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SHEPHARD TYPE PROBLEMS FOR THE NEW GEOMETRIC BODY Γ−pK

WAN XIAOYAN AND WANG WEIDONG

(Communicated by J. Pečarić)

Abstract. Lutwak, Yang and Zhang proposed the notion of the new geometric body Γ−pK . In
this article, we research the Shephard-type problems for the new geometric body Γ−pK .

1. Introduction and main results

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space R

n . For the set of convex bodies containing the origin in
their interiors and the set of origin-symmetric convex bodies in R

n , we write K n
o and

K n
c , respectively. Let S n

o denote the set star bodies (about the origin) in R
n . Let Sn−1

denote the unit sphere in R
n , denote by V (K) the n -dimensional volume of body K ,

for the standard unit ball B in R
n , denote ωn = V (B) .

Lutwak, Yang and Zhang in [2] introduced the new geometric body Γ−pK as
follows: Let K ∈ K n

o , real p > 0, the new geometric body Γ−pK is defined as the
body whose radial function is given by:

ρ−p
Γ−pK

(u) =
1

V (K)

∫
Sn−1

|u · v|pdSp(K,v) (1.1)

for all u ∈ Sn−1 . Note for p � 1 the body Γ−pK is a convex body. Define Γ−∞K by

Γ−∞K = lim
p→∞

Γ−pK.

Further, when K is origin-symmetric, Γ−∞K = K .
From (1.1), we easily see

Γ−p(−K) = Γ−pK. (1.2)

The new geometric body Γ−pK has great attention from other articles (see [8, 9,
11, 12]). Especially, Wang and Leng in [12] gave the Shephard-type problem for the
new geometric body Γ−pK as follows.

Mathematics subject classification (2010): 52A20, 52A40.
Keywords and phrases: New geometric body, Shephard-type problem, Lp -mixed volume, Lp -affine

surface area.
Research is supported in part by the Natural Science Foundation of China (Grant No. 10671117) and Academic

Mainstay Foundation of Hubei Province of China(Grant No. D200729002) and Science Foundation of China Three Gorges
University.

c© � � , Zagreb
Paper MIA-15-57

645

http://dx.doi.org/10.7153/mia-15-57


646 W. XIAOYAN AND W. WEIDONG

THEOREM A. If K ∈ Zp , L ∈ K n
o , p � 1 and Γ−pK ⊆ Γ−pL, then

V (K) � V (L), (1.3)

with equality for p = 1 if and only if K and L are translation, for p > 1 if and only if
K = L. Here Zp denotes the class of Lp -centroid bodies, i.e.

Zp = {Z|hp(Z, ·) = hp(ΓpM, ·) =
1

cn,pV (M)

∫
M
| u · x |p dx, f or M ∈ S n

o },

where ΓpM denotes the Lp -centroid body of M which was introduced by Lutwak and
Zhang (see [6]).

In this article, we shall continuously study the new geometric body Γ−pK . Firstly,
associated with Theorem A, we give the negative form of the Shephard-type problem
for the new geometric body Γ−pK as follows:

THEOREM 1.1. If 1 � p � n, K is not an origin-symmetric body, then there exists
an origin-symmetric star body L, such that

Γ−pK ⊂ Γ−pL,

but
V (K) > V (L). (1.4)

Secondly, we also get Lp -affine surface area form of Shephard-type problem for
the new geometric body Γ−pK .

THEOREM 1.2. For K ∈ W p
n , L ∈ F n

o , p � 1 , if Γ−pK ⊆ Γ−pL, then

Ω
n+p

n
p (K)
V (K)

� Ω
n+p

n
p (L)
V (L)

, (1.5)

with equality for p = 1 if and only if K and L are translations, for p > 1 if and only if
K = L.

Further, we characterize the equality of two new geometric bodies by Lp -mixed
volume as follows:

THEOREM 1.3. If K,L ∈ K n
o , p � 1 , then Γ−pK = Γ−pL if and only if for any

Q ∈ K n
c

Vp(K,Q)
V (K)

=
Vp(L,Q)

V (L)
. (1.6)

From Theorem 1.3, we get an improve version of Theorem A:

THEOREM 1.4. For K ∈ K n
c , L ∈ K n

o , p � 1 , if

Γ−pK = Γ−pL,

then
V (K) � V (L). (1.7)

with equality for p = 1 if and only if K and L are translations, for p > 1 if and only if
K = L.
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2. Preliminaries

2.1. Support function and radial function

If K ∈ K n , then its support function, hK = h(K, ·) : R
n −→ (−∞,∞) , is defined

by (see [1, 7])
h(K, ·) = max{u · x : x ∈ K}, u ∈ Sn−1,

where u · x denotes the standard inner product of u and x .
If K is a compact star-shaped (about the origin) in R

n , then its radial function,
ρK = ρ(K, ·) : R

n \ {0} −→ [0,∞) , is defined by (see [1, 7])

ρ(K,u) = max{λ � 0 : λ ·u ∈ K}, u ∈ Sn−1.

If ρK is continuous and positive, then K will be called a star body. Two star bodies
K,L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1 .

2.2. Lp -mixed volume

For K,L ∈ K n
o , p � 1 and ε > 0, the Firey Lp -combination K +p ε ·L ∈ K n

o is
defined by (see [4])

h(K +p ε ·L, ·)p = h(K, ·)p + εh(L, ·)p,

where ” · ” in ε ·L denotes the Firey scalar multiplication.
If K,L ∈ K n

o in R
n , then for p � 1, the Lp -mixed volume, Vp(K,L) , of K and

L is defined by (see [4])

n
p
Vp(K,L) = lim

ε−→0+

V (K +p ε ·L)−V(K)
ε

.

Corresponding to each K,L ∈ K n
o , there is a positive Borel measure, Sp(K, ·) , on

Sn−1 such that (see [4])

Vp(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp(K,u). (2.1)

From (2.1), we have
Vp(K,K) = V (K). (2.2)

The Minkowski inequality for the Lp -mixed volume is called Lp -Minkowski inequal-
ity. The Lp -Minkowski inequality was given by Lutwak (see [4, 5]):

THEOREM B. If K,L ∈ K n
o and p � 1 then

Vp(K,L) � V (K)
n−p

n V (L)
p
n , (2.3)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only if
K and L are dilates.
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2.3. Lp -dual mixed volume

For K,L ∈ S n
o , and ε > 0, the Lp -harmonic radial combination, K +−p ε �L ∈

S n
o , of K and L is defined by (see [4, 5])

ρ(K +−p ε �L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

If K,L ∈ S n
o , for P � 1, the Lp -dual mixed volume, V−p(K,L) , of the K and L

is defined by (see [4, 5])

− n
p
V−p(K,L) = lim

ε−→0+

V (K +−p ε �L)−V(K)
ε

.

The definition above and the polar coordinate formula for volume give the follow-
ing integral representation of the Lp -dual mixed volume, V−p(K,L) of K,L ∈ S n

o :

V−p(K,L) =
1
n

∫
Sn−1

ρn+p
K (u)ρ−p

L (u)dS(u), (2.4)

where the integration is with respect to spherical Lebesgue measure S on S n
o .

From the formula (2.4), we get

V−p(K,K) = V (K).

2.4. Lp -mixed affine surface area

For K,L ∈F n
o , p � 1 and i ∈ R , the Lp -mixed affine surface area, Ωp,i(K,L) , of

K and L is defined by (see [10])

Ωp,i(K,L) =
∫

Sn−1
fp(K,u)

n−i
n+p fp(L,u)

i
n+p dS(u).

Specially, for the case i = −p , we have that

Ωp,−p(K,L) =
∫

Sn−1
fp(K,u) fp(L,u)

−p
n+p dS(u). (2.5)

Obviously, from (2.5),we have that

Ωp,i(K,K) = Ωp(K). (2.6)

The Minkowski inequality for the Lp -mixed affine surface area was given by Wang
and Leng (see [10]):

THEOREM C. If K,L ∈ F n
o and p � 1 , i ∈ R , then for i < 0 or i > n,

Ωp,i(K,L)n � Ωp(K)n−iΩp(L)i, (2.7)

with equality for p = 1 if and only if K and L are homothetic, for n �= p > 1 if and
only if K and L are dilates; for 0 < i < n, (2.7) is reverse; for i = 0 or i = n, (2.7) is
identical.
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2.5. Lp -surface area combination

A convex body K ∈K n
o is said to have a Lp -curvature function (see [5]) fp(K, ·) :

Sn−1 −→ R , if its Lp -surface area measure Sp(K, ·) is absolutely continuous with re-
spect to spherical Lebesgue measure S , and

dSp(K, ·)
dS

= fp(K, ·). (2.8)

Let F n
o , F n

c denote the set of all bodies in K n
o , K n

c , respectively, and both of
them have a positive continuous curvature function.

Associate with the volume normalized Lp -Minkowski problem given by Lutwak,
Yang and Zhang, they obtained such result in [3]: Suppose p � 1. If μ is an even
Borel measure on Sn−1 whose support is not contained in a great subsphere of Sn−1 ,
then there exists a convex body K , symmetric about the origin, such that

h(K)1−p

V (K)
dS(K, ·) = dμ . (2.9)

Now according to (2.9), we give the notion of Lp -surface area combination as follows:
For K,L ∈K n

c , λ , n �= p � 1, the Lp -surface area combination, K+̂pL ∈K n
c of

K and L is defined by

dSp(K+̂pL, ·)
V (K+̂pL)

=
dSp(K, ·)

V (K)
+

dSp(L, ·)
V (L)

. (2.10)

According to (2.9), we also should define the Lp -surface area body, ∇̂pK ∈ K n
c ,

of K ∈ K n
o by

dSp(∇̂pK, ·)
V (∇̂pK)

=
1
2
· dSp(K, ·)

V (K)
+

1
2
· dSp(−K, ·)

V (−K)
. (2.11)

Obviously, Lp -surface area body ∇̂pK is origin-symmetric.

3. The Shephard type problems

In this section, we will complete the proof of Theorems. Here we need the follow-
ing several lemmas.

LEMMA 3.1. If K ∈ K n
o , p � 1 , then

V (∇̂pK) � V (K), (3.1)

with equality if and only if K is an origin-symmetric body.
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Proof. From the definition (2.1) and using (2.10), (2.11), we have that for any
Q ∈ K n

c

Vp(∇̂pK,Q)
V (∇̂pK)

=
1
n

1

V (∇̂pK)

∫
Sn−1

hp
Q(v)dSp(∇̂pK,v)

=
1
n

∫
Sn−1

hp
Q(v)

dSp(∇̂pK,v)
V (∇̂pK)

=
1

nV (K)

∫
Sn−1

hp
Q(v)

[
1
2
dSp(K,v)+

1
2
dSp(−K,v)

]

=
1

nV (K)

∫
Sn−1

[
1
2
hp

Q(v)dSp(K,v)
]

+
[
1
2
hp

Q(v)dSp(K,−v)
]

Since Q ∈ K n
c , then hQ(v) = hQ(−v) for all v ∈ Sn−1 . Therefore

Vp(∇̂pK,Q)
V (∇̂pK)

=
1

nV(K)

∫
Sn−1

[
1
2
hp

Q(v)dSp(K,v)+
1
2
hp

Q(−v)dSp(K,−v)
]

=
Vp(K,Q)
2V (K)

+
Vp(K,Q)
2V (K)

=
Vp(K,Q)

V (K)
.

Taking Q = ∇̂pK , from (2.2), we know

Vp(K, ∇̂pK) = V (K).

By using (2.3), we can get

V (K) = Vp(K, ∇̂pK) � V (K)
n−p

n V (∇̂pK)
p
n .

So we have

V (∇̂pK) � V (K).

According to the equality condition of (2.3), we see that equality holds in (3.1) if
and only if K is an origin-symmetric body. �

LEMMA 3.2. If K ∈ K n
o , p � 1 , then

Γ−p∇̂pK = Γ−pK. (3.2)
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Proof. From the definitions (1.1), (2.11) and (1.2), we know for all u ∈ Sn−1 ,

ρ−p
Γ−p∇̂pK

(u) =
1

V (∇̂pK)

∫
Sn−1

|u · v|pdSp(∇̂pK,v)

=
∫

Sn−1
|u · v|p dSp(∇̂pK,v)

V (∇̂pK)

=
1

V (K)

∫
Sn−1

|u · v|p
[
1
2
dSp(K,v)+

1
2
dSp(−K,v)

]

=
1
2

ρ−p
Γ−pK

(u)+
1
2

ρ−p
Γ−p(−K)(u) = ρ−p

Γ−pK
(u).

So we get for all u ∈ Sn−1 ,

ρΓ−p∇̂pK
(u) = ρΓ−pK(u).

From this, (3.2) is obtained. �

Proof of Theorem 1.1. From (3.1), when K is not origin-symmetric, we can get

V (∇̂pK) < V (K).

Since L ∈ K n
c , taking L = (1+ ε)∇̂pK (0 < ε < 1) such that

V (L) < V (K).

By using (3.2), we know for n � p ,

Γ−pL = Γ−p(1+ ε)∇̂pK

= (1+ ε)n−pΓ−p∇̂pK

= (1+ ε)n−pΓ−pK ⊃ Γ−pK.

So (1.4) is obtained. �

LEMMA 3.3. [12] If K ∈ K n
o , L ∈ S n

o , p � 1 , then

Vp(K,ΓpL) =
V (K)

ncn−2,pV (L)
V−p(L,Γ−pK). (3.3)

LEMMA 3.4. If K,L ∈ K n
o , p � 1 , and Γ−pK ⊆ Γ−pL, then for all Z ∈ Zp ,

Vp(K,Z)
V (K)

� Vp(L,Z)
V (L)

. (3.4)

Here Zp denotes the class of Lp -centroid bodies.

Proof. Since Z ∈ Zp , then exists a M ∈ K n
o , such that Z = ΓpM . Hence from

(3.3), we have

Vp(K,Z)
V (K)

=
Vp(K,ΓpM)

V (K)
=

1
ncn−2,pV (M)

V−p(M,Γ−pK)
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Since Γ−pK ⊆ Γ−pL , according to (2.4), we have that

V−p(M,Γ−pK) � V−p(M,Γ−pL)

Therefore,
Vp(K,ΓpM)

V (K)
� Vp(L,ΓpM)

V (L)
.

The (3.4) is obtained. �

LEMMA 3.5. If K,L ∈ F n
o , Q ∈ W p

n , p � 1 , then

Ωp,−p(K,Q)
Ωp,−p(L,Q)

=
Vp(K,Z)
Vp(L,Z)

. (3.5)

Here W p
n = {Q ∈ F n

o : there exists a Z ∈ Zp with fp(Q,u) = h−(n+p)
Z (u)} .

Proof. From (2.1) and (2.5), we have for all Z ∈ Zp ,

Vp(K,Z) =
1
n

∫
Sn−1

hp
Z(u)dSp(K,u)

=
1
n

∫
Sn−1

fp(Q,u)
−p
n+p dSp(K,u)

=
1
n

∫
Sn−1

fp(L,u) fp(Q,u)
−p
n+p dS(u)

=
1
n

Ωp,−p(K,Q).

Similarly, we may get

Vp(L,Z) =
1
n

Ωp,−p(L,Q).

Thus
Ωp,−p(K,Q)
Ωp,−p(L,Q)

=
Vp(K,Z)
Vp(L,Z)

,

This give (3.5). �

Proof of Theorem 1.2. Since Γ−pK ⊆ Γ−pL , thus by (3.4) and (3.5) we know

Ωp,−p(K,Q)
V (K)

/
Ωp,−p(L,Q)

V (L)
=

Vp(K,Z)
V (K)

/
Vp(L,Z)
V (L)

� 1.

Then we have
Ωp,−p(K,Q)

V (K)
� Ωp,−p(L,Q)

V (L)
.

But Q ∈ W p
n , taking Q = K and using (2.6), (2.7), we get

Ωp(K)
V (K)

� Ωp,−p(L,Q)
V (L)

� Ω
n+p

n
p (L)Ω

−p
n

p (K)
V (L)

.
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So

Ω
n+p

n
p (K)
V (K)

� Ω
n+p

n
p (L)
V (L)

.

Equality holds in equality (2.7) for p = 1 if and only if K and L are homothetic,
for p > 1 if and only if K and L are dilates. This together with the condition of
Γ−pK = Γ−pL , we know that equality holds in inequality (1.5) for p = 1 if and only if
K and L are translations, for p > 1 if and only if K = L . �

Proof of Theorem 1.3. First, we prove that if for any Q ∈ K n
c ,

Vp(K,Q)
V (K)

=
Vp(L,Q)

V (L)
,

then Γ−pK = Γ−pL .
From (2.1), we have

Vp(K,Q)
V (K)

=
1

nV (K)

∫
Sn−1

hp
Q(v)dSp(K,v),

Vp(L,Q)
V (L)

=
1

nV(L)

∫
Sn−1

hp
Q(v)dSp(L,v). (3.6)

Since Q ∈ K n
c , taking Q = [−u,u] , then we know for every v ∈ S n−1

hQ(v) = |u · v|. (3.7)

Combing with (3.6), (3.7) and (1.1), we have

Vp(K,Q)
V (K)

=
1

nV (K)

∫
Sn−1

|u · v|pdSp(K,v) =
1
n

ρ−p
Γ−pK

(u),

Vp(L,Q)
V (L)

=
1

nV(L)

∫
Sn−1

|u · v|pdSp(L,v) =
1
n

ρ−p
Γ−pL

(u).

Therefore, if for K,L ∈ K n
o and any Q ∈ K n

c ,

Vp(K,Q)
V (K)

=
Vp(L,Q)

V (L)
,

then we have
Γ−pK = Γ−pL.

Second, we prove that if Γ−pK = Γ−pL , then for any Q ∈ K n
c

Vp(K,Q)
V (K)

=
Vp(L,Q)

V (L)
,
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From definition (1.1) and (1.2), we know that

ρ−p
Γ−pK

(u) =
1
2

ρ−p
Γ−pK

(u)+
1
2

ρ−p
Γ−p(−K)(u)

=
1

2V(K)

∫
Sn−1

|u · v|pd[Sp(K,v)+Sp(−K,v)]

=
1

2V(K)

∫
Sn−1

|u · v|pd[Sp(K,v)+Sp(K,−v)].

Similarly,

ρ−p
Γ−pL

(u) =
1

2V (L)

∫
Sn−1

|u · v|pd[Sp(L,v)+Sp(L,−v)].

Thus if Γ−pK = Γ−pL , then we get

∫
Sn−1

|u · v|pd
[

1
V (K)

(Sp(K,v)+Sp(K,−v))
]

=
∫

Sn−1
|u · v|pd

[
1

V (L)
(Sp(L,v)+Sp(L,−v))

]
,

i.e.
∫

Sn−1
|u · v|pd

[
1

V (K)
(Sp(K,v)+Sp(K,−v))− 1

V (L)
(Sp(L,v)+Sp(L,−v))

]
= 0.

(3.8)
Let

μ(v) =
1

V (K)
[Sp(K,v)+Sp(K,−v)]− 1

V (L)
[Sp(L,v)+Sp(L,−v)],

then (3.8) can be written as
∫

Sn−1
|u · v|pdμ(v) = 0. (3.9)

Note that μ(v) is a continuous, even and non-negative function on the sphere. There-
fore, together with (3.9), we obtain μ(v) = 0, thus

1
V (K)

[Sp(K,v)+Sp(K,−v)]− 1
V (L)

[Sp(L,v)+Sp(L,−v)] = 0.

So

d

[
1

V (K)
(Sp(K,v)+Sp(K,−v))

]
= d

[
1

V (L)
[Sp(L,v)+Sp(L,−v)

]
. (3.10)

Notice that hQ(v) = hQ(−v) for Q ∈ K n
c , this combing with (2.1), we have for any

Q ∈ K n
c ,

Vp(K,Q)
V (K)

=
1

2nV(K)

∫
Sn−1

hQ(v)pd[Sp(K,v)+Sp(K,−v)],
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Vp(L,Q)
V (L)

=
1

2nV(L)

∫
Sn−1

hQ(v)pd[Sp(L,v)+Sp(L,−v)].

Hence, by (3.10) we see
Vp(K,Q)

V (K)
=

Vp(L,Q)
V (L)

.

Then (1.6) is obtained. �

Proof of Theorem 1.4. Since K ∈ K n
c , thus let Q = K in (1.6), then by (2.2) and

inequality (2.3) we get

V (L) = Vp(L,K) � V (L)
n−p

n V (K)
p
n ,

i.e.
V (K) � V (L).

According to equality conditions of inequality and combine with Γ−pK = Γ−pL ,
we know that equality hold for p = 1 if and only if K and L are translation, for p > 1
if and only if K = L . �

As an application of Theorem 1.3, we also obtain an interesting result as follows:

COROLLARY 3.1. If K,L ∈ K n
c , n �= p > 1 , and Γ−pK = Γ−pL, then K = L.

Proof. From (1.6) and K ∈K n
c , taking K = Q , and using (2.2) and (2.3), we have

V (L) = Vp(L,K) � V (L)
n−p

n V (K)
p
n .

Thus
V (K) � V (L), (3.10)

and equality holds for p > 1 if and only if K and L are dilates.
Similarly, taking L = Q in (1.6), we get

V (K) � V (L), (3.11)

and equality holds for p > 1 if and only if K and L are dilates.
Combing with the (3.10) and (3.11), we have V (K) = V (L) , and K and L are

dilates. From this, let K = cL (c > 0) in V (K) = V (L) , then

V (cL) = cnV (L) = V (L),

thus c = 1. This yields K = L . �

Acknowledgements

We wish to thank the referees for this paper. Research is supported in part by the
Natural Science Foundation of China (Grant No. 10671117) and Science Foundation of
China Three Gorges University.



656 W. XIAOYAN AND W. WEIDONG

RE F ER EN C ES

[1] R. J. GARDNER, Geometric Tomography, Second ed., Cambridge Univ. Press, Cambridge, 2006.
[2] E. LUTWAK, D. YANG AND G. Y. ZHANG, Lp John ellipsoids, Proc. London Math. Soc. 90 (2005),

497–520.
[3] E. LUTWAK, D. YANG AND G. Y. ZHANG, On the Lp -Minkowski problem, Trans. Amer. Math. Soc.

356 (2003), 4359–4370.
[4] E. LUTWAK, The Brunn-Minkowski-Firey theory I: mixed volumes and the minkowski problem, J.

Differential Geom. 38, 1 (1993), 131–150.
[5] E. LUTWAK, The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math.

118, 2 (1996), 244–294.
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