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A NEW GENERAL BOAS–TYPE INEQUALITY

AND RELATED CAUCHY–TYPE MEANS

A. ČIŽMEŠIJA, J. PEČARIĆ AND D. POKAZ

Abstract. We prove a new Boas-type inequality in a context of topological spaces and general
σ -finite Borel measures. This enables us to introduce an one-parameter class of non-negative
Boas differences and examine their properties, such as continuity and log-convexity. By proving
the related Galvani’s theorem and mean-value theorems of the Lagrange and Cauchy type we
establish a new class of two-parameter Cauch-type means.

1. Introduction

R. P. Boas, in [3], proved that the inequality∫ ∞

0
Φ
(

1
M

∫ ∞

0
f (tx)dm(t)

)
dx
x

�
∫ ∞

0
Φ( f (x))

dx
x

(1)

holds for all continuous convex functions Φ : [0,∞〉 → R , measurable non–negative
functions f : R+ → R , and non–decreasing bounded functions m : [0,∞〉 → R , where
M = m(∞)−m(0)> 0 and the inner integral on the left-hand side of (1) is the Lebesgue–
Stieltjes integral with respect to m . After its author, the relation (1) was named the Boas
inequality. In the case of a concave function Φ , (1) holds with the sign of inequality
reversed.

Independently, S. Kaijser et al. [8] (see also the paper [9] of S. Levinson) es-
tablished the so-called general Hardy-Knopp-type inequality for positive measurable
functions f : R+ → R ,∫ ∞

0
Φ
(

1
x

∫ x

0
f (t)dt

)
dx
x

�
∫ ∞

0
Φ( f (x))

dx
x

, (2)

where Φ is a real convex function on R+ . Later on, A. Čižmešija et al. [6] generalized
the relation (2) to the so-called strengthened Hardy-Knopp-type inequality by inserting
a weight function and integrating over intervals of non-negative real numbers. Further,
in [5] A. Čižmešija et al. considered a general Borel measure λ on R+ , such that

L = λ (R+) =
∫ ∞

0
dλ (t) < ∞ , and for a convex function Φ on an interval I ⊆ R and

for a weight function u on R+ proved that the inequality∫ ∞

0
u(x)Φ(A f (x))

dx
x

� 1
L

∫ ∞

0
w(x)Φ( f (x))

dx
x

(3)
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holds for all measurable functions f : R+ → R , such that f (x) ∈ I for all x ∈ R+ ,

where A f (x) =
1
L

∫ ∞

0
f (tx)dλ (t) and w(x) =

∫ ∞

0
u
(x

t

)
dλ (t) < ∞ , x ∈ R+ . They

also gave the following refinement of (3):

1
L

∫ ∞

0
w(x)Φ( f (x))

dx
x
−
∫ ∞

0
u(x)Φ(A f (x))

dx
x

� 1
L

∣∣∣∣
∫ ∞

0

∫ ∞

0
u(x)|Φ( f (tx))−Φ(A f (x))|dλ (t)

dx
x

−
∫ ∞

0

∫ ∞

0
u(x)|ϕ(A f (x))|| f (tx)−A f (x)|dλ (t)

dx
x

∣∣∣∣ ,
where ϕ denotes any function with values in the subdifferential of Φ .

Observe that the non-decreasing and bounded function m : [0,∞〉 → R , such that
M = m(∞)− m(0) > 0, induces a finite Borel measure λ on R+ and vice versa.
For such function and measure, related Lebesgue and Lebesgue-Stieltjes integrals are
equivalent. Thus, all the above results can be interpreted as for A f (x) defined by

A f (x) =
1
M

∫ ∞

0
f (tx)dm(t), x ∈ R+,

so they refine and generalize inequality (1).
The Boas inequality (1) has been generalized in some other ways. One of them is

by using the weighted Hardy-Littlewood average Uψ f defined by

Uψ f (x) =
∫ 1

0
f (tx)ψ(t)dt,

where ψ is a non-negative function on [0,1] . J. Xiao [12] characterized functions ψ
for which Uψ is bounded on either Lp(Rn) , p ∈ [1,∞] , or BMO(Rn) . Recall that
the space BMO(Rn) consists of all measurables functions f ∈ L1

loc(R
n) with bounded

mean oscillation

‖ f‖BMO(Rn) = sup
Q⊂Rn

1
|Q|

∫
Q
| f (x)− fQ|dx < ∞,

where the supremum is taken over all cubes Q ⊆ Rn of sides parallel to the axes,

fQ = |Q|−1
∫

Q
f (x)dx stands for the average of f over Q , and |Q| denotes the measure

of Q .
Another generalization of (1) was given by D. Luor [10] in a setting with σ -finite

Borel measures μ and ν on a topological space X and a Borel probability measure λ
on R+ . For a λ -balanced Borel set E in X and the measure μt defined for all Borel
sets D ⊆ X and t ∈ R+ by μt(D) = μ(t−1D) , he proved the inequality

∫
E

φ(H f (x))dμ(x) �
∫

E
φ( f (x))

(∫ ∞

0

dμt

dν
(x)dλ (t)

)
dν(x),
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where φ is a non-negative convex function, μt � ν , t ∈ suppλ , and H f is the Hardy–
Littlewood average of a non-negative Borel function f on X , defined by

H f (x) =
∫ ∞

0
f (tx) dλ (t), x ∈ X .

Our first goal in this paper is to obtain the weighted version of the mentioned
Luor’s result. Further, by exploring non-negativity of the difference between the right-
hand side and the left-hand side of our inequality obtained, we introduce an isotonic
linear functional, the so-called Boas difference. We examine its properties and give
some Lyapunov-type inequalities which provide us with an upper bound for its values.
We review some one-dimensional special cases of these differences as well. Also, we
give some related results for balls in Rn . Our Boas-type inequality and the notion of the
Boas differences allow us to state and prove new mean value theorems of the Lagrange
and Cauchy-type and to define a new class of two-parameter Cauchy-type means.

This paper is a continuition of a previous work of J. Pečarić with S. Hussain and
M. Anwar [2], [7]. It is organized in the following way: after the Introduction, in
Section 2 we prove the Boas inequality in a setting with general weighted topologi-
cal spaces and σ -finite measures. Further, in Section 3, we explore logarithmic and
exponential convexity of the Boas differences and derive the related Lyapunov-type in-
equality. Finally, in the last Section 4, we introduce a new class of the Cauchy-type
means related to the Boas-type differences and examine their intermediacy, continuity,
symmetry and monotonicity properties.
Conventions. Throughout this paper, all measures are assumed to be positive, all func-
tions are assumed to be measurable on their respective domains and expressions of
the form 0 · ∞ , 0

0 , a
∞ (a ∈ R) and ∞

∞ are taken to be equal to zero. As usual, by
dx and dx we denote the Lebesgue measure on R and Rn (n ∈ N,n � 2) respec-
tively, while by a weight function we mean a non–negative measurable function on
the actual set. An interval in R is any convex subset of R , while R+ = 〈0,∞〉 . For
b > 0, by B(b) we denote a ball in Rn centered at the origin and of radius b , that is,
B(b) = {x ∈ Rn : |x| � b} , where |x| denotes the Euclidean norm of x ∈ Rn . Finally,
its dual set is Rn \B(b) = {x ∈ Rn : |x| > b} .

2. A new weighted general Boas-type inequality

After introducing some necessary notation, in this section we state and prove a
new weighted general Boas-type inequality in a setting with a topological space and
σ -finite Borel measures. Utilizing the inequality obtained, we further define a related
isotonic linear functional, the so-called Boas difference.

Let λ be a finite Borel measure on R+ . By supp λ we denote its support, that is,
the set of all t ∈ R+ such that λ (Nt) > 0 holds for all open neighbourhoods Nt of t .
Hence,

L =
∫

supp λ
dλ (t) =

∫ ∞

0
dλ (t) = λ (R+) < ∞. (4)

On the other hand, let X be a topological space equipped with a continuous scalar
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multiplication (a,x) 
→ ax ∈ X , for a ∈ R+ , x ∈ X , such that

1x = x, a(bx) = (ab)x, x ∈ X , a,b ∈ R+.

Further, let the Borel set Ω ⊆ X be λ -balanced, that is, tΩ = {tx : x ∈ Ω} ⊆ Ω , for
all t ∈ supp λ . For a Borel measurable function f : Ω → R , we define its Hardy–
Littlewood average A f as

A f (x) =
1
L

∫ ∞

0
f (tx)dλ (t), x ∈ Ω. (5)

Finally, suppose that μ and ν are σ –finite Borel measures on X . For t > 0 and a
Borel set S ⊆ X we define

μt(S) = μ
(

1
t
S

)
. (6)

Obviously, μt is a σ -finite Borel measure on X for each t ∈ R+ . Throughout
this paper, we suppose that the measures μt are absolutely continuous with respect to

the measure ν , that is, μt � ν for each t ∈ supp λ . As usual, by
dμt

dν
we denote the

related Radon–Nikodym derivative.
We start with a generalization of the main theorem in [10], that is, we state and

prove a new weighted general Boas-type inequality.

THEOREM 1. Let λ be a finite Borel measure on R+ and L be defined by (4).
Let μ and ν be σ -finite Borel measures on a topological space X , μt be defined by
(6) and such that μt � ν for all t ∈ supp λ . Further, let Ω ⊆ X be a λ -balanced set
and u be a non-negative function on X , such that

v(x) =
∫ ∞

0
u

(
1
t
x
)

dμt

dν
(x)dλ (t) < ∞, x ∈ Ω. (7)

Suppose Φ : I →R is a non-negative convex function on an interval I ⊆R . If a function
f : Ω → R is Borel measurable, such that f (x) ∈ I for all x ∈ Ω , and A f is defined by
(5), then A f (x) ∈ I for all x ∈ Ω and the inequality

∫
Ω

u(x)Φ(A f (x))dμ(x) � 1
L

∫
Ω

v(x)Φ( f (x))dν(x) (8)

holds. For a non-positive concave function Φ , the sign of inequality in (8) is reversed.

Proof. For a fixed x ∈ Ω , we define the function hx : R+ → R as hx(t) = f (tx)−
A f (x) . Then (4) and (5) imply∫ ∞

0
hx(t)dλ (t) =

∫ ∞

0
f (tx)dλ (t)−A f (x)

∫ ∞

0
dλ (t) = 0. (9)

Since the set Ω is λ -balanced and f (Ω)⊆ I , it follows that f (tx)∈ I for all t ∈ supp λ
and each x ∈ Ω . Suppose that there exists x0 ∈ Ω such that A f (x0) /∈ I . Then we have
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either A f (x0) < f (tx0) for all t ∈ supp λ , or A f (x0) > f (tx0) for all t ∈ supp λ , so
the function hx0 is either strictly positive or strictly negative on R+ . This contradicts
(9), so we proved that A f (x) ∈ I for all x ∈ Ω .

Finally, we prove (8). By using Jensen’s inequality, Fubini’s theorem, the substi-
tution y = tx , the fact that Ω is λ -balanced and Φ is non-negative, and the Radon-
Nikodym theorem, we obtain

∫
Ω

u(x)Φ(A f (x))dμ(x) � 1
L

∫
Ω

u(x)
∫ ∞

0
Φ( f (tx))dλ (t)dμ(x)

=
1
L

∫ ∞

0

∫
Ω

u(x)Φ( f (tx))dμ(x)dλ (t)

=
1
L

∫ ∞

0

∫
tΩ

u

(
1
t
y
)

Φ( f (y))dμt (y)dλ (t)

� 1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

Φ( f (y))dμt(y)dλ (t)

=
1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

Φ( f (y))
dμt

dν
(y)dν(y)dλ (t)

=
1
L

∫
Ω

(∫ ∞

0
u

(
1
t
y
)

dμt

dν
(y)dλ (t)

)
Φ( f (y))dν(y)

=
1
L

∫
Ω

v(y)Φ( f (y))dν(y),

so the proof is completed. �
Notice that the condition on non-negativity of the convex function Φ in Theorem

1 can be omitted only in a particular setting with cones in X . More precisely, the
following corollary holds.

COROLLARY 1. If in Theorem 1 we have tΩ = Ω for λ -a.e. t ∈ supp λ , then (8)
holds for all convex functions Φ on an interval I ⊆ R . In that case, for all concave
functions Φ relation (8) holds with the sign of inequality reversed.

In Theorem 1 we considered general measures μ ,ν , and λ , a set Ω , and a func-
tion Φ . Now, we give an overview of results obtained by specializing inequality (8)
to some interesting particular settings. First, we consider the classical one-dimensional
cases.

COROLLARY 2. Let λ be a finite Borel measure on R+ and L be defined by (4).
Suppose that Ω ⊆ R+ is a λ -balanced set and that u is a non-negative function on
R+ , such that

w(x) =
∫ ∞

0
u
(x

t

)
dλ (t) < ∞, x ∈ Ω. (10)

Let Φ : I → R be a non-negative convex function on an interval I ⊆ R . If f : Ω → R
is a Borel measurable function, such that f (x) ∈ I for all x ∈ Ω , and A f is defined by
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(5), then the inequality∫
Ω

u(x)Φ(A f (x))
dx
x

� 1
L

∫
Ω

w(x)Φ( f (x))
dx
x

(11)

holds. If the function Φ is non-positive and concave, the sign of inequality in (11) is
reversed.

Proof. It follows directly from Theorem 1 if we set X = R+ , the measures μ and

ν to be the Lebesgue measures and replace the weight function u with x 
→ u(x)
x

. For

such measures we get
dμt

dν
(x) =

1
t

, t ∈ R+ . In this setting, we have

v(x) =
∫ ∞

0
u
(x

t

)
· t
x
· 1
t

dλ (t) =
1
x

∫ ∞

0
u
(x

t

)
dλ (t) =

w(x)
x

, x ∈ Ω,

where the function v is defined by (7). �
Notice that the inequality (11) obviously generalizes (3).

COROLLARY 3. Let 0 < b � ∞ , u be a non-negative function on 〈0,b〉 , such that

the function t 
→ u(t)
t2

is locally integrable in 〈0,b〉 , and let

w(x) = x
∫ b

x
u(t)

dt
t2

, x ∈ 〈0,b〉.

If Φ is a convex function on an interval I ⊆ R , then the inequality∫ b

0
u(x)Φ(H f (x))

dx
x

�
∫ b

0
w(x)Φ( f (x))

dx
x

(12)

holds for all functions f on 〈0,b〉 with values in I and for H f defined by

H f (x) =
1
x

∫ x

0
f (t)dt, x ∈ 〈0,b〉.

Proof. Rewrite Theorem 1 with dλ (t) = χ〈0,1〉(t)dt , X = Ω = R+ , dμ(x) =

χ〈0,b〉(x)dx , and ν(x) = dx , as well as with the function x 
→ u(x)
x

χ〈0,b〉(x) instead

of the weight u . Then supp λ = 〈0,1] , L = 1,
dμt

dν
(x) =

1
t

χ〈0,tb〉(x) ,

A f (x) =
∫ 1

0
f (tx)dt = H f (x),

and

v(x) =
∫ 1

0

u

(
1
t
x

)
1
t
x

· 1
t

χ〈0,tb〉(x)dt =
1
x

∫ 1

x
b

u
(x

t

)
dt =

∫ b

x
u(y)

dy
y2 =

w(x)
x

,
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for x ∈ 〈0,b〉 , so (12) holds. Since the conditions of Corollary 1 are fulfilled, the
function Φ does not have to be non-negative. �

The result of Corollary 3 can be found in [5], [6], and [8], so Theorem 1 can be

regarded as its generalization. On the other hand, considering dλ (t) = χ[1,∞〉(t)
dt
t2

, as

in the proof of Corollary 3 we get a dual result to (12) (see also [5, 6, 8]).

COROLLARY 4. For 0 � b < ∞ , suppose u : 〈b,∞〉 → R is a non-negative func-
tion, locally integrable in 〈b,∞〉 , and w is defined on 〈b,∞〉 by

w(x) =
1
x

∫ x

b
u(t)dt.

If Φ is a convex function on an interval I ⊆ R , then the inequality∫ ∞

0
u(x)Φ(H̃ f (x))

dx
x

�
∫ ∞

0
w(x)Φ( f (x))

dx
x

holds for all functions f on 〈b,∞〉 with values in I and for H̃ f defined by

H̃ f (x) = x
∫ ∞

x
f (t)

dt
t2

, x ∈ 〈b,∞〉.

Further corollaries are related to a multidimensional setting with balls in Rn cen-
tered at the origin.

COROLLARY 5. Suppose that 0 < b � ∞ and that a positive function ψ on [0,1]
and a non-negative function u on Rn are such that

v(x) =
∫ 1

|x|
b

u

(
1
t
x
)

t−nψ(t)dt < ∞, x ∈ B(b) (13)

and

P1 =
∫ 1

0
ψ(t) dt < ∞. (14)

Suppose Φ is a non-negative convex function on an interval I ⊆ R . If f : B(b) → R is
a Borel–measurable function, such that f (x) ∈ I for all x ∈ B(b) , then the inequality∫

B(b)
u(x)Φ

(
1
P1

∫ 1

0
ψ(t) f (tx)dt

)
dx � 1

P1

∫
B(b)

v(x)Φ( f (x))dx (15)

holds.

Proof. Follows from Theorem 1 and Corollary 1 rewritten with X = Rn , Ω =
B(b) , dλ (t) = ψ(t)χ〈0,1〉(t)dt , dμ(x) = χB(b)(x)dx , and dν(x) = dx . Here we have

supp λ = 〈0,1] ,
dμt

dν
(x) = t−nχB(tb)(x) , and A f (x) =

1
P1

∫ 1

0
ψ(t) f (tx)dt . It is easy to

see that in this setting (13) reduces to (7), and (8) becomes (15). �
A similar unweighted n -dimensional result can be found in [10]. Applying Corol-

lary 5 to some particular u and Φ we get the following result.
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COROLLARY 6. Let 0 < b � ∞ , let the positive function ψ on [0,1] be such that

v(x) =
∫ 1

|x|
b

t−nψ(t)dt < ∞, x ∈ B(b),

and let P1 be defined by (14). If f : B(b) → R is a non-negative Borel-measurable
function, then the inequality∫

B(b)

(∫ 1

0
ψ(t) f (tx)dt

)p

dx � Pp−1
1

∫
B(b)

v(x) f p(x)dx

� Pp−1
1

(∫ 1

0
t−nψ(t)dt

)∫
B(b)

f p(x)dx (16)

holds for all p ∈ R \ [0,1〉 . If p ∈ 〈0,1〉 , then the first inequality in (16) holds with
reversed sign of inequality.

Proof. The first inequality in (16) is equivalent with inequality (15), rewritten with
u(x) ≡ 1 and with the convex function Φ : R+ → R , Φ(x) = xp , p ∈ R \ [0,1〉 . For
p ∈ 〈0,1〉 , the function Φ is concave. �

Analogously, we get the following result.

COROLLARY 7. Suppose that 0 � b < ∞ and that the positive function ψ on
[1,∞〉 and the non-negative function u on Rn are such that

v(x) =
∫ |x|

b

1
u

(
1
t
x
)

t−nψ(t)dt < ∞, x ∈ Rn \B(b). (17)

and
P∞ =

∫ ∞

1
ψ(t) dt < ∞. (18)

Suppose that Φ is a non-negative convex function on an interval I ⊆ R . If a function
f : Rn \B(b) → R is Borel measurable, such that f (x) ∈ I for all x ∈ Rn \B(b) , then
the inequality∫

Rn\B(b)
u(x)Φ

(
1
P∞

∫ ∞

1
ψ(t) f (tx)dt

)
dx � 1

P∞

∫
Rn\B(b)

v(x)Φ( f (x))dx (19)

holds.

Proof. The proof follows from Theorem 1 and Corollary 1 if we set dλ (t) =
ψ(t)χ〈1,∞〉(t)dt , X = Rn , Ω = Rn \B(b) , dμ(x) = χRn\B(b)(x)dx , and dν(x) = dx .

Then we get supp λ = [1,∞〉 , dμt

dν
(x) = t−nχRn\B(tb)(x) , and

A f (x) =
1
P∞

∫ ∞

1
ψ(t) f (tx)dt,

so (7) and (8) become (17) and (19), respectively. �
An unweighted form of this result can be found in [10].
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COROLLARY 8. Let 0 � b < ∞ and let the function ψ : [1,∞〉 → [0,∞〉 be such
that

v(x) =
∫ |x|

b

1
t−nψ(t)dt < ∞, x ∈ Rn \B(b).

If f : Rn \B(b)→ R is a Borel-measurable function and P∞ is defined by (18), then the
inequality

∫
Rn\B(b)

(∫ ∞

1
ψ(t) f (tx)dt

)p

dx � Pp−1
∞

∫
Rn\B(b)

v(x) f p(x)dx (20)

holds for all p ∈ R\ [0,1〉 . For p ∈ 〈0,1〉 , the sign of inequality in (20) is reversed.

Proof. Again, like in Corollary 6, we take u(x) ≡ 1 and the convex function
Φ : R+ → R , Φ(x) = xp , p ∈ R\ [0,1〉 . Notice that Φ is concave for p ∈ 〈0,1〉 . �

After giving the examples based on applications of Theorem 1 to specific mea-
sures and sets, we continue our analysis by introducing another convex function. The
following lemma obviously holds.

LEMMA 1. For s ∈ R , let the functions ϕs : R+ → R be defined by

ϕs(x) =

⎧⎪⎪⎨
⎪⎪⎩

− logx, s = 0
x logx, s = 1

xs

s(s−1)
, otherwise.

(21)

Then ϕ ′′
s (x) = xs−2 and ϕs is a convex function for all s ∈ R .

Since ϕs are convex, we can apply Corollary 1 to these particular functions.

COROLLARY 9. Let the conditions of Corollary 1 be fulfilled with a positive func-
tion f and let ϕs be defined by (21). Then

∫
Ω

u(x)ϕs(A f (x))dμ(x) � 1
L

∫
Ω

v(x)ϕs( f (x))dν(x) (22)

holds for all s ∈ R .

REMARK 1. Observe that not the all functions ϕs are non-negative. Therefore,
Corollary 1 does not assure inequality (22) to hold if there exists a set S ⊆ supp λ ,
λ (S) > 0, such that tΩ � Ω , t ∈ S .

Corollary 9 enables us to define the Boas difference, that is, the non-negative func-
tion ξ : R → [0,∞〉 ,

ξ (s) =
1
L

∫
Ω

v(x)ϕs( f (x))dν(x)−
∫

Ω
u(x)ϕs(A f (x))dμ(x). (23)
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In particular, under the conditions of Corollary 2, Corollary 3 and Corollary 4, we
respectively define the following Boas differences:

ξ1(s) =
1
L

∫
Ω

w(x)ϕs( f (x))
dx
x
−
∫

Ω
u(x)ϕs(A f (x))

dx
x

, (24)

ξ2(s) =
∫ b

0
w(x)ϕs( f (x))

dx
x
−
∫ b

0
u(x)ϕs(H f (x))

dx
x

, (25)

ξ3(s) =
∫ ∞

b
w(x)ϕs( f (x))

dx
x
−
∫ ∞

b
u(x)ϕs(H̃ f (x))

dx
x

. (26)

The same can be done also with Corollary 5 and Corollary 7, so we shall omit it.

REMARK 2. For u(x) ≡ 1, in Corollary 3 we have w(x) = x
∫ b

x

dt
t2

= 1− x
b

, so

(25) becomes

ξ2(s) =
∫ b

0

(
1− x

b

)
ϕs( f (x))

dx
x
−
∫ b

0
ϕs(H f (x))

dx
x

.

Inequality ξ2(s) � 0 was obtained in [7].

REMARK 3. For u(x) ≡ 1, in Corollary 4 we have w(x) =
1
x

∫ x

b
dt = 1− b

x
, so

(26) reduces to

ξ3(s) =
∫ ∞

b

(
1− b

x

)
ϕs( f (x))

dx
x
−
∫ ∞

b
ϕs(H̃ f (x))

dx
x

.

In that case, inequality ξ3(s) � 0 was obtained in [7].

3. Exponential Convexity of the Boas differences

In this section, we explore the Boas differences defined by (23). For this purpose,
we recall some notion and facts about logarithmically convex and exponentially convex
functions.

Let I ⊆R be an interval. A positive function ξ : I →R is said to be logarithmically
convex, or log-convex, if the function logξ is convex. It is well-known that each log-
convex function is convex and that the relation

ξ (s2)s3−s1 � ξ (s1)s3−s2ξ (s3)s2−s1 (27)

holds for all such functions ξ and all s1 , s2 , s3 ∈ I , such that s1 < s2 < s3 . We
also recall Galvani’s theorem for log-convex functions ξ : I → R . It claims that the
inequality [

ξ (s2)
ξ (s1)

] 1
s2−s1 �

[
ξ (t2)
ξ (t1)

] 1
t2−t1

(28)
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holds for all s1,s2, t1,t2 ∈ I , such that s1 � t1 , s2 � t2 and s1 
= s2 , t1 
= t2 .
On the other hand, an exponentially convex function on I is any continuous func-

tion ξ : I → R satisfying
k

∑
i=1

k

∑
j=1

αiα jξ (si + s j) � 0 (29)

for all k∈N and all sequences (αn)n∈N and (sn)n∈N of real numbers, such that si +s j ∈
I , i, j ∈ N . It can be proved that every exponentially convex function is log-convex
and thus convex. Moreover, the condition (29) can be replaced with a more suitable
condition

k

∑
i=1

k

∑
j=1

αiα jξ
(

si + s j

2

)
� 0, (30)

which has to hold for all k ∈ N , all sequences (αn)n∈N of real numbers, and all se-
quences (sn)n∈N in I . More precisely, a function ξ : I → R is exponentially convex
if and only if it is continuous and fulfills (30). Further information on log-convex and
exponentially convex functions can be found in [1] and [11], as well as in the references
given in those monographs.

Using the concept of exponential convexity, we get the following Lyapunov-type
inequality related to the Boas differences (23).

THEOREM 2. Let the conditions of Corollary 1 be fulfilled with a positive function
f and let ϕs be defined by (21). Then the function ξ : R → [0,∞〉 defined by (23) is
continuous, exponentially convex and the inequality

[ξ (r)]q−p � [ξ (p)]q−r · [ξ (q)]r−p (31)

holds for all p,q,r ∈ R , such that p < r < q.

Proof. First, we prove that ξ is continuous on R . Since the mapping s 
→ xs

s(s−1)
is continuous on R \ {0,1} for all x ∈ R+ , we only need to prove the continuity of ξ
in s = 0 and s = 1. Since under assumptions of Corollary 1 we have

1
L

∫
Ω

v(x) dν(x)−
∫

Ω
u(x) dμ(x) = 0, (32)

the L’Hospital rule [13] implies

lim
s→0

ξ (s) = lim
s→0

[
1
L

∫
Ω

v(x)
f s(x)

s(s−1)
dν(x)−

∫
Ω

u(x)
(A f (x))s

s(s−1)
dμ(x)

]

= lim
s→0

1
s(s−1)

[
1
L

∫
Ω

v(x) f s(x) dν(x)−
∫

Ω
u(x)(A f (x))s dμ(x)

]

= lim
s→0

1
2s−1

[
1
L

∫
Ω

v(x) f s(x) log f (x)dν(x)
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−
∫

Ω
u(x)(A f (x))s log A f (x)dμ(x)

]

= −1
L

∫
Ω

v(x) log f (x)dν(x)+
∫

Ω
u(x) logA f (x)dμ(x)

=
1
L

∫
Ω

v(x)ϕ0( f (x))dν(x)−
∫

Ω
u(x)ϕ0(A f (x))dμ(x) = ξ (0).

Similary, for s = 1, the identity

1
L

∫
Ω

v(x) f (x) dν(x)−
∫

Ω
u(x)A f (x) dμ(x) = 0 (33)

yields

lim
s→1

ξ (s) =
1
L

∫
Ω

v(x) f (x) log f (x)dν(x)−
∫

Ω
u(x)A f (x) logA f (x)dμ(x)

= ξ (1),

so ξ is continuous on the entire real line. To prove that it is exponentially convex, it
suffices to check condition (30). Fix k ∈ N , αi ∈ R , and si ∈ R , for i ∈ {1, . . . ,k} . De-

note si j =
si + s j

2
and define the function Φ : R+ → R by Φ(x) =

k

∑
i=1

k

∑
j=1

αiα jϕsi j(x) .

By using Lemma 1, we easily get

Φ′′(x) =
k

∑
i=1

k

∑
j=1

αiα jx
si j−2 =

(
k

∑
i=1

αix
si
2 −1

)2

� 0, x ∈ R+,

so the function Φ is convex. Thus, applying Corollary 1 to this function Φ , we finally
get

k

∑
i=1

k

∑
j=1

αiα jξ (si j)

=
k

∑
i=1

k

∑
j=1

αiα j

[
1
L

∫
Ω

v(x)ϕsi j ( f (x)) dν(x)−
∫

Ω
u(x)ϕsi j (A f (x)) dμ(x)

]

=
1
L

∫
Ω

v(x)
k

∑
i=1

k

∑
j=1

αiα jϕsi j ( f (x)) dν(x)

−
∫

Ω
u(x)

k

∑
i=1

k

∑
j=1

αiα jϕsi j (A f (x)) dμ(x)

=
1
L

∫
Ω

v(x)Φ( f (x)) dν(x)−
∫

Ω
u(x)Φ(A f (x)) dμ(x) � 0.

Therefore, (30) holds and ξ is exponentially convex. Since every exponentially convex
function is log-convex, (31) follows directly from (27). �
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REMARK 4. Theorem 2 does not hold without assuming that tΩ = Ω for λ -a.e.
t ∈ supp λ . This condition was crucial in proving identities (32) and (33).

As a direct consequence of Theorem 2 we get an upper bound for the Boas differ-
ence ξ .

COROLLARY 10. Let the conditions of Theorem 2 be fulfilled. Then

ξ (r) � [ξ (p)]
q−r
q−p · [ξ (q)]

r−p
q−p (34)

holds for all p,q,r ∈ R , such that p < r < q.

REMARK 5. Relation (34) can be written as

ξ (r) � inf
p,q∈R
p<r<q

[ξ (p)]
q−r
q−p · [ξ (q)]

r−p
q−p , r ∈ R.

As a consequence of Theorem 2, we get the following modified Galvani’s theorem
generated by the Boas difference ξ .

COROLLARY 11. Under the conditions of Theorem 2, the inequality

(
ξ (p)
ξ (r)

) 1
p−r

�
(

ξ (t)
ξ (s)

) 1
t−s

. (35)

holds for all p,r,s, t ∈ R , such that r � s, p � t , r 
= p, and s 
= t .

Proof. Since the function ξ is exponentially convex, thus log-convex, inequality
(35) follows from (28). �

REMARK 6. The results obtained in Theorem 2, Corollary 10 and Corollary 11
can be rewritten with ξi, i = 1,2,3, defined by (24), (25) and (26), respectively.

4. Cauchy-type means related to the Boas inequality

Notice that each side of relation (35) has a form of a mean, while (35) as a whole
looks like an inequality between two means of the same type. Here, we justify this
conjecture by proving that the expressions mentioned above are means of the Cauchy
type. For more information about means and their inequalities see e.g. [4].

Let the measures λ ,μ ,ν , the number L , the λ -balanced set Ω , the interval I , and
the functions u,v, f , and A f be as in Theorem 1 and Corollary 1. First, we define the
linear functional F : C2(I) → R by

F(h) =
1
L

∫
Ω

v(x)h( f (x))dν(x)−
∫

Ω
u(x)h(A f (x))dμ(x). (36)
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Its properties will enable us to introduce a new class of the Cauchy-type means related
to the Boas difference (23).

Observe that F(ϕp) = ξ (p) , p ∈ R , where the functions ϕp are defined by (21)
and ξ denotes the Boas difference introduced by (23). Hence, F can be considered
as a generalized Boas difference. Moreover, according to Theorem 2, the mapping
p 
→ F(ϕp) is continuous on R .

Next, we have to adjust some known mean value theorems to our context. The first
result in this direction is the following Lagrange-type mean value theorem.

THEOREM 3. Under the conditions of Corollary 1, suppose that I is a compact
interval in R . If h ∈C2(I) , then there exists c ∈ I such that the identity

F(h) = h
′′
(c) ·F(ϕ2) (37)

holds, where F is defined by (36) and ϕ2 : I → R , ϕ2(x) =
x2

2
.

Proof. Since h
′′

is continuous on the compact set I , there exist m = min
x∈I

h
′′
(x) and

M = max
x∈I

h
′′
(x) . Define hm,hM : I → R by

hm(x) = h(x)− m
2

x2 = h(x)−mϕ2(x),

hM(x) =
M
2

x2−h(x) = Mϕ2(x)−h(x).

Since hm,hM ∈ C2(I) and h
′′
m(x) = h

′′
(x)−m � 0, h

′′
M(x) = M − h

′′
(x) � 0, for all

x ∈ I , we conclude that hm and hM are convex functions on I . Therefore, applying
Corollary 1 to these functions as Φ , we get F(hm) � 0 and F(hM) � 0. Obviously,
F(hm) = F(h)−mF(ϕ2) and F(hM) = MF(ϕ2)−F(h) , so therefrom we obtain

mF(ϕ2) � F(h) � MF(ϕ2). (38)

Notice that function ϕ2 is convex, so F(ϕ2) � 0 holds by Corollary 1. In particular, if
F(ϕ2) = 0, then from (38) we get F(h) = 0, so (37) holds for all c ∈ I . On the other

hand, if F(ϕ2) > 0, then (38) yields m � F(h)
F(ϕ2)

� M . Since h
′′

takes all values from

[m,M] , there exists c ∈ I such that

h
′′
(c) =

F(h)
F(ϕ2)

,

so the proof is completed. �
Now, we state and prove a new Cauchy-type mean value theorem.
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THEOREM 4. Let I be a compact interval in R and ϕ2 : I → R be defined by

ϕ2(x) =
x2

2
. Under the conditions of Corollary 1, let F be defined by (36) and let

F(ϕ2) > 0 . If the functions h1,h2 ∈C2(I) are such that F(h1),F(h2) 
= 0 , and h
′′
2(x) 
=

0 , for all x ∈ I , then there exists c ∈ I such that

h
′′
1(c)

h
′′
2(c)

=
F(h1)
F(h2)

. (39)

Proof. Define the function h0 = F(h2)h1 −F(h1)h2 . Then h0 ∈ C2(I) and we
have F(h0) = F(h2)F(h1)−F(h1)F(h2) = 0. On the other hand, from Theorem 3 we
know that there exists c ∈ I such that F(h0) = h

′′
0(c)F(ϕ2) . Since F(ϕ2) 
= 0, we get

h
′′
0(c) = 0, that is, F(h2)h

′′
1(c) = F(h1)h

′′
2(c) , which is equivalent to (39). �

A special case of Theorem 4 related to power functions defined on a compact
interval I ⊆ R+ will be of our special interest. Namely, let h1,h2 : I → R be defined
by h1(x) = xp and h2(x) = xr , where p,r ∈ R \ {0,1} , p 
= r . Then h1(x) = p(p−
1)ϕp(x) , h2(x) = r(r−1)ϕr(x) , h

′′
1(x) = p(p−1)xp−2 and h

′′
2(x) = r(r−1)xr−2 , where

ϕp and ϕr are given by (21). Hence, we obtain the following result.

COROLLARY 12. Let the conditions of Corollary 1 be fulfilled with a positive
function f with values in a compact interval I ⊆R+ and let F(ϕs) > 0 , s ∈R\{0,1} ,
where ϕs and F are defined by (21) and (36), respectively. Then

(
F(ϕp)
F(ϕr)

) 1
p−r

∈ I, (40)

for all p,r ∈ R , (p− r)p(p−1)r(r−1) 
= 0 .

Proof. Fix p,r ∈R , such that (p−r)p(p−1)r(r−1) 
= 0. Observe that the power
functions h1 and h2 defined before the statement of Corollary 12 fulfill the conditions
of Theorem 4. Hence, there exists c ∈ I such that

p(p−1)cp−2

r(r−1)cr−2 =
F(h1)
F(h2)

. (41)

According to the definition (21) of the functions ϕs, s ∈ R , identity (41) reads

cp−r =
F(ϕp)
F(ϕr)

,

so we get (40). �
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Notice that expression (40) can be written in the form

(
F(ϕp)
F(ϕr)

) 1
p−r

=
(

ξ (p)
ξ (r)

) 1
p−r

according to the definition (23) of the Boas difference ξ . As announced, under the
conditions of Corollary 12, we introduce a new two-variable function M with values in
I , defined by

M(p,r) =
(

ξ (p)
ξ (r)

) 1
p−r

, p,r ∈ R\ {0,1}, p 
= r. (42)

Evidently, M is symmetric, that is, M(p,r) = M(r, p) holds for all p,r ∈ R \ {0,1} ,
p 
= r . Moreover, by Theorem 2, M is also continuous in both arguments.

Now, we would like to extend this function to R2 . Fix r ∈ R \ {0,1} . Applying
continuity of the mapping ξ on R , we obtain

lim
p→0

M(r, p) = lim
p→0

M(p,r) = lim
p→0

exp

(
(logξ (p)− logξ (r))

p− r

)

= exp

(
lim
p→0

logξ (p)− logξ (r)
p− r

)
= exp

(
logξ (r)− logξ (0)

r

)

=
(

ξ (r)
ξ (0)

) 1
r

and, analogously,

lim
p→1

M(r, p) = lim
p→1

M(p,r) =
(

ξ (1)
ξ (r)

) 1
1−r

.

Thus, in order to keep continuity of M , we define

M(0,r) = M(r,0) =
(

ξ (r)
ξ (0)

) 1
r

and M(1,r) = M(r,1) =
(

ξ (r)
ξ (1)

) 1
r−1

, (43)

r ∈ R\ {0,1} , as in formula (42).
Observe that ξ is derivable for r ∈ R\ {0,1} and

ξ
′
(r) =

1
r(r−1)

[
(1−2r)ξ (r)+

1
L

∫
Ω

v(x) f r(x) log f (x)dν(x)

−
∫

Ω
u(x)(A f (x))r logA f (x) dμ(x)

]
.

Therefore, applying L’Hospital rule [13], for r ∈ R\ {0,1} we have
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lim
p→r

M(p,r) = lim
p→r

M(r, p) = exp

(
lim
p→r

logξ (p)− logξ (r)
p− r

)

= exp

{
1

r(r−1)

[
1−2r+

1
ξ (r)

(
1
L

∫
Ω

v(x) f r(x) log f (x)dν(x)

−
∫

Ω
u(x)(A f (x))r logA f (x) dμ(x)

)]}
, (44)

which enables us to set M(r,r) = lim
p→r

M(p,r), r ∈ R\{0,1} . Finally, to define M(0,0)

and M(1,1) , notice that for p ∈ {0,1} we get

lim
r→p

ξ
′
(r) = lim

r→p

1
2r−1

[
−2ξ (r)+ (1−2r)ξ

′
(r)

+
1
L

∫
Ω

v(x) f r(x) log2 f (x) dν(x)

−
∫

Ω
u(x)(A f (x))r log2 A f (x) dμ(x)

]

= 2(−1)pξ (p)− lim
r→p

ξ
′
(r)+ (−1)p

[∫
Ω

u(x)(A f (x))p log2 A f (x) dμ(x)

−1
L

∫
Ω

v(x) f p(x) log2 f (x) dν(x)
]
,

so

ξ
′
(p) = lim

r→p
ξ

′
(r) = (−1)pξ (p)+

(−1)p

2

[∫
Ω

u(x)(A f (x))p log2 A f (x) dμ(x)

−1
L

∫
Ω

v(x) f p(x) log2 f (x) dν(x)
]
, p ∈ {0,1}.

Hence, we set

M(0,0) = lim
r→0

M(r,r) = lim
r→0

M(r,0)

= exp

(
lim
r→0

logξ (r)− logξ (0)
r

)
= exp

ξ ′
(0)

ξ (0)

= exp

{
1+

1
2ξ (0)

[∫
Ω

u(x) log2 A f (x) dμ(x)

−1
L

∫
Ω

v(x) log2 f (x) dν(x)
]}

(45)

and
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M(1,1) = lim
r→1

M(r,r) = lim
r→1

M(r,1)

= exp

(
lim
r→1

logξ (r)− logξ (1)
r−1

)
= exp

ξ ′
(1)

ξ (1)

= exp

{
−1+

1
2ξ (1)

[
1
L

∫
Ω

v(x) f (x) log2 f (x) dν(x)

−
∫

Ω
u(x)A f (x) log2 A f (x) dμ(x)

]}
. (46)

By the above construction, we have obviously defined a continuous function M :
R2 → R , with values in the compact interval I . Considering its other properties, in
fact, we obtained a new class of two-parametic means of the Cauchy-type. Namely, the
following theorem holds.

THEOREM 5. Under the conditions of Corollary 12, let the function M : R2 → R
be defined by relations (42) - (46). Then M is a continuous and symmetric function
with values in the compact interval I , such that the inequality

M(p,r) � M(q,s) (47)

holds for all p,q,r,s ∈ R, p � q,r � s.

Proof. Taking into account the previous construction and analysis, it is only left
to prove the monotonicity property (47) of M . However, it follows immediately from
Corollary 11 and from continuity of M . �

Acknowledgements. The research of the authors was supported by the Croatian
Ministry of Science, Education and Sports, under the Research Grants 058-1170889-
1050 (first author), 117-1170889-0888 (second author) and 082-0000000-0893 (third
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Department of Mathematics

University of Zagreb
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Kačićeva 26

10000 Zagreb, Croatia
e-mail: dora@grad.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


