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Abstract. We prove an interpolation theorem for integral operators with positive kernel on the
variable Lebesgue spaces. As an application we show that the set of exponents for spaces on
which the Hardy-Littlewood maximal operator is bounded is convex.

The variable Lebesgue spaces are Banach function spaces that generalize the clas-
sical Lp spaces. Given a set Ω ⊂ R

n , a measurable function p(·) : Ω → [1,∞] is called
an exponent function, and we denote this by p(·) ∈ P(Ω) . For p(·) ∈ P(Ω) , let

Ωp(·)
∞ = {x ∈ Ω : p(x) = ∞} , and let p+ = esssup{p(x) : x ∈ Ω} .

For any measurable function f defined on Ω let

ρp(·)( f ) =
∫

Ω\Ωp(·)
∞

| f (x)|p(x) dx+‖ f‖
L∞(Ωp(·)

∞ )
.

Define Lp(·)(Ω) to be the set of all functions f such that ρp(·)( f/λ ) < ∞ for some

λ > 0. Then Lp(·)(Ω) is a Banach space with the norm

‖ f‖Lp(·)(Ω) = ‖ f‖p(·) = inf{λ > 0 : ρp(·)( f/λ ) � 1}.

These spaces have been studied extensively in the past twenty years, and we refer the
reader to [5, 6, 7, 9, 11] for their basic properties and further references.

In the study of harmonic analysis on the classical Lp spaces an important tool
is the interpolation of operators, either via the Marcinkiewicz interpolation theorem
(i.e., the real interpolation method) or the Riesz-Thorin theorem (i.e., the complex in-
terpolation method). It remains an important open question whether the Marcinkiewicz
interpolation theorem can be generalized to variable Lebesgue spaces: see [6]. The
Riesz-Thorin theorem was generalized to variable Lebesgue spaces by Musielak [10]
as part of a more general result on interpolation in modular spaces. A simpler proof of
his result was given by Diening, Hästö and Nekvinda [6]; also see [5].
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The purpose of this note is to prove an interpolation theorem for integral operators
with positive kernels. Hereafter, K : Ω×Ω→ [0,∞) will be a non-negative, measurable
function, and we will define the integral operator T by

T f (x) =
∫

Ω
K(x,y) f (y)dy.

Given pi(·) ∈ P(Ω) , i = 1,2, define the interpolation exponents

pθ (·), qθ (·) : Ω → [1,∞]

by
1

pθ (x)
=

θ
p1(x)

+
1−θ
p2(x)

,
1

qθ (x)
=

θ
q1(x)

+
1−θ
q2(x)

,

with the convention that 1/∞ = 0.

THEOREM 1. Given a set Ω ⊆ R
n , and pi(·), qi(·) ∈ P(Ω) , i = 1,2 , suppose

‖T f‖qi(·) � Bi‖ f‖pi(·), i = 1,2.

Then for each θ , 0 < θ < 1 ,

‖T f‖qθ (·) � 48Bθ
1B1−θ

2 ‖ f‖pθ (·). (1)

REMARK 2. The constant 48 in (1) is a universal constant; however, implicit in
our proof is a sharper constant that depends on the exponent functions. Details are left
to the reader.

In Theorem 1 we have stronger hypotheses than those for the general complex
interpolation theorem (see [6, 10]) since our result only holds for positive integral op-
erators. In these results it was assumed that p+ < ∞ ; more recently, however, in [5]
complex interpolation was extended to the case of unbounded exponents. Theorem 1
also has the advantage of a much simpler proof.

When p1(·) = q1(·)= p(·) , p2(·) = q2(·)= p′(·) , where p′(·) is the dual exponent
defined by

1 =
1

p(x)
+

1
p′(x)

,

then for θ = 1/2 we have pθ (·)= 2. In this particular case the conclusion of Theorem1
also follows from an interpolation result due to Karlovich and Lerner [8].

As a corollary to Theorem 1 we can prove an extension of a convexity result for
the Hardy-Littlewood maximal operator. The Hardy-Littlewood maximal operator is
defined by

M f (x) = sup
Q�x

1
|Q|

∫
Q
| f (y)|dy = sup

Q�x
−
∫

Q
| f (y)|dy,

where the supremum is taken over all cubes Q with sides parallel the coordinate axes.
(Equivalently, the averages may be taken over balls that contain x .) The boundedness
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of the maximal operator on the variable Lebesgue spaces has been studied extensively,
and we refer the reader to [2, 4, 5] for details and further references.

In [6] it was shown that set of exponents p(·)∈P(Ω) such that p+ < ∞ and M is
bounded on Lp(·)(Ω) is convex: i.e., if M is bounded on Lp1(·)(Ω) and Lp2(·)(Ω) , then
it is bounded on Lpθ (·)(Ω) . The proof relied on the characterization of the bounded-
ness of the maximal operator in terms of certain linear operators. However, there exist
unbounded exponents p(·) such that M is bounded on Lp(·)(Ω) , and this proof does
not work in this setting, even using the full complex interpolation theorem. We can
generalize this result by removing the restriction that p+ is finite. Since the maximal
operator is not an integral operator, we cannot apply Theorem 1 to it; rather we proceed
indirectly. Given any measurable function f there exists a collection of disjoint open
sets Ek and cubes Qk with Ek ⊂ Qk , such that if we define

K0(x,y) = ∑
k

χEk(x)|Qk|−1χQk(y), (2)

then the operator T with this kernel satisfies

|T f (x)| � T (| f |)(x) � M f (x) � 2T (| f |)(x).
(Note that the first two inequalities always hold for any such operator T ; the key point
is that it is possible to find a partition such that the last inequality holds. This is the
well-known technique of “linearizing” the maximal operator: see, for instance, de la
Torre [3].) It follows at once from this inequality that M is bounded on a variable
Lebesgue space if and only if the family of linear operators with kernels of the form
(2) are bounded with uniform constant. Therefore, we can apply Theorem 1 to these
operators to get the following corollary.

COROLLARY 3. Given Ω and pi(·) ∈ P(Ω) , i = 1,2 , suppose the Hardy-Little-
wood maximal operator satisfies ‖M f‖pi(·) � Bi‖ f‖pi(·) . Then for all θ , 0 < θ < 1 ,

‖M f‖pθ (·) � 48Bθ
1B1−θ

2 ‖ f‖pθ (·).

Proof of Theorem 1. Our proof is modelled on the proof of this result for classical
Lebesgue spaces given by Bennett and Sharpley [1]. Fix θ and fix f ∈ Lpθ (·)(Ω) ;
since |T (a f )(x)| � |a|T (| f |)(x) , we may assume without loss of generality that f is
non-negative and ‖ f‖pθ (·) = 1. Given any exponent p(·) ,

‖ f‖p(·) � 3 sup
g

∫
Ω
| f (x)g(x)|dx,

where the supremum is taken over all g ∈ Lp′(·)(Ω) with ‖g‖p′(·) � 1. (See [9].)
Therefore, to prove (1) it will suffice to prove that for all non-negative functions g ∈
Lq′θ (·)(Ω) , ‖g‖q′θ (·) � 1, ∫

Ω
T f (x)g(x)dx � 16Bθ

1Bθ
2 .
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To prove this we first define the functions fi(x) = f (x)
pθ (x)
pi(x) . To make sense of this

when the exponent functions are infinite, note that Ωpθ (·)
∞ ⊂ Ωp1(·)

∞ ∩Ωp2(·)
∞ . Then for

x ∈ Ωpi(·)
∞ we define

pθ (x)
pi(x)

=

{
1 x ∈ Ωpθ (·)

∞

0 x ∈ Ωpi(·)
∞ \Ωpθ (·)

∞ .

We define the functions gi(x) = g(x)
q′θ (x)

q′i(x) in the same way, using the fact that Ωq′θ (·)
∞ ⊂

Ωq′1(·)∞ ∩Ωq′2(·)∞ and observing that for exponent functions, “duality” and “interpolation”
commute. More precisely, given exponents q1(·), q2(·) , then the interpolation expo-
nent between the dual exponents q′1(·) and q′2(·) is the same as q′θ (·) , the dual of the
interpolation exponent between q1(·) and q2(·) .

We now claim that ‖ fi‖pi(·), ‖gi‖q′i(·) � 2, i = 1,2. We will show this for f1 ; the
proofs for the other three functions are identical. Since ‖ f‖pθ (·) = 1, ρpθ (·)( f ) � 1
(see [9]). In particular,

∫
Ω\Ωpθ (·)

∞
| f (x)|pθ (x) dx � 1, ‖ f‖

L∞(Ωpθ (·)
∞ )

� 1. (3)

For almost every x ∈ Ωp1(·)
∞ , f1(x) � 1. If x ∈ Ωpθ (·)

∞ , this follows from the second

inequality in (3) and the fact that pθ (x)/p1(x) = 1; for x ∈ Ωp1(·)
∞ \Ωpθ (·)

∞ this follows
since pθ (x)/p1(x) = 0. Hence,

‖ f1‖p1(·)

= inf

{
λ > 0 :

∫
Ω\Ωp1(·)

∞

( | f1(x)|
λ

)p1(x)

dx+ λ−1‖ f1‖L∞(Ωp1(·)
∞ )

� 1

}

� inf

{
λ > 0 :

∫
Ω\Ωp1(·)

∞

( | f1(x)|
λ

)p1(x)

dx+ λ−1 � 1

}

= inf

{
λ > 1 :

∫
Ω\Ωp1(·)

∞

( | f1(x)|
λ

)p1(x)

dx+ λ−1 � 1

}

� inf

{
λ > 1 : λ−1

∫
Ω\Ωpθ (·)

∞
| f (x)|p(x) dx+ λ−1 � 1

}
� inf

{
λ > 1 : 2λ−1 � 1

}
= 2.

Again by our definition of the exponentswe have the identity f (x)= f1(x)θ f2(x)1−θ

and similarly for g . Therefore, since K , f and g are non-negative, by Hölder’s inequal-
ity with exponent θ−1 , the generalized Hölder’s inequality in variable Lebesgue spaces
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(see [9]) and our hypothesis, we have that

∫
Ω

T f (x)g(x)dx

=
∫

Ω

∫
Ω

K(x,y) f (y)g(x)dydx

=
∫

Ω

∫
Ω

(
K(x,y) f1(y)g1(x)

)θ (
K(x,y) f2(y)g2(x)

)1−θ
dydx

�
(∫

Ω

∫
Ω

K(x,y) f1(y)g1(x)dydx

)θ

×
(∫

Ω

∫
Ω

K(x,y) f2(y)g2(x)dydx

)1−θ

=
(∫

Ω
T f1(x)g1(x)dx

)θ (∫
Ω

T f2(x)g2(x)dx

)1−θ

�
(
4‖T f1‖q1(·)‖g1‖q′1(·)

)θ (
4‖T f2‖q2(·)‖g2‖q′2(·)

)1−θ

� 8Bθ
1B1−θ

2 ‖ f1‖θ
p1(·)‖ f2‖1−θ

p2(·)
� 16Bθ

1B1−θ
2 .

This completes the proof. �

The author would like to thank the referees for their comments and clarifications
about the complex interpolation theorem in variable Lebesgue spaces.
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