1(x,1)p.

(b) If 0 < p < 1 or 2 < p:

p−1
2(p+1)

(x−1)2 � Mp(x,1)p−Lp+1(x,1)p � p(p−1)
12

(x−1)2.

(c) If 1 < p < 2 :

p(p−1)
12

(x−1)2 � Mp(x,1)p−Lp+1(x,1)p � p−1
2(p+1)

(x−1)2.

Note that if p ∈ {0,1} we trivially have Mp(x,1)p = Lp+1(x,1)p , and if p = 2 the
identity Mp(x,1)p − Lp+1(x,1)p = 1

6 (x− 1)2 is also immediate. In every other case
identity holds if and only if x = 0 or x = 1 .

The proof of Lemma 3 is delayed to the next section.

Proof of Theorem 2. Let x,y > 0, and assume wlog that x < y . Applying Lemma
3 to x/y ∈ (0,1) gives inequalities for

Mp

(x
y
,1
)p−Lp+1

(x
y
,1
)p

= y−p
(
Mp(x,y)p −Lp+1(x,y)p

)
,

and this easily leads to the theorem. �

We would like to extend these results to general differences of Stolarsky means,
though this program often meets with considerable technical problems. Very helpful in
this context is the following comparison result by Leach and Sholander [5], which we
quote in a version later proved by Páles:

THEOREM 4. (see Páles [7]) Let a,b,c,d ∈ R . Then the comparison inequality

S(a,b)(x.y) � S(c,d)(x,y)
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holds true for all x,y > 0 if and only if a+b � c+d and

L(a,b) � L(c,d) if 0 � min{a,b,c,d}
μ(a,b) � μ(c,d) if min{a,b,c,d} < 0 < max{a,b,c,d}
−L(−a,−b) � −L(−c,−d) if max{a,b,c,d} � 0,

where

L(x,y) :=
{ x−y

lnx−lny x,y > 0, x �= y
0 x · y = 0

and

μ(x,y) :=

{ |x|−|y|
x−y x �= y

sign(x) x = y.

If a+b � c+d , we have

S(c,d)(x,y)
c−d −S(a,b)(x,y)

a−b =
d(xc − yc)
c(xd − yd)

− b(xa− ya)
a(xb− yb)

.

For example, if p ∈ R is fixed then

S(p,0)(x.y) � S(t+p,t)(x,y)

for all x,y > 0 provided that t � 0. This pair of Stolarsky means is of interest if we look
at the special case p = t , in which case the inequality between the two means takes on
the more familiar form

L0(xt ,yt)
1
t � Mt(x,y)

(see our introduction for the notation) or, replacing xt ,yt with x,y ,

L0(x,y) � M1(x,y),

which of course is the well-known inequality between the arithmetic and the logarith-
mic mean of x and y . With the target of finding an upper bound for the difference
between these two means, we now present our next theorem. A more interesting lower
bound was not pursued here since the focus of our analysis revolves around the behav-
ior of the expression for y = 1 and around x = 1, and this technique doesn’t seem to
yield useful information when x is small.

THEOREM 5. Let p,t > 0 and x,y ∈ R . Then

0 � S(p+t,t)(x,y)
p−S(p,0)(x,y)

p � max
{ t

t + p
,
pt
12

}
(x− y)2 max{x,y}p−2.

The proof of Theorem 5 is delayed to the next section.

Letting y = 1 in Theorem 5 we obtain:
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COROLLARY 6. For every p,t > 0 and x ∈ R we have

0 � t
t + p

xt+p −1
xt −1

− xp−1
p lnx

� max
{ t

t + p
,
pt
12

}
(x−1)2 max{x,1}p−2. �

Letting p = t in Theorem 5 and replacing xt ,yt with x,y we then have the an-
nounced estimate for the difference between the arithmetic and logarithmic means:

COROLLARY 7. For every x,y,t > 0 we have

0 � x+ y
2

− x− y
lnx− lny

� 1
2

max
{

1,
t2

6

}
(x1/t − y1/t)2 max{x,y}1−2/t. � (1)

Finally, we improve on this corollary by showing that t =
√

6 yields the best right
hand side value:

THEOREM 8. For every x,y > 0 we have

0 � x+ y
2

− x− y
lnx− lny

� 1
2

(
x1/

√
6− y1/

√
6
)2

max{x,y}1−2/
√

6. (2)

Proof. We need to show that the right hand side in (2) is the infimum (and the limit
for t → ∞) of the right hand side in (1). Wlog, assume that x < y and rewrite the right
hand side of (1) as

1
2
ymax

{
1,

t2

6

}((
x
y

)1/t

−1

)2

. (3)

Trivially, (x/y)1/t increases as t increases from 0 to
√

6 and thus (3) decreases. When
t �

√
6, (3) simplifies to

1
12

yt2
((

x
y

)1/t

−1

)2

.

Now, the function f (t) = t(1− u1/t) is easily shown to be increasing for t > 0 (and
positive for u ∈ (0,1)) and thus (3) must have reached a minimum when t =

√
6. The

theorem is proved. �

Inequality (2) compares very nicely with an analogously very tight bound on the
ratio between the two means proved by Carlson [3] (see Theorems 2.6-2 and 2.6-3).
While Carlson’s inequalities are hard to beat when x and y are relatively close, our
result appears to be better than his when the ratio x/y is far enough from 1. The
details are extremely cumbersome, however (though they can be easily visualized in
Mathematica, for example), so we omit further discussion.

As a final curiosity, a slightly weaker but perhaps more “readable” inequality can
be quickly obtained from the proof of Theorem 8:
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COROLLARY 9. For every x,y > 0 we have

0 � x+ y
2

− x− y
lnx− lny

� 1
12

(
lnx− lny

)2
max{x,y}. (4)

Proof. To see this, note the the function f (t) defined at the end of the proof of
Theorem 8 satisfies limt→∞ f (t) =− lnu . Since this function is increasing, as we move
further up and away from t =

√
6 the upper bound in our inequality becomes larger,

and the corollary follows. �

2. Proofs of Lemma 3 and Theorem 5

Proof. [Proof of Lemma 3] For p ∈ R\ {−1} define

f (x, p) :=
xp +1

2
− xp+1−1

(p+1)(x−1)
,

and set

f (x,−1) :=
1
x +1

2
− lnx

x−1

(the latter function being limp→−1 f (x, p) : the claim for p = −1 will simply follow
from the case p �= −1 and taking limits, and this is why in the rest of the proof we will
always assume p �= −1). Then f (x, p) = Mp(x,1)p −Lp+1(x,1)p for all p ∈ R . For
all p , expressing f (x, p) as a power series centered at x = 1 shows that

f (x, p) =
p(p−1)

12
(x−1)2 +O

(
(x−1)3) (5)

(we omit the standard details), and this is where we find the motivation for the main
bound of f (x, p) . To simplify the calculations, define the function

g(x, p) :=
2(p+1)
(x−1)2

( p(p−1)
12

(x−1)2− f (x, p)
)

(6)

Our next target is to prove that g(x, p) is strictly monotone on the interval (0,1) . To
this end, observe that

∂
∂x

g(x, p)(x) = − g1(x, p)
(x−1)4 , (7)

where g1(x, p) is the function

g1(x, p) := (p−2)(p−1)xp+1−2(p−2)(p+1)xp+ p(p+1)xp−1

−2(p+1)x+2(p−2).

In terms of g1(x, p) , our claim now translates into saying that g1(x, p) keeps the same
sign through the interval (0,1) . We now proceed to verify this.
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A calculation reveals first that

∂ 2

∂x2 g1(x, p) = (p−2)(p−1)p(p+1)(x−1)2xp−3, (8)

and thus that ∂ 2

∂x2 g1(x, p) keeps the same sign (and is non-zero) through (0,1) (for
whoever noticed: the exception p �= 1 has already been considered, and similarly p ∈
{0,1,2} will be recovered as limit cases). In turn, this tells us that ∂

∂x g1(x, p) is strictly
monotone on [0,1] , and from the formula

∂
∂x

g1(x, p) = (p+1)
(
(p−2)(p−1)xp+(p−1)pxp−2−2(p−2)pxp−1−2

)
we conclude that ∂

∂x g1(x, p) changes monotonically from its value or limit at x = 0 to
0 (which is its value at x = 1). It follows that g1(x, p) is strictly monotone on (0,1) .
Since the limit of g1(x, p) for p → 1 is zero, g1(x, p) (and thus ∂

∂x g(x, p)(x) by (7))
keeps the same sign over the whole interval (0,1) and the claim is proved: we now
know that g(x, p) is strictly monotone.

Moving on now, let us note that if p < −1, or 0 < p < 1, or p > 2 then by
(8) ∂ 2

∂x2 g1(x, p) is positive on (0,1) , therefore ∂
∂x g1(x, p) is strictly increasing and

negative. Thus, g1(x, p) is strictly decreasing on (0,1) , which implies that it’s always
positive for x ∈ (0,1) . A look at equation (7) tells us that g(x, p) decreases to 0 (its
value at x = 1) in all these cases.

If instead we assume that −1 < p < 0 or 1 < p < 2, then by (8) ∂ 2

∂x2 g1(x, p)
is negative on (0,1) , therefore ∂

∂x g1(x, p) is strictly decreasing and positive. Thus,
g1(x, p) is strictly increasing on (0,1) , which implies that it’s always negative for x ∈
(0,1) . A look at equation (7) tells us that g(x, p) increases to 0 (its value at x = 1).

Considering that

lim
x↓0

g(x, p) =
{ (p+3)(p−1)(p−2)

6 : p > 0
−∞ : p < 0

we have the inequalities

0 � g(x, p) < ∞, p < −1,

−∞ < g(x, p) � 0, −1 < p < 0,

0 � g(x, p) � (p+3)(p−1)(p−2)/6, 0 < p < 1 or 2 < p,

(p+3)(p−1)(p−2)/6� g(x, p) � 0, 1 < p < 2.

Using equation (6) these inequalities immediately translate into

p(p−1)
12

(x−1)2 � f (x, p),

in the case when p < 0;

p−1
2(p+1)

(x−1)2 � f (x, p) � p(p−1)
12

(x−1)2
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if 0 < p < 1 or 2 < p and, finally,

p(p−1)
12

(x−1)2 � f (x, p) � p−1
2(p+1)

(x−1)2

if 1 < p < 2. Since f (x, p) = Mp(x,1)p−Lp+1(x,1)p , the lemma is thus proved. �

Proof of Theorem 5. Define the function

f (x,t, p) :=
1

(x−1)2

(
S(p+t,t)(x,1)p−S(p,0)(x,1)p)

=
1

(x−1)2

( t
t + p

xt+p−1
xt −1

− xp−1
p lnx

)
.

Let us first assume that x ∈ (0,1) , and note that

lim
x↓0

f (x,t, p) =
t

t + p
and lim

x↑1
f (x,t, p) =

pt
12

.

The theorem (in the case x ∈ (0,1)) is then proved if we show that the derivative
∂
∂x f (x, t, p) never vanishes for x ∈ (0,1) . A calculation gives

∂
∂x

f (x,t, p) =
x

p(t + p)(x−1)2(xt −1)(lnx)2 g(x,t, p),

where we set

g(x, t, p) := −(t + p)(lnx)(1− xt)(1− xp)− pt(lnx)2(1+ xt+p).

If we let a := x−t and b := x−p (note that a,b > 1 by our assumptions) we then obtain

g(x, t, p) =
1
ab

(
(lna+ lnb)(a−1)(b−1)− lna lnb(ab+1)

)
,

We claim that g(x, t, p) < 0 for x ∈ (0,1) . In terms of a and b this inequality is
equivalent to

ab+1
(a−1)(b−1)

>
1

lna
+

1
lnb

.

Now, we can rewrite the left hand side as

ab+1
(a−1)(b−1)

=
a+1

2(a−1)
+

b+1
2(b−1)

+
2

(a−1)(b−1)

and, since
u+1

2(u−1)
>

1
lnu
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when u �= 1 (a calculus exercise, or see [6, Lemma 2.2] for a simple proof), the claim
is proved. Hence the inequality

0 � S(p+t,t)(x,1)p −S(p,0)(x,1)p � max
{ t

t + p
,
pt
12

}
(x−1)2 (9)

follows, where identity only holds when x ∈ {0,1} .
Now assume that x,y > 0 are given with x < y . Applying (9) to x/y ∈ (0,1) we

have

y−p
(
S(p+t,t)(x,y)

p −S(p,0)(x,y)
p
)

= S(p+t,t)(x/y,1)p−S(p,0)(x/y,1)p

� max
{ t

t + p
,
pt
12

}(x
y
−1
)2

.

and we are done. �
The author would like to thank the referee for valuable comments.
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[8] C. E. M. PEARCE, J. PEČARIĆ, V. ŠIMIĆ, Stolarsky means and Hadamard’s inequality, J. Math.

Anal. Appl. 220 (1998), 99–109.
[9] K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.

[10] K. B. STOLARSKY, The power and generalized logarithmic mean, Amer. Math. Monthly 87 (1980),
545–548.

(Received June 10, 2010) Vania Mascioni
Department of Mathematical Sciences

Ball State University
Muncie, IN 47306-0490

USA
e-mail: vmascioni@bsu.edu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


