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Abstract. Lyapunov type inequality, for the existence of the solution of the equation including
(generalized) p -Laplacian:

(−1)(m)(
∣∣u(m)(x)|p−2u(m)(x)

)(m) = r(x)|u(x)|p−2u(x) (a � x � b)

under clamped boundary condition is obtained. The usage of the best constant of Lp Sobolev
inequality clarifies the process for obtaining such inequality.

1. Introduction

Let us consider the second-order linear differential equation:{
u′′(x)+ r(x)u(x) = 0 (a � x � b)
u(a) = u(b) = 0,

(1)

where r ∈C([a,b], [0,∞)) . It is well known that the Lyapunov inequality:

4
b−a

<

∫ b

a
r(x)dx (2)

gives a necessary condition for the existence of non-trivial classical solution of (1).
Various extensions and improvements for the above result have been attempted; see for
example, Ha [2], Yang [6] and their references. We would like to note that all such
results consider linear equations which are extensions of (1). On the other hand, J.
Pinasco recently obtained the necessary condition for the existence of the non-trivial
solution of the nonlinear equation including p -Laplacian;

−
(
|u′(x)|p−2u′(x)

)′
= r(x)|u(x)|p−2u(x) (a � x � b) (3)
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under Dirichlet boundary condition [3] and Dirichlet-Neumann boundary condition [4].
This paper studies the necessary condition for the existence of the non-trivial solution of
the following clamped boundary value problem including (generalized) p -Laplacian:

⎧⎨
⎩(−1)(m)

(
|u(m)(x)|p−2u(m)(x)

)(m)
= r(x)|u(x)|p−2u(x) (a � x � b)

u(i)(a) = u(i)(b) = 0 (i = 0,1, · · ·m−1),
(4)

for m = 1,2,3 and Dirichlet-Neumann boundary value problem:

⎧⎨
⎩−

(
|u′(x)|p−2u′(x)

)′
= r(x)|u(x)|p−2u(x) (a � x � b)

u′(a) = u(b) = 0.
(5)

For the case m = 1 of problem (4) and problem (5), although the results have already
been known by Pinasco [3, 4], alternative proofs which use the best constant of Sobolev
inequality are presented. To introduce the result precisely, let us fix some notations. Let
Wm,p(a,b) be a Sobolev space defined on the interval [a,b] ; Wm,p(a,b) := {u |u(i) ∈
Lp(a,b) (i = 0, . . . ,m)} , Wm,p

0 (a,b) a sub-space of Wm,p(a,b) whose derivatives up
to m−1 vanish at x = a,b , where u(i) denotes i-th derivative of u in a distributional
sense. We say u ∈Wm,p

0 (a,b) is a solution of (4), for arbitrary v ∈Wm,p
0 (a,b) it holds

that

∫ b

a
|u(m)(x)|p−2u(m)(x)v(m)(x)dx =

∫ b

a
r(x)|u(x)|p−2u(x)v(x)dx (6)

and u ∈W 1,p(a,b) , u(b) = 0 is a solution of (5), for arbitrary v ∈W 1,p(a,b) , v(b) = 0
it holds that

∫ b

a
|u′(x)|p−2u′(x)v′(x)dx =

∫ b

a
r(x)|u(x)|p−2u(x)v(x)dx. (7)

Note that from (7), u′(a) = 0 holds. With these settings we have the following results:

THEOREM 1. Let m = 1,2,3 , p > 1 , q be a conjugate exponent of p , i.e. 1/p+
1/q = 1 and u ∈Wm,p

0 (a,b) a non-trivial solution of (4). Then

1
C(m, p)p <

∫ b

a
r(x)dx (8)

holds, where C(m, p) is a best constant of Lp Sobolev inequality:

(
sup

a�x�b
|v(x)|) � C

(∫ b

a
|v(m)(x)|pdx

) 1
p (v ∈Wm,p

0 (a,b)). (9)
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Concrete form of C(m, p) is given by

C(1, p) =
(b−a)1/q

2
, C(2, p) =

(b−a)(q+1)/q

23(q+1)1/q
,

C(3, p) = 2
1−2q

q

(∫ a+b
2 +α

a+b
2

(x− a+b
2

)q(
a+b

2
+ α − x)qdx

+
∫ b

a+b
2 +α

(x− a+b
2

)q(x− a+b
2

−α)qdx

) 1
q

where α in C(3, p) is the unique solution of the equation

∫ a+b
2 +α

a+b
2

(x− a+b
2

)q(
a+b

2
+ α − x)q−1dx =

∫ b

a+b
2 +α

(x− a+b
2

)q(x− a+b
2

−α)q−1dx

satisfying 0 < α < (b− a)/2 . Moreover, (8) is sharp in the sense, that there exists u
and r such that the right-hand-side of (8) can be arbitrarily closed to left-hand-side.

THEOREM 2. Let p > 1 and u∈W 1,p(a,b) be a solution of (5), then it holds that

1
(b−a)p−1 <

∫ b

a
r(x)dx. (10)

Moreover, (10) is sharp.

2. Proof of Theorem 1 and 2

To prove Theorem 1 and 2, we make use of the best constant of Sobolev inequality
as (9). It should be noted that the idea to use the best constant of Sobolev inequality for
obtaining Lyapunov type inequality owes to Brown-Hinton [1, Theorem 2.1].

LEMMA 1. Let m = 1,2,3 , p > 1 and let u ∈Wm,p
0 (a,b) , then the best constant

of Sobolev inequality (9) is given by C(m, p) in Theorem 1. Moreover, the functions
u∗ which attain the best constants take their absolute maximums at x = (a+ b)/2 for
m = 1,2,3 .

Proof. See [5, Theorem 1.1]. �

LEMMA 2. Let 1 < p and S := {φ ∈W 1,p(a,b)| φ(b) = 0} . Then, for u ∈ S ,
the best constant of Sobolev inequality

sup
a�x�b

|u(x)| � C ·
(∫ b

a
|u′(x)|pdx

)1/p
(11)

is (b− a)(p−1)/p . Moreover, the function u∗ which attains the best constant takes its
absolute maximum at x = a.
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Proof. Let us define

H(x,y) :=

{
0 (a � x � y)
−1 (y � x � b).

Then, for u ∈ S , we have

u(y) =
∫ b

a
u′(x)H(x,y)dx (a � y � b). (12)

So, by Hölder’s inequality, we have

sup
a�y�b

|u(y)| �
(

sup
a�y�b

∫ b

a
|H(x,y)|qdx

)1/q‖u′‖Lp(a,b)

= sup
a�y�b

(b− y)1/q‖u′‖Lp(a,b) (13)

= (b−a)1/q‖u′‖Lp(a,b) = (b−a)(p−1)/p‖u′‖Lp(a,b).

Thus, if it exists, the best constant is smaller than (b−a)(p−1)/p . However, the equality
holds in (13) for u(x) = −x+b . Hence, we have proved the lemma. �

Proof of Theorem 1. Substituting v = u in (6) and using Lemma 1, we have∫ b

a
|u(m)|pdx =

∫ b

a
r |u|pdx < ‖u‖p

L∞(a,b)

∫ b

a
r(x)dx (14)

� C(m, p)p
∫ b

a
|u(m)|pdx

∫ b

a
r(x)dx

Thus, we have (8). To see that (8) is sharp, let us define the functional

J(φ) :=
∫ b
a |φ (m)|pdx∫ b
a r̃|φ |pdx

(φ ∈Wm,p
0 (a,b),φ �≡ 0),

where r̃ ∈C([a,b], [0,∞)) . By the standard argument (see Appendix), J has the mini-
mizer u ∈Wm,p

0 (a,b) , i.e.

λ1 := min
φ∈Wm,p

0 (a,b),φ �≡0
J(φ) = J(u).

Hence it satisfies Euler-Lagrange equation (as non-trivial solution):

(−1)(m)
(
|u(m)(x)|p−2u(m)(x)

)(m)
= λ1r̃(x)|u(x)|p−2u(x) (a � x � b) (15)

Further, it holds that

λ1 = min
φ∈Wm,p

0 (a,b),φ �≡0

∫ b
a |φ (m)|pdx∫ b
a r̃|φ |pdx

> min
φ∈Wm,p

0 (a,b),φ �≡0

∫ b
a |φ (m)|pdx

(supa�x�b |φ |)p
∫ b
a r̃dx

� 1

C(m, p)p
∫ b
a r̃dx

(16)
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Here, let us fix r̃ as

r̃(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x− a+b
2

δ +1 ( a+b
2 − δ < x � a+b

2 )

− x− a+b
2

δ +1 ( a+b
2 < x < a+b

2 + δ )

0 else.

For such r̃ , let us substitute φ = u∗ in (16). Since u∗ takes its maximum at x =
(a + b)/2, taking δ sufficiently small, we see that the right-hand-side of (16) can be
arbitrarily closed to the left-hand-side, i.e. for small positive ε1 , λ1 can be written as

λ1 =
1

C(m, p)p
∫ b
a r̃dx

+ ε1 (17)

Putting r = λ1r̃ , we see from (15), solution u of

(−1)(m)
(
|u(m)(x)|p−2u(m)(x)

)(m)
= r(x)|u(x)|p−2u(x) (a � x � b) (18)

exists, and from (17), r satisfies

∫ b

a
r(x)dx =

1
C(m, p)p + ε1

∫ b

a
r̃dx =

1
C(m, p)p + ε2 (19)

Hence (8) is sharp. �

Proof of Theorem 2. Using Lemma 2, (10) is proved quite the same as (8). To see
that (10) is sharp, in this case, we define r̃ as

r̃(x) :=

{
− x−a

δ +1 (a � x � a+ δ )
0 else.

Noting u∗ takes its maximum at x = a at this case, and following the similar argument
as Theorem 1, we obtain the result. �

3. Appendix

LEMMA 3. Let r̃ ∈C([a,b], [0,∞)) , then the minimizer of J exists.

Proof. Let R be sufficiently large, and let W ′ and W ′′ be as

W ′ := {u ∈Wm,p
0 (a,b)|

∫ b

a
r̃|φ |pdx = 1}

W ′′ := {u ∈Wm,p
0 (a,b)| ‖u(m)‖Lp(a,b) � R}
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Since R is sufficiently large, if the minimizer of J exists, it is the element of W :=
W ′ ∩W ′′ . Let us see that W ′ is weakly closed. Assume the sequence {φn} ⊂ W ′
such that φn ⇀ φ0 Since Wm,p

0 (a,b) is compactly embedded into L∞(a,b) , φn → φ0 in
L∞(a,b) . Using this and Lebesgue convergence theorem, we see

∫ b

a
r̃|φ0|pdx = 1.

So, W ′ is weakly closed. In addition, W ′′ is weakly compact, thus W is also weakly
compact. Moreover, ‖φ (m)‖Lp(a,b) is weakly lower-semicontinuous in Wm,p

0 (a,b) , hence
J attains its minimum on W . �
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