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Abstract. Let π(x) be the number of prime numbers not exceeding x . In the introduction we
present some inequalities related to this function; these have been presented in several articles
about the Number Theory. In the present paper we obtain two inequalities which generalize
Landau’s Inequality, π(2x) � 2π(x) for any integer x � 2 . Also, we obtain the inequality
2[xπ(x) + yπ(y)] > (x + y)π(x + y) , for all integers x,y � 67 , and an inequality which refers
to the Hardy and Littlewood conjecture. To demonstrate them, we used the Personal Computer,
in order to extend the domain of the variables for which these inequalities are true.

1. Introduction

Let π(x) be the number of prime numbers not exceeding x . In [3], Landau pro-
posed the following conjecture:

π(2x) � 2π(x), (1)

for all integers x � 2.
Landau’s Inequality was proved by Rosser and Schoenfeld in [11]. They also

established other interesting inequalities connected to π(x) ; among them:

π(x) >
x

logx
, (2)

for all integers x � 17, and

x
logx−1.5

> π(x) >
x

logx−0.5
, (3)

for all integers x � 67.
Panaitopol [6], [7] gives some refinements:

π(x) >
x

logx−1
, (4)

Mathematics subject classification (2010): 11A25, 11N05.
Keywords and phrases: Prime number, inequalities, Landau’s inequality.

c© � � , Zagreb
Paper MIA-15-52

591

http://dx.doi.org/10.7153/mia-15-52


592 NICUŞOR MINCULETE

for all integers x � 5,393, and

π(x) <
x

lnx−1.12
, (5)

for all integers x � 4.
The inequalities (4) and (5) were improved (see [8]):

π(x) <
x

logx−1− 1√
logx

, (6)

for all integers x � 6, and

π(x) >
x

logx−1+
1√
logx

, (7)

for all integers x � 59.
Hardy and Littlewood [2] proposed the following conjecture:

π(x+ y) < π(x)+ π(y), (8)

for all integers x,y � 2. Schinzel [12] proved that for all positive integers x,y with
min(x,y) � 146, the inequality

π(x+ y) � π(x)+ π(y) (9)

holds.
Montgomery and Vaughan [5] proved that for all integers x � 1, y � 2 the inequal-

ity
π(x+ y) < π(x)+2π(y) (10)

holds. Karanikolov (see e.g. [1], [4]) noticed that for ε � √
e− 1 and for all integers

x � 347, one has
π((1+ ε)x) < (1+ ε)π(x). (11)

Dusart [1] established the following result:

1
2
[π(x)+ π(2x)] � π(3x) � π(x)+ π(2x), (12)

for all integers x � 2, and
π(kx) � kπ(x), (13)

for all integers x � 3 and k a positive integer. For all integers x > 1

π(2x)−π(x) � x
logx

. (14)

Panaitopol [9] proved that for integers x,y � 2,

π2(x+ y) � 2[π2(x)+ π2(y)], (15)
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and for integers x � y � 2 one has

π(x+ y) � π(x)+ π(y)+ π(x− y) (16)

and

2
π(x+ y)

x+ y
� π(x)

x
+

π(y)
y

. (17)

The inequality (17) holds except the cases: x = 3,y = 2 and x = 5,y = 2.

2. Other inequalities involving the function π(x)

The last three results of Panaitopol, mentioned above, are generalizations of Lan-
dau’s Inequality. Next, we will find other generalizations. The aim of this paper is to
prove an inequality related to the Hardy and Littlewood conjecture. We use the follow-
ing technique: if we want to prove that A < B , where A and B are functions involving
π(x) , then we first write a smooth upper bound C for A and a smooth lower bound D
for B using the Panaitopol, Rosser and Schoenfeld inequalities, and then all we need to
check is that C < D .

THEOREM 1. For every positive integers a,b,x with bx � 5,393, ax � 4, a �
be0.12 , the inequality

aπ(bx) > bπ(ax) (18)

holds.

Proof. Using the inequalities (4) and (5), for all integers t � 5,393 we have π(t)>
t

logt−1
, and for all integers t � 4, we have π(t) <

t
log2−1.12

. Now, we evaluate

the expression aπ(bx)−bπ(ax) , thus:if a � be0.12 , then log
a
b

� 0.12, and this yields

aπ(bx)−bπ(ax) > abx

(
1

logbx−1
− 1

logax−1.12

)

= abx
log a

b −0.12

(logbx−1)(logax−1.12)
� 0.

Therefore, we obtain the claimed inequality.

COROLLARY 1.1. It holds:
i) for all integers x � 2

π(2x) � 2π(x), (19)

ii) for all integers x � 2
3π(2x) � 2π(3x) (20)

and
iii) for all integers x � 1 and x �= 12

4π(3x) � 3π(4x). (21)
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Proof. In Theorem 1, taking a = 2 and b = 1, we get

log
a
b

= log2 = 0.69.... � 0.12

which means that, for x � 5,393, we obtain Landau’s Inequality, π(2x) � 2π(x) . But
using a computer, we can descend the values for x , so that this inequality is true. Check-
ing for x < 5,393, we conclude that Landau’s Inequality is true for all integers x � 2.
If we take a = 3 and b = 2, in Theorem 1, it follows that

log
a
b

= log
3
2

= 0.40... � 0.12,

hence, we obtain 3π(2x) > 2π(3x) , for all integers x > 2,697. Again, helped by com-
puter, we deduce that 2π(2x) > 2π(3x) , for all integers x � 2. The equality holds for
x ∈ {3,6,9} .

To prove inequality (21), in Theorem 1 we make the substitution a = 4 and b = 3,
so,

log
a
b

= log
4
3

= 0.28... � 0.12,

hence, we obtain 4π(3x) > 3π(4x) , for all integers x > 1,797. By using a PC, stated
inequality is true. The equality holds for x = {3,5} . �

THEOREM 2. For all integers x,y � 67 , the following inequality holds:

2[xπ(x)+ yπ(y)] > (x+ y)π(x+ y). (22)

Proof. We consider the inequality (3), π(t) >
t

log t−0.5
, for all integers � 67.

In this inequality, we take t = x and t = y and we deduce the inequalities

π(x) >
x

logx−0.5
and π(y) >

y
logy−0.5

.

Let the function f (x) =
x2

logx−0.5
, defined for x � 67.

Since f ′′(x) =
2log2 x−5logx+4

(logx−0.5)3)
, for x � 67, we deduce that the function f

is convex, which means that we can apply Jensen’s Inequality, namely, f (x)+ f (y) �
2 f

( x+y
2

)
. Hence

xπ(x)+ yπ(y) >
x2

logx−0.5
+

y2

logy−0.5
� 2

(
x+ y

2

)2

log
x+ y

2
−0.5

>
x+ y

2
· x+ y
log(x+ y)−1.12

>
x+ y

2
·π(x+ y).
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We used the inequality (5) and the inequality
1

logt −0.5
>

1
log2t−1.12

, for all

integers t � 2. �

REMARK. 1. If we take x = y , in inequality (22), then we obtain Landau’s In-
equality, for all integer x � 67. From the table of prime numbers we check the rest of
the numbers. Hence, Theorem 2, is a generalization of Landau’s Inequality.

THEOREM 3. For all integers x,y � 1,525 , the following inequality:

xyπ(x)π(y) > 4π2(xy) (23)

holds.

Proof. From inequalities (6) and (7), we have π(x) <
x

logx−1− 1√
logx

, for all

integers x � 6, and π(x) >
x

logx−1+
1√
logx

, for all integers x � 59. Therefore,

we have xyπ(x)π(y) >
x2y2(

logx−1+
1√
logx

)(
logy−1+

1√
logy

) , for all integers

x,y � 59, and
4x2y2(

logxy−1− 1√
logxy

)2 > 4π2(xy) , for all integers x,y with xy � 6.

If we show that(
logxy−1− 1√

logxy

)2

> 4

(
logx−1+

1√
logx

)(
logy−1+

1√
logy

)
,

then the proof is completed. But, for x,y � 59, we have logx, logy > 4, so, we deduce
that

logx−1+
1√
logx

, logy−1+
1√
logy

> 0.

Therefore, using the arithmetic-geometric mean inequality, we obtain

logx−1+
1√
logx

+ logy−1+
1√
logy

�

2

√(
logx−1+

1√
logx

)(
logy−1+

1√
logy

)
,

which is equivalent to (
logxy−2+

1√
logx

+
1√
logy

)2

�

4

(
logx−1+

1√
logx

)(
logy−1+

1√
logy

)
.
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At this point, we need to show that

logxy−1− 1√
logxy

> logxy−2+
1√
logx

+
1√
logy

,

so

1 >
1√

logxy
+

1√
logx

+
1√
logy

.

Since x,y � 1,525, we obtain logx, logy > 7.329, so, we deduce that
√

logx,
√

logy >

2.71 and
√

logxy > 3.83, which means that the inequality 1 >
1√

logxy
+

1√
logx

+

1√
logy

holds true. �

COROLLARY 3.1. For all integers x � 67 , the following inequality holds.

xπ(x) < 2π(x2). (24)

Proof. Taking x = y in inequality (23), we have xπ(x) � 2π(x2) , for all integers
x,y � 1,525. Using a PC, we check the rest of the numbers up to 67. �

REMARK. 2. In relation (24), equality holds for x ∈ {13,38,66} .

THEOREM 4. For x � y � 10,544,111 and δ � 0.00042 the following inequality

(1− δ )π(x+ y) < (1+ δ )π(x)+ π(y) (25)

holds.

Proof. We consider Chebyshev’s function θ (x) = ∑
p�x

log p . Then:

∑
x<p�x+y

log p = θ (x+ y)−θ (x).

From [1], for x � 10,544,111, we have

|θ (x)− x| � 0.006788
x

logx
. (26)

We note α = 0.006788 and inequality (26) becomes

−α
x

logx
< θ (x)− x < α

x
logx

. (27)

It is easy to see that

π(x+ y) = ∑
p�x+y

1 = ∑
p�x

1+ ∑
x<p�x+y

1 = π(x)+ ∑
x<p�x+y

1.



TWO GENERALIZATIONS OF LANDAU’S INEQUALITY 597

For x < p � x+ y , we have logx < log p � log(x+ y) , which means that
log p
logx

> 1 �
log p

log(x+ y)
, and summing up the prime numbers between x and x+ y , we obtain

∑
x<p�x+y

log p
log(x+ y)

< π(x+ y)−π(x) < ∑
x<p�x+y

log p
logx

,

which is equivalent to the inequality

1
log(x+ y) ∑

x<p�x+y
log p < π(x+ y)−π(x) <

1
logx ∑

x<p�x+y
log p.

Therefore, we deduce the following inequality

θ (x+ y)−θ (x)
log(x+ y)

< π(x+ y)−π(x) <
θ (x+ y)−θ (x)

logx
. (28)

If we have x � y � 10,544,111, then we apply inequality (27) and we get

−α
x+ y

log(x+ y)
< θ (x+ y)− x− y < α

x+ y
log(x+ y)

.

Combining this inequality with inequality (27), we obtain

−α
x+ y

log(x+ y)
−α

x
logx

< θ (x+ y)−θ (x)− y < α
x+ y

log(x+ y)
+ α

x
logx

,

and using relation (2), π(x) >
x

logx
, for x � 17, we have

|θ (x+ y)−θ (x)− y|< α[π(x+ y)+ π(x)]. (29)

But, combining inequalities (28) and (29) we obtain the sequence of inequalities

π(x+ y)−π(x) <
θ (x+ y)−θ (x)

logx
<

y
logx

+
α

logx
[π(x+ y)+ π(x)] � y

logy
+

α
logx

[π(x+ y)+ π(x)].

Consequently,

π(x+ y)−π(x) < π(y)+
α

logx
[π(x+ y)+ π(x)].

But logx � ln10,544,111 > 16.171, which means that

α
logx

� 0.006788
16.171

∼= 0.00042 � δ ,
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so, obtain
(1− δ )π(x+ y) < (1+ δ )π(x)+ π(y),

for all x � y � 10,544,111 and δ � 0.00042. �

Open problem. There exists a natural number n0 , large enough, such that for all
x,y � n0 , we have the inequality

π(x2)π(y2) � π2(xy).
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