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QUASI–MONOTONE WEIGHT FUNCTIONS AND

THEIR CHARACTERISTICS AND APPLICATIONS

LARS-ERIK PERSSON, NATASHA SAMKO AND PETER WALL

Abstract. A weight function w(x) on (0, l) or (l,∞) , is said to be quasi-monotone if w(x)x−a0 �
C0w(y)y−a0 either for all x � y or for all y � x, for some a0 ∈ R , C0 � 1 . In this paper we
discuss, complement and unify several results concerning quasi-monotone functions. In par-
ticular, some new results concerning the close connection to index numbers and generalized
Bary-Stechkin classes are proved and applied. Moreover, some new regularization results are
proved and several applications are pointed out, e.g. in interpolation theory, Fourier analysis,
Hardy-type inequalities, singular operators and homogenization theory.
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Proc. of the conference IWOTA, Newcastle, July 2004 171 (2006), 323–347.

[50] N. SAMKO, Solutions of singular integral equations in function spaces of continuous functions with
weights at end points, In: Seenith Sivasundaran, editor, Sixth International Conference on Math. Prob-
lems in Engineering and Aerospace Sciences, pages 687–694. Cambridge Sci. Publ., 2007.

[51] N. SAMKO, Fredholmness of singular integral operators in weighted Morrey spaces, Proc. A. Raz-
madze Math. Inst 148 (2008), 51–68.

[52] N. SAMKO, Parameter depending almost monotonic functions and their applications to dimensions in
metric measure spaces, J. Funct. Spaces Appl. 7, 1 (2009), 61–89.

[53] N. SAMKO, Weighted Hardy and singular operators in Morrey spaces, J. Math. Anal. and Appl. 350
(2009), 56–72.

[54] N. SAMKO, Note on Matuzsewska-Orlicz indices and Zygmund inequalities, Armen. J. Math. 3, 1
(2010), 22–31.

[55] I. B. SIMONENKO, Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb.
(N.S.), 63(105), 4 (1964), 536–553.

[56] V. V. ZHIKOV, On a technique for the averaging of variational problems, (Russian), Funktsional.
Anal. i Prilozhen. 33, 1 (1999), 14–29. Translation in Funct. Anal. Appl. 33, 1 (1999), 11–24.

[57] V. V. ZHIKOV, On two-scale convergence, (Russian), Tr. Semin. im. I. G. Petrovskogo 23 (20009),
149–187. Translation in J. Math. Sci. (N. Y.) 120, 3 (2004), 1328–1352.

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


