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A NEW REVERSE ISOPERIMETRIC INEQUALITY AND ITS STABILITY
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Abstract. In this paper, we deal with the reverse isoperimetric inequality for a closed and strictly
convex curve in the Euclidean plane R

2 involving the following geometric functionals associated
to the given convex curve: length, areas of the region respectively included by the curve and
the locus of curvature centers, and the integral of the radius of curvature. In fact, a stronger and
sharp version of the reverse isoperimetric inequality proved by Pan and Yang in [1] is established
with a simple Fourier series proof. Furthermore, we investigate the stability property of such an
inequality (almost equality implies that the curve is nearly circular).

1. Introduction and main results

We recall the classical isoperimetric inequality (see [2]) in the Euclidean plane R
2 ,

given by:

THEOREM 1.1. (Isoperimetric Inequality) Let γ be a simple closed curve of length
L, enclosing a region of area A. Then

L2 −4πA � 0, (1)

and equality holds if and only if γ is a circle.

This fact was known to the ancient Greeks, and the first mathematical proof was
only given in the 19th century by Steiner in [2]. Since then authors obtained many new
proofs, sharpened forms, generalizations, and applications of this famous inequality.

Recently, in [3] S. L. Pan and H. Zhang derived an interesting reverse isoperimetric
inequality for closed convex curves.

THEOREM 1.2. Let γ be a C2 closed strictly convex plane curve with length L
and enclosed area A. Then

L2 � 4π
(
A+ |Ã|) , (2)

where Ã denotes the oriented area of the locus of its curvature centers and equality
holds if and only if γ is a circle.
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REMARK 1. It is obvious that if γ is a circle, then the locus of its curvature centers
is only a point, and thus its area Ã = 0. Conversely, if Ã = 0, then from the classical
isoperimetric inequality (1) and the reverse isoperimetric inequality (2), it follows that
the area A and the length L of γ satisfy L2 = 4πA , which implies that γ is a circle, and
therefore the locus of curvature centers of γ is a point.

Furthermore, in [1], in order to estimate the isoperimetric deficit of the evolving
curve

Xt =
(

L
2π

− 1
k

)−→
N ,

where k is the signed curvature of the evolving curve and
−→
N is the unit inward pointing

normal vector along the curve, S. L. Pan and J. N. Yang established a new reverse
isoperimetric inequality.

THEOREM 1.3. Let γ be a C2 closed strictly convex curve in the plane R
2 with

length L and enclosed area A. Then∫ 2π

0
ρ (θ )2dθ � L2 −2πA

π
, (3)

where ρ is the curvature radius of γ and equality holds if and only if γ is a circle.

REMARK 2. Recall that in [3] S. L. Pan and H. Zhang also proved that∫ 2π

0
ρ (θ )2dθ = 2

(
A+ |Ã|) , (4)

thus the inequality (3) in Theorem 1.3 can be written as

L2 � 4πA+2π |Ã|,
which is actually a stronger version of the Pan and Zhang’s result (2).

In this paper, we establish a stronger and sharp version of (3), and one of our main
results is formulated as follows:

THEOREM 1.4. (Main Theorem) Let γ be a C2 closed strictly convex curve in the
plane R

2 with length L and enclosed area A. Then∫ 2π

0
ρ (θ )2dθ �

L2 −2π
(
A− ε|Ã|)

π
, (5)

satisfied for any ε � 1
2 , where Ã denotes the oriented area of the locus of its curvature

centers. Moreover, if we select the parameter ε = 1
2 , the inequality

L2 � 4πA+ π |Ã| (6)

is actually a sharp version of (3). Equality in (5) holds if γ is a circle. Conversely, for
ε = 1

2 , if equality in (5) holds, then the Minkowski support function of γ is of the form

p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .



A NEW REVERSE ISOPERIMETRIC INEQUALITY AND ITS STABILITY 735

For arbitrary ε < 1
2 , if equality holds, then the Minkowski support function is of the

form
p(θ ) = a0 +a1 cosθ +b1 sinθ .

REMARK 3. As in Remark 2, by using (4), the inequality (5) in Theorem 1.4 can
be written as

L2 � 4πA+2π |Ã|(1− ε) ,

which shows that our inequality (5) is stronger than Pan and Yang’s result (3) if 0 <
ε � 1

2 .

The stability problem associated with an isoperimetric inequality is also interesting
and significant. A well-known and the most frequently used example is the Steiner disc
[4].

DEFINITION 1.5. The Steiner disc of a convex body K, denoted by S(K) , is the

circular disc with radius L(K)
2π and center at the Steiner point −→s (K) which can be

defined in terms of the Minkowski support function pK (θ ) of the convex body K by:

−→s (K) =
1
π

∫ 2π

0

−→u (θ ) pK (θ )dθ ,

where −→u (θ ) is a unit pointing tangent vector along the curve, and L(K) denotes the
perimeter of the convex body K.

Recently, in [5] S. L. Pan and H. P. Xu established the following stability estimates
for the reverse isoperimetric inequality (2) by comparing a convex body K with its
Steiner disk.

THEOREM 1.6. Let γ (θ ) be a C2 closed and strictly convex plane curve enclosed
a convex body K with length L and enclosed area A. Then

h1 (K,S (K))2 =
(
max

u

∣∣pK (u)− pS(K) (u)
∣∣)2

� 4π2−33
96π2

(
4π
(
A(K)+ |Ã(K)|)−L2 (K)

)
and

h2 (K,S (K))2 =
∫ 2π

0

∣∣pK (θ )− pS(K) (θ )
∣∣2dθ

� 1
18π

(
4π
(
A(K)+ |Ã(K)|)−L2 (K)

)
,

where pK (θ ) denotes the Minkowski support function of the convex body K such that
p(θ )+ p′′ (θ ) �= 0 and S(K) denotes the Steiner disc associated with K such that

4π
(
A(S (K))+ |Ã(S (K))|)−L2 (S (K)) = 0. (7)
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REMARK 4. For arbitrary ε > 0 such that

ϕ (K) = 4π
(
A(K)+ |Ã(K)|)−L2 (K) < ε,

since
4π2−33

96π2 <
1

18π
,

by using Theorem 1.6 and (7) it follows that

max
{

h1 (K,S (K))2 ,h2 (K,S (K))2
}

� 1
18π

|ϕ (K)−ϕ (S (K))|

<
ε

18π
,

which implies that the reverse isoperimetric inequality (2) does have good stability
properties with respect to both the distances h1 and h2 .

The paper is organized as follows. In section 2, we recall some basic facts about
plane convex geometry. In section 3, we present a simpler proof of Theorem 1.4 by
using Fourier series, which is different from the approach in [1]. In section 4, we inves-
tigate a stability property of the reverse isoperimetric inequality (5).

2. Geometric quantities and their Fourier series

In this section, we recall some basic facts about plane convex geometry, which
will be used later. In this paper, we always assume that γ is a closed and strictly convex
plane curve which is sufficiently regular. Actually it should be a C2 closed and strictly
convex curve in the plane R

2 , such that the radius of curvature can be defined and the
Fourier series needed in the proof converges uniformly. The details can be found in the
classical literature [5].

Let p(θ ) denote the Minkowski support function of the curve γ (θ ) , where θ
is the angle between the x-axis and the pointing outward normal vector along the
curve, which gives us the parametrization of γ (θ ) in terms of θ as follows:

γ (θ ) = (γ1 (θ ) ,γ2 (θ )) =
(
p(θ )cosθ − p′ (θ )sinθ , p(θ )sinθ + p′ (θ )cosθ

)
.

The curvature k and the curvature radius ρ of γ (θ ) can be calculated respectively by

k (θ ) =
dθ
ds

=
1

p(θ )+ p′′ (θ )
> 0 (8)

and

ρ (θ ) =
ds
dθ

= p(θ )+ p′′ (θ ) > 0. (9)

The length L of γ and the area A that it bounds can be also calculated respectively by

L =
∫

γ
ds =

∫ 2π

0
p(θ )dθ (10)
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and

A =
1
2

∫
γ
p(θ )ds =

1
2

∫ 2π

0

(
p(θ )2 − p′ (θ )2

)
dθ . (11)

The locus of curvature centers of γ is as follow:

β (θ ) = γ (θ )+ ρ (θ )N (θ )

=
(−p′ (θ )sinθ − p′′ (θ )cosθ , p′ (θ )cosθ − p′′ (θ )sinθ

)
,

where N (θ ) = (−cosθ ,−sinθ ) is the unit inward pointing normal vector along the
curve, and the oriented area of the domain enclosed by β can be given by [3]:

Ã =
1
2

∫ 2π

0

(
p′ (θ )2− p′′ (θ )2

)
dθ . (12)

Since the curve γ is a C2 closed and strictly convex curve, the Minkowski sup-
port function of the convex body K included by γ is always C2 bounded and 2π -
periodic, which yields the Fourier series in the following form:

p(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ). (13)

Differentiation of (13) with respect to θ gives us

p′ (θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ ) (14)

and

p′′ (θ ) = −
∞

∑
n=1

n2 (an cosnθ +bn sinnθ ). (15)

Thus, by (13), (14), (15) and the Parseval equality we can express these geometric
quantities in terms of the Fourier coefficients of p(θ ) .

ρ (θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ)−
∞

∑
n=1

n2 (an cosnθ +bn sinnθ), (16)

L(K) = 2πa0, (17)

A(K) = πa2
0−

π
2

∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

)
, (18)

|Ã(K)| = π
2

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

)
. (19)
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3. The proof of our main Theorem

In this section, we prove Theorem 1.4 by using Fourier series.

Proof of Theorem 1.4. By (16), one can easily get

∫ 2π

0
ρ (θ )2dθ = 2

(
πa2

0−
π
2

∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

)
+

π
2

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

))

= 2π

(
a2

0 +
1
2

∞

∑
n=2

(
n2−1

)2 (
a2

n +b2
n

))
,

then by (17), (18) and (19) we have

Φ(K,ε) =
∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π

=
2π2

(
a2

0 + 1
2

∞
∑

n=2

(
n2−1

)2 (
a2

n +b2
n

))− (2πa0)
2

π

+
2π
(

πa2
0− π

2

∞
∑

n=2

(
n2−1

)(
a2

n +b2
n

))−2πε
(

π
2

∞
∑

n=2
n2
(
n2−1

)(
a2

n +b2
n

))
π

= π

(
∞

∑
n=2

(
n2−1

)2 (
a2

n +b2
n

)− ∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

))

−π

(
ε

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

))

= π
∞

∑
n=2

(
n2−1

)(
(1− ε)n2−2

)(
a2

n +b2
n

)
.

Observing that Φ(K,ε) is a linear function with respect to ε such that

Φ
(

K,
1
2

)
=

π
2

∞

∑
n=3

(
n2−1

)(
n2−4

)(
a2

n +b2
n

)
� 0,

thus for any 0 < ε � 1
2 we have

Φ(K,ε) � Φ
(

K,
1
2

)
� 0,

which completes the proof of (5).
Note that by the discussion in Remark 2, we actually prove

L2 � 4πA+2π |Ã|(1− ε)
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satisfied for any ε � 1
2 . In particular, it follows from the expression of Φ

(
K, 1

2

)
that, for

arbitrary ε > 1
2 , Φ(ε) which relies on the Fourier coefficients of p(θ ) can not always

be non-negative for an arbitrary curve γ . Thus the inequality

L2 � 4πA+ π |Ã|
is actually a sharp version of (3). That is to say that the best constant ε in the inequality

L2 � 4πA+ ε|Ã|
is π .

On the other hand, if γ is a circle, equality in (5) holds clearly. Conversely, for ε =
1
2 , if equality in (5) holds, then it follows from the expression of Φ

(
K, 1

2

)
that the

Minkowski support function of γ is of the form

p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .

For arbitrary ε < 1
2 , if equality holds, then the expression of Φ(K,ε) implies that the

support function is of the form

p(θ ) = a0 +a1 cosθ +b1 sinθ . �

4. The stability of the isoperimetric inequality

Let K and M be two convex bodies with respective Minkowski support func-
tions pK and pM . The most frequently used function to measure the deviation between
K and M is the Hausdorff distance

h1 (K,M) = max
u

|pK (u)− pM (u)| . (20)

Another such measure which appears to be of particular value with respect to stability
problems is the measure that corresponds to the L2 -metric in function space, which is
defined by

h2 (K,M) =
(∫ 2π

0
|pK (θ )− pM (θ )|2dθ

) 1
2

. (21)

It is obvious that h1 (K,M) = 0 or h2 (K,M) = 0 if and only if K = M .
We now consider the stability property of the reverse isoperimetric inequality (5)

with respect to the deviation measures h1 and h2 .

THEOREM 4.1. Let K be a convex body enclosed by a C2 closed and strictly con-
vex plane curve γ with area A(K) and perimeter L(K) , and let Ã(K) denote the ori-
ented area of the domain enclosed by the locus of curvature centers of γ . S(K) denotes
the Steiner disc associated with K. Then

h1 (K,S (K))2 � C (ε)
π

(∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π

)
(22)
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and

h1 (K,S (K))2 � C (ε)
π2

(
4πA+2π |Ã|(1− ε)−L2)

� C (ε)
π2

(
4π
(
A+ |Ã|)−L2)

for arbitrary 0 < ε < 1
2 , where

C (ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

ε
2(1−ε)

(√
ε −π cot π√

ε −
2
√

ε
ε−1 − 3

2
√

ε

)
, 1√

ε /∈ N

√
ε

2(1−ε)

⎛⎝ 2+ 1√
ε

∑
n=2− 1√

ε

1
n − 3

2
√

ε

⎞⎠ , 1√
ε ∈ N,

and equality in (22) holds if γ is a circle.

Proof of Theorem 4.1. Without loss of generality, we may assume −→s (K) = 0. Be-
cause of (13), (14) and (15), the support functions pK and pS(K) have the following
Fourier series:

pK (θ ) =
L(K)
2π

+
∞

∑
n=2

(an cosnθ +bn sinnθ ) (23)

and

pS(K) (θ ) =
L(K)
2π

. (24)

One can observe that (23) and (24) yield an explicit expression (in terms of the Fourier
coefficients) for the quantity∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π
= π

∞

∑
n=2

(
n2−1

)(
(1− ε)n2−2

)(
a2

n +b2
n

)
.

Since it is easily seen that

|an cosnθ +bn sinnθ | �
√

a2
n +b2

n,

it follows that∣∣pK (θ )− pS(K) (θ )
∣∣= ∣∣∣∣∣L(K)

2π
+

∞

∑
n=2

(an cosnθ +bn sinnθ)− L(K)
2π

∣∣∣∣∣
�

∞

∑
n=2

|an cosnθ +bn sinnθ |

�
∞

∑
n=2

√
a2

n +b2
n.

Recall that if p is not an integer, by Fourier series calculation we have

π cot pπ =
1
p
−2p

∞

∑
n=1

1
n2− p2 .
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Together with 0 < ε < 1
2 then we can calculate that

∞

∑
n=2

1
(εn2−1)(n2−1)

=
∞

∑
n=2

ε
1− ε

(
1

(εn2−1)
− 1

ε (n2−1)

)

=
1

1− ε

(
∞

∑
n=2

1

n2− 1
ε
−

∞

∑
n=2

1
n2−1

)

=
√

ε
2(1− ε)

(√
ε −π cot

π√
ε
− 2

√
ε

ε −1
− 3

2
√

ε

)
for any 1√

ε that is not an integer. On the other hand, when 1√
ε is an integer, we can

calculate that

∞

∑
n=2

1
(εn2−1)(n2−1)

=
√

ε
2(1− ε)

⎛⎜⎝ 2+ 1√
ε

∑
n=2− 1√

ε

1
n
− 3

2
√

ε

⎞⎟⎠ .

Thus, by using Hölder’s inequality, we have

h1 (K,S (K))2 �
(

∞

∑
n=2

1
(εn2−1)(n2−1)

)(
∞

∑
n=2

(
εn2 −1

)(
n2−1

)(
a2

n +b2
n

))

= C (ε)
∞

∑
n=2

(
εn2−1

)(
n2−1

)(
a2

n +b2
n

)
=

C (ε)
π

(∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π

)

for arbitrary 0 < ε < 1
2 , where

C (ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

ε
2(1−ε)

(√
ε −π cot π√

ε −
2
√

ε
ε−1 − 3

2
√

ε

)
, 1√

ε /∈ N

√
ε

2(1−ε)

⎛⎝ 2+ 1√
ε

∑
n=2− 1√

ε

1
n − 3

2
√

ε

⎞⎠ , 1√
ε ∈ N.

On the other hand, since∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π
= 2

(
A+ |Ã|)− L2 −2π

(
A− ε|Ã|)

π

=
4πA+2π |Ã|(1− ε)−L2

π
,

together with (22) we derive the second inequality. Furthermore, if γ is a circle, equality
in (22) holds clearly. �
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THEOREM 4.2. Under the same assumptions as in Theorem 4.1, we have that

h2 (K,S (K))2 �
∫ 2π

0
ρ (θ )2dθ − L2−2π

(
A− ε|Ã|)

π
(25)

holds for arbitrary ε � 5
12 and equality in (25) holds if γ is a circle. Furthermore, for

ε = 5
12 , if equality in (25) holds, then the Minkowski support function of the convex

body K is of the form

pK (θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .

For arbitrary ε < 5
12 , if equality holds, then the support function is of the form

pK (θ ) = a0 +a1 cosθ +b1 sinθ .

Proof of Theorem 4.2. As in the proof of Theorem 4.1, we use (23), (24) and
Parseval’s equality to deduce that

h2 (K,S (K))2 =
∫ 2π

0

∣∣pK (θ )− pS(K) (θ )
∣∣2dθ = π

∞

∑
n=2

(
a2

n +b2
n

)
.

Together with the result in section 3 we have

ψ (K,ε) =

(∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π

)
−h2 (K,S (K))2

= π
∞

∑
n=2

(
n2−1

)(
(1− ε)n2−2

)(
a2

n +b2
n

)−π
∞

∑
n=2

(
a2

n +b2
n

)
= π

∞

∑
n=2

((
n2−1

)(
(1− ε)n2−2

)−1
)(

a2
n +b2

n

)
.

Therefore, for arbitrary ε � 5
12 we always have ψ (K,ε) � 0, which is equivalent to

h2 (K,S (K))2 �
∫ 2π

0
ρ (θ )2dθ − L2 −2π

(
A− ε|Ã|)

π
.

If γ is a circle, equality in (25) holds clearly. Conversely, for ε = 5
12 , if equality

in (25) holds, then it follows from the expression of ψ
(
K, 5

12

)
that the Minkowski

support function of γ is of the form

pK (θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .

For arbitrarily ε < 5
12 , if equality holds, then it follows from the expression of ψ (K,ε)

that the support function is of the form

pK (θ ) = a0 +a1 cosθ +b1 sinθ . �
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REMARK 5. The combination of Theorem 4.1 and 4.2 leads to

max
{

h1 (K,S (K))2 ,h2 (K,S (K))2
}

� C̃ (ε)
(∫ 2π

0 ρ (θ )2dθ − L2−2π(A−ε|Ã|)
π

)
(26)

for arbitrary 0 < ε � 5
12 , where

C̃ (ε) = max

{
C (ε)

π
,1

}
and C (ε) is defined as in Theorem 4.1. The estimate (26) states that the isoperimetric
inequality (5) we derive does have the good stability property with respect to both the
Hausdorff distance and the L2 -metric.
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