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Abstract. In the context of generalized Orlicz spaces, the products XΦ1 �XΦ2 and XΦ1 ⊗XΦ2

are studied and conditions are obtained under which these spaces are contained in a suitable
space XΦ . These imbedding results (inequalities) are in a sense sharp and for the case X = L1 ,
the conditions are even necessary and sufficient. Moreover, a new Hölder type inequality is
proved.

1. Introduction

In the sequel, X denotes a Banach function space (shortly written as BFS). In [7],
Jain, Persson and Upreti studied the generalized Orlicz space XΦ as a unification and
extension of two spaces, namely, the X p -space and the usual Orlicz space LΦ . In fact,
these spaces are special cases of the so called Calderon-Lozanovskii spaces ρ(X ,Y ) ,
where Y = L∞ in this case. In particular, one can find these spaces in Example 2 on
pages 178-179 in the book [18] by L. Maligranda. Moreover, the spaces X p are known
as the p -convexification of X (see, e.g., [11] p. 143). There is a lot of basic information
about Calderon-Lozanovskii spaces, e.g., in the books [18] by Maligranda and [14] by
Lindestrauss-Tzafriri. Moreover, many papers are devoted to this interesting subject,
e.g., [3], [4], [5], [10] and [11]. We also mention the early papers [15] and [16] by
Lozanovskii. Let us just mention that the space XΦ can be given with two norms, the
Orlicz type norm and the Luxemburg type norm which are equivalent. Further, XΦ is
a Banach function space if X is so. Moreover, in [7], it was proved that a number of
basic inequalities such as Hölder’s, Minkowski’s and Young’s hold in the framework of
these spaces. We also refer to [8] for some complementary results.

The present paper focuses on products of XΦ -spaces. Two type of products are
discussed, to be denoted by XΦ1 � XΦ2 and XΦ1 ⊗XΦ2 . We find various conditions
under which these product spaces are contained in some other appropriate generalized
Orlicz space. Among these, some conditions for XΦ1 �XΦ2 and XΦ1 ⊗XΦ2 are both
necessary and sufficient. In particular, some results generalize the results of Ando
[1] and Krasnosel’skii and Rutickii [12] who considered the products LΦ1 � LΦ2 and
LΦ1 ⊗LΦ2 . Also a new Hölder type inequality is proved.

The paper is organized as follows : In Section 2, we give certain preliminaries
required for subsequent sections. The main results concerning the product XΦ1 �XΦ2

are presented and proved in Section 3 and the corresponding results concerning the
product XΦ1 ⊗XΦ2 can be found in Section 4.
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2. Preliminaries

The concept of BFS was introduced by Luxemburg [17]. For the definition and
other properties of such spaces, one can refer to [2].

A BFS is said to satisfy the lower p -estimate with p = 1 if there exists a positive
constant a such that the inequality∥∥∥∥∥ ∞

∑
n=1

un

∥∥∥∥∥
X

� a
∞

∑
n=1

‖un‖X

holds for every sequence {un}, un = un(t) > 0 with

suppun∩ suppum = /0, n �= m,

see, e.g., ([11], p. 142) and note that the L -property in [7] is equivalent to this notion.
Examples of Banach function spaces are the classical Lebesgue spaces Lp , 1 �

p � ∞ , the Orlicz spaces LΦ , the classical Lorentz spaces Lp,q , 1 � p,q � ∞ , the
generalized Lorentz spaces Λφ and the Marcinkiewicz spaces Mφ .

Let X be a BFS and −∞ < p < ∞ , p �= 0. We define the space X p , usually called
the p -convexification of X (see, e.g., ([11], p. 163), to be the space of all measurable
functions f for which

‖ f‖X p := ‖| f |p‖
1
p
X < ∞ .

For 1 < p < ∞ , X p is a BFS. Note that for X = L1 , the space X p coincides with the
Lp -space. These spaces have been studied and used in several papers, e.g., [19], [20],
[21]. Recently in [6], [9], Hardy type inequalities (and also geometric mean inequalities
in some cases) have been studied in the context of X p spaces.

A function Φ : [0,∞) → [0,∞] is called a Young function if

Φ(s) =
∫ s

0
φ(t)dt ,

where φ : [0,∞) → [0,∞] , φ(0) = 0 is an increasing, left continuous function which
is neither identically zero nor identically infinite on (0,∞) . A Young function Φ is
continuous, convex, increasing and satisfies

Φ(0) = 0 , lim
s→∞

Φ(s) = ∞ .

Moreover, a Young function Φ satisfies the following useful inequalities: for s � 0, we
have {

Φ(αs) < αΦ(s), if 0 � α < 1

Φ(αs) � αΦ(s), if α � 1 .
(1)

Let Φ be a Young function generated by the function φ , i.e.,

Φ(s) =
∫ s

0
φ(t)dt .
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Then the function Ψ generated by the function ψ , i.e.,

Ψ(s) =
∫ s

0
ψ(t)dt ,

where

ψ(s) = sup
φ(t)�s

t

is called the complementary function to Φ . It is known that Ψ is a Young function
and that Φ is complementary to Ψ . The pair of complementary Young functions Φ ,
Ψ satisfies Young’s inequality

u · v � Φ(u)+ Ψ(v), u,v ∈ [0,∞). (2)

Equality in (2.2) holds if and only if

v = Φ(u) or u = Ψ(v) .

A Young function Φ is said to satisfy the Δ2 -condition, written Φ ∈ Δ2 , if there
exist k > 0 and T � 0 such that

Φ(2t) � kΦ(t) for all t � T .

We shall also use the so called Δ′ -condition: A Young function Φ is said to satisfy
the Δ′ -condition, written Φ ∈ Δ′ , if there exist c > 0 and t0 � 0 such that

Φ(u · v) � cΦ(u)Φ(v) for all |u|, |v| � t0.

Note that Δ′ -condition implies Δ2 -condition.
Let Φ1 and Φ2 be two Young functions. We write Φ2 ≺Φ1 if there exist constants

c > 0, T � 0 such that

Φ2(t) � Φ1(ct), t � T .

The above mentioned concepts on Orlicz spaces are quite standard which can be
found in any standard book on Orlicz space. Here we mention the celebrity monographs
[12], [13] and [22].

The rest of the concepts we need are some of those introduced and studied in [7],
[8]. We mention them here briefly.

Let X be a BFS and Φ denote a non-negative function on [0,∞) . The generalized
Orlicz class X̃Φ consists of all functions u ∈ L0(Ω) such that

ρX(u,Φ) = ‖Φ(|u|)‖X < ∞ .

For the case Φ(t) = t p , 0 < p < ∞ , X̃Φ coincides algebraically with the space X p

endowed with the quasi-norm

‖u‖X p = ‖|u|p‖
1
p
X .
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Let X be a BFS and Φ , Ψ be a pair of complementary Young functions. The
generalized Orlicz space, denoted by XΦ , is the set of all u ∈ L0(Ω) such that

‖u‖Φ := sup
v
‖|u · v|‖X ,

where the supremum is taken over all v ∈ X̃Ψ for which ρX(v;Ψ) � 1.
It is known that for a Young function Φ , X̃Φ ⊂ XΦ and that XΦ is a BFS, with the

norm (2.4). Further, on the generalized Orlicz space XΦ , a Luxemburg type norm can
be defined in the following way:

‖u‖′Φ = inf

{
k > 0 : ρX

( |u|
k

,Φ
)

� 1

}
.

It is known that with this norm too, the space XΦ is a BFS and that the two norms above
are equivalent, i.e., there exists constants c1,c2 > 0 such that

c1‖u‖′Φ � ‖u‖Φ � c2‖u‖′Φ .

In fact, it was proved in [7] that c2 = 2.
Throughout, Ω ⊂ R

n will be a set of finite measure.

3. The product XΦ1 �XΦ2

We begin with the following definition:

DEFINITION 1. Let XΦ1 ,XΦ2 be two generalized Orlicz spaces defined on Ω ⊂
R

n,Φ1,Φ2 being the Young functions. The product XΦ1 �XΦ2 is defined to be space
of all measurable functions defined on Ω which can be expressed as a product of the
type u · v , where u ∈ XΦ1 and v ∈ XΦ2 .

Clearly, when X = L1 , the space XΦ1 �XΦ2 becomes the standard product LΦ1 �
LΦ2 .

In this section, we find conditions under which the space XΦ1 �XΦ2 is contained
in XΦ , i.e., XΦ1 �XΦ2 ⊂ XΦ for some Young function Φ .

THEOREM 1. Let X be a BFS.

(a) If Φ,Φ1,Φ2 are Young functions such that there exists ξ ,γ > 0 satisfying

Φ(ξ αβ ) < Φ1(α)+ Φ2(β ), α,β � γ, (1)

then the inclusion
XΦ1 �XΦ2 ⊂ XΦ (2)

holds for any BFS X .

(b) The statement in (a) is sharp in the sense that for the case X = L1 , in fact, (3.1)
is a necessary and sufficient condition for the inclusion (3.2).
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REMARK 1. From the proof below we see that the equivalence estimate in (b) in
fact holds for each X satisfying a lower p -statement with p = 1. However, this is
not an essentially stronger statement since it is easy to see that this assumption in fact
implies that X = L1 .

Proof of Theorem 1. (a) Assume that (3.1) holds. Let w ∈ XΦ1 �XΦ2 . Then w can
be expressed as

w = u.v

with u ∈ XΦ1 and v ∈ XΦ2 . Consequently, there exists k > 0 such that

‖Φ1(|ku|)‖X +‖Φ2(|kv|)‖X < ∞.

By using monotonicity of Young functions and (3.1) we have

Φ(ξ k2|u.v|) � Φ1(γ)+ Φ1(|ku|)+ Φ2(γ)+ Φ2(|kv|),

which gives

‖Φ(ξ k2|u.v|)‖X � Φ1(γ)‖χΩ‖X +‖Φ1(|ku|)‖X + Φ2(γ)‖χΩ‖X + Φ2(|kv|)‖X

< ∞

and, consequently, u · v ∈ XΦ , i.e., w ∈ XΦ , which means that (3.2) holds.
(b) Assume that (3.2) holds with X = L1 . We only need to prove the necessity of

condition (3.1) for which it is sufficient to prove that there exist integer k > 0 such that

Φ
(αβ

k

)
� 2k(Φ1(α)+ Φ2(β )

)
, α,β � k. (3)

Assume that (3.3) does not hold for any k . Then there exist sequences {αk},{βk} such
that αk,βk � k and

Φ
(αkβk

k

)
> 2k[Φ1(αk)+ Φ2(βk)], k = 1,2,3, ...

Without any loss of generality, we can assume that Φ1(1)+ Φ2(1) > 0. Choose a
sequence {Ωk} of mutually disjoint measurable subsets of Ω such that

‖ χΩk‖X =
‖χΩ‖X [Φ1(1)+ Φ2(1)]
2k[Φ1(αk)+ Φ2(βk)]

, k = 1,2,3, ... (4)

Take

u(x) =
{

αk, ifx ∈ Ωk

0, ifx /∈ ⋃∞
k=1 Ωk

and v(x) =
{

βk, ifx ∈ Ωk

0, ifx /∈ ⋃∞
k=1 Ωk.
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Then we have, by using (3.4) and the triangle inequality, that

‖Φ1(|u|)‖X +‖Φ2(|v|)‖X =

∥∥∥∥∥ ∞

∑
k=1

Φ1(αk)χΩk

∥∥∥∥∥
X

+

∥∥∥∥∥ ∞

∑
k=1

Φ2(βk)χΩk

∥∥∥∥∥
X

�
∞

∑
k=1

Φ1(αk)‖χΩk‖X +
∞

∑
k=1

Φ2(βk)‖χΩk‖X

=
∞

∑
k=1

[Φ1(αk)+ Φ2(βk)]‖χΩk‖X

= ‖χΩ‖X [Φ1(1)+ Φ2(1)] < ∞,

which yields that u ∈ XΦ1 and v ∈ XΦ2 and so uv ∈ XΦ1 �XΦ2 . But on the other hand
we find using well known properties of the space X = L1 and (3.4) that

∥∥∥Φ
(∣∣uv

k

∣∣)∥∥∥
X

�
∥∥∥∥∥ ∞

∑
i=k

Φ
(αiβi

k

)
χΩi

∥∥∥∥∥
X

�
∞

∑
i=k

∥∥∥∥Φ
(αiβi

k

)
χΩi

∥∥∥∥
X

>
∞

∑
i=k

2k[Φ1(αi)+ Φ2(βi)]‖χΩi‖X

=
∞

∑
i=k

‖χΩ‖X [Φ1(1)+ Φ2(1)] = ∞,

i.e., u · v /∈ XΦ which is a contradiction. Thus we conclude that (3.1) holds and the
assertion follows. �

REMARK 2. The statement of Theorem 1(b) coincides with Theorem 1 in [1].

Our next result gives a Hölder type inequality. For this, we need the following
lemma:

LEMMA 1. Let u be an arbitrary measurable function defined on Ω . Suppose
u.v ∈ XΦ for all functions v ∈ XΦ1 . Then there exists a constant k > 0 such that

‖u.v‖Φ � K‖v‖Φ1 .

Proof. It is completely similar to the proof of Lemma 13.4 in [12], so we omit the
details. �

THEOREM 2. Let u.v ∈ XΦ for all functions u ∈ XΦ1 ,v ∈ XΦ2 . Then there exists
a constant k > 0 such that

‖u.v‖Φ � k‖u‖Φ1‖v‖Φ2 .
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Proof. Define the linear operators

Au(v) = u.v, v ∈ XΦ2 (5)

where u ∈ XΦ1 ,‖u‖Φ1 � 1.
For each u∈XΦ1 , the operator Au acts from XΦ2 to XΦ1 which, in view of Lemma

1, is bounded. Thus {Au} is a sequence of pointwise bounded operators and as such it
is uniformly bounded since XΦ2 is a complete space. Consequently ‖Au‖ � k for same
constant k and for all u ∈ XΦ1 . Denote u0 = u

‖u‖Φ1
. Clearly u0 ∈ XΦ1 . Then, in view

of (3.5), we have for v ∈ XΦ2 ,

‖u.v‖Φ =
∥∥ u
‖u‖Φ1

v
∥∥

Φ‖u‖Φ1 =
∥∥Au0(v)

∥∥
Φ‖u‖Φ1 � k‖v‖Φ2‖u‖Φ1,

and hence the proof is complete. �

4. The product XΦ1 ⊗XΦ2

In Section 2, the BFX X consisted of functions which are defined on Ω ⊂ R
n .

In this section, we consider 2n dimensional space where the functions are defined on
Ω×Ω ⊂ R

n ×R
n . In order not to confuse our notation, we denote such a space by

X ×X . Naturally, we can define generalized Orlicz space which has functions defined
on Ω×Ω . We denote such a space by X̂Φ . Further we define the product XΦ1 ⊗XΦ2

below.

DEFINITION 2. Let XΦ1 ,XΦ2 be two generalized Orlicz spaces defined on Ω ⊂
R

n,Φ1,Φ2 being the Young functions. The product XΦ1 ⊗XΦ2 is defined to be the space
of all measurable functions w defined on Ω×Ω which can be expressed as a product
of the type u.v where u ∈ XΦ1 ,v ∈ XΦ2 .

In this section, we find conditions under which the space XΦ1 ⊗XΦ2 is contained
in X̂Φ i.e XΦ1 ⊗XΦ2 ⊂ X̂Φ .

THEOREM 3. Consider the space X ×X . Assume that for all w ∈ X ×X such
that w(x,y) = u(x)v(y) with u,v ∈ X , the following condition holds

‖w‖X×X = ‖u‖X‖v‖X . (1)

(a) If Φ,Φ1,Φ2 are Young functions such that there exists ξ ,γ > 0 satisfying

Φ(ξ αβ ) < Φ1(α)Φ2(β ), α,β � γ, (2)

then the inclusion
XΦ1 ⊗XΦ2 ⊂ X̂Φ (3)

holds
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(b) The statement in (a) is sharp in the sense that for the case X = L1 in fact, (4.2)
is a necessary and sufficient condition for the inclusion (4.3).

REMARK 3. Also in this case it is easy to see that the equivalence statement in
(b) indeed holds for each X satisfying a lower p -estimate with p = 1 but that this
statement is not more general.

Proof of Theorem 3. (a) Let w ∈ XΦ1 ⊗XΦ2 . Then

w = u.v

with u∈ XΦ1 , v∈ XΦ2 and both are defined on Ω . We have that there exists k > 0 such
that

‖Φ1(|ku|)‖X +‖Φ2(|kv|)‖X < ∞.

By using monotonicity of Young functions and (4.2) we find that

Φ(ξ k2|u.v|) �
[
Φ1(γ)+ Φ1(|ku|)

][
Φ2(γ)+ Φ2(|kv|)

]
and, consequently, by (4.1), we obtain

‖Φ(ξ k2|u.v|)‖X×X �
{

Φ1(γ)‖χΩ‖X +‖Φ1(|ku|)‖X
}×{

Φ2(γ)‖χΩ‖X + Φ2(|kv|)‖X
}

< ∞.

Thus u · v = w ∈ X̂Φ and (4.3) holds.
(b) Let X = L1 . We only need to prove the necessity of condition (4.2) for which

it is sufficient to prove that there exists an integer k > 0 such that

Φ
(αβ

k

)
� 22kΦ1(α)Φ2(β ), α,β > k. (4)

Assume, on the contrary, that (4.4) does not hold. Then there exist sequences {αk},{βk}
such that αk,βk � k and

Φ
(αkβk

k

)
> 22kΦ1(αk)Φ2(βk), k = 1,2,3, ... (5)

Without any loss of generality, we can assume that Φ1(1)Φ2(1) > 0. Choose
sequences {Ωk} and {Ω′

k}of mutually disjoint measurable subsets of Ω such that

‖ χΩk‖X =
‖χΩ‖XΦ1(1)

2kΦ1(αk)
, k = 1,2,3, ... (6)

and

‖ χΩ′
k
‖X =

‖χΩ‖XΦ2(1)
2kΦ2(βk)

, k = 1,2,3, ... (7)

Take

u(x) =
{

αk, ifx ∈ Ωk

0, ifx /∈ ⋃∞
k=1 Ωk

and v(x) =
{

βk, ifx ∈ Ω′
k

0, ifx /∈ ⋃∞
k=1 Ω′

k.
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Then we have using (4.6) and (4.7) that

‖Φ1(|u|)‖X +‖Φ2(|v|)‖X =

∥∥∥∥∥ ∞

∑
k=1

Φ1(αk)χΩk

∥∥∥∥∥
X

+

∥∥∥∥∥ ∞

∑
k=1

Φ2(βk)χΩ′
k

∥∥∥∥∥
X

�
∞

∑
k=1

Φ1(αk)‖χΩk‖X +
∞

∑
k=1

Φ2(βk)‖χΩ′
k
‖X

=
∞

∑
k=1

‖χΩ‖XΦ1(1)
2k +

∞

∑
k=1

‖χΩ‖XΦ2(1)
2k

= ‖χΩk‖X [Φ1(1)+ Φ2(1)] < ∞,

which yields that u ∈ XΦ1 and v ∈ XΦ2 . But on the other hand by using integrability
properties on X ×X and (4.5), we obtain∥∥∥∥Φ

(∣∣u(x)v(y)
k

∣∣)∥∥∥∥
X×X

�
∥∥∥∥∥ ∞

∑
i=k

Φ
(αiβi

k

)
χΩi χΩ′

i

∥∥∥∥∥
X×X

� a
∞

∑
i=k

∥∥∥∥Φ
(αiβi

k

)
χΩi χΩ′

i

∥∥∥∥
X×X

> a
∞

∑
i=k

22kΦ1(αi)Φ2(βi)‖χΩi χΩ′
i
‖X×X

= a
∞

∑
i=k

22kΦ1(αi)Φ2(βi)‖χΩi‖X‖χΩ′
i
‖X

= a
∞

∑
i=k

‖χΩ‖2
XΦ1(1)Φ2(1) = ∞,

i.e., u · v /∈ X̂Φ , which is a contradiction and the result follows. �

REMARK 4. Theorem 3 is a generalization of Theorem 6 in [1].

THEOREM 4. Let Φ be a Young function. Assume that for all w ∈ X ×X such
that w(x,y) = u(x)v(y) with u,v ∈ X , (4.1) holds.

(a) If Φ satisfies the Δ′ -condition, then the inclusion XΦ ⊗XΦ ⊂ X̂Φ holds.

(b) The statement in (a) is sharp in the sense that for the case X = L1 , in fact, the
Δ′ -condition is both necessary and sufficient for the inclusion in (a) to hold.

REMARK 5. As in previous cases, the equivalence statement in (b) holds for each
X satisfying a lower p -estimate with p = 1 but this is not a more general statement.

Proof of Theorem 4. (a) Let w ∈ XΦ ⊗XΦ so that w can be expressed as w = u.v
with u,v ∈ XΦ . Since the Young function Φ satisfies the Δ′ -condition, there exists
positive constants t0 and c such that

Φ(t1t2) � cΦ(t1)Φ(t2), t1, t2 � t0
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and Φ , in particular, satisfies the Δ2 -condition which gives X̃Φ = XΦ . Let u,v ∈ XΦ .
Denote

Ωu = {x ∈ Ω; |u| � t0} and Ωv = {x ∈ Ω; |v| � t0}.
Then, for x ∈ Ωu and and y ∈ Ωv , we have

Φ(|u.v|) � cΦ(|u|)Φ(|v|)

and using (4.1), we obtain

‖Φ(|u.v|)‖X×X = ‖Φ(|u.v|)χΩu×Ωv + Φ(|u.v|)χΩ\Ωu×Ωv‖X×X

� c‖Φ(|u|)‖X‖Φ(|v|)‖X +‖Φ(|t0v|)χΩv‖X +‖Φ(|t0u|)χΩu‖X

+ ‖(Φ(t0))2χ(Ω\Ωu)×(Ω\Ωv)‖X

< ∞

which gives that w = u.v ∈ ˆ̃XΦ ⊂ X̂Φ and the assertion follows.
(b) Let X = L1 and assume that the inclusion XΦ ⊗XΦ ⊂ X̂Φ holds. Suppose that

Φ does not satisfy the Δ′ -condition. Then there exist sequences {αk},{βk} such that
αk,βk � 0 and

Φ(αkβk) > 22kΦ(αk)Φ(βk), k = 1,2,3, ... (8)

Choose sequences {Ωk} and {Ω′
k}of mutually disjoint measurable subsets of Ω such

that

‖ χΩk‖X =
‖χΩ‖XΦ(α1)

2kΦ(αk)
, k = 1,2,3, ...

and

‖ χΩ′
k
‖X =

‖χΩ‖XΦ(β1)
2kΦ(βk)

, k = 1,2,3, ...

Take

u(x) =
{

αk, ifx ∈ Ωk

0, ifx /∈ ⋃∞
k=1 Ωk

and v(x) =
{

βk, ifx ∈ Ω′
k

0, ifx /∈ ⋃∞
k=1 Ω′

k.

Then we have

‖Φ(|u|)‖X +‖Φ(|v|)‖X =

∥∥∥∥∥ ∞

∑
k=1

Φ(αk)χΩk

∥∥∥∥∥
X

+

∥∥∥∥∥ ∞

∑
k=1

Φ(βk)χΩ′
k

∥∥∥∥∥
X

�
∞

∑
k=1

Φ(αk)‖χΩk‖X +
∞

∑
k=1

Φ(βk)‖χΩ′
k
‖X

=
∞

∑
k=1

‖χΩ‖XΦ(α1)
2k

+
∞

∑
k=1

‖χΩ‖XΦ(β1)
2k

= ‖χΩk‖X [Φ(α1)+ Φ(β1)] < ∞,
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so that u,v ∈ XΦ . But on the other hand by usual integrability rules in X ×X and (4.8),
we obtain

‖Φ(|uv|)‖X×X �
∥∥∥∥∥ ∞

∑
i=k

Φ
(
αiβi

)
χΩi χΩ′

i

∥∥∥∥∥
X×X

�
∞

∑
i=k

∥∥∥Φ
(
αiβi

)
χΩi χΩ′

i

∥∥∥
X×X

>
∞

∑
i=k

22iΦ(αi)Φ(βi)‖χΩi χΩ′
i
‖X×X

=
∞

∑
i=k

22iΦ(αi)Φ(βi)‖χΩi‖X‖χΩ′
i
‖X

=
∞

∑
i=k

‖χΩ‖2
XΦ(α1)Φ(β1) = ∞,

i.e., u · v /∈ X̂Φ , which is a contradiction and the necessity follows. �
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