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WEIGHTED HARDY–TYPE INEQUALITIES IN ORLICZ SPACES

AGNIESZKA KAŁAMAJSKA AND KATARZYNA PIETRUSKA-PAŁUBA

(Communicated by L. Pick)

Abstract. For a given N -function M , and inner and outer weight functions ω ,e−ϕ , we obtain
Hardy-type inequalities:∫ b

a
M(ω(r)|u(r)|)e−ϕ(r)dr � C

(∫ b

a
M(|u(r)|)e−ϕ(r)dr +

∫ b

a
M(|u′(r)|)e−ϕ(r)dx

)
,

holding for every u ∈ R , where R is a suitable dilation invariant subset of W 1,1
loc (a,b) , contain-

ing C∞
0 (a,b) . The constant C above is independent of u . In many cases considered, the set R

is proven to be maximal possible.

1. Introduction

One of most significant tools in analysis is the following inequality, established by
Hardy in the early 1920’s [16, 17]:∫

R+
|u(r)|prα−pdr �

(
p

|α − p+1|
)p ∫

R+
|u′(r)|prαdr. (1.1)

Here α �= p−1, u ∈W 1,1
loc (R+), and u is such that limr→∞ u(r) = 0 when α > p−1,

or limr→0 u(r) = 0 when α < p−1.
Over the years, its generalizations were subject of intensive research. For the

immense literature of the subject, we refer to the monographs [24, 26, 27, 28, 33, 34]
and their references. Among other ones, one finds the generalization of (1.1) of the
form: ∫

R+
|ω(r)u(r)|pdμ(r) � C

∫
R+

|u′(r)|pdμ(r), (1.2)

where μ is a Radon measure on R+, and ω : R+ → R+ is a measurable function.
Inequalities of the form (1.2) has been studied in Orlicz spaces as well, see e.g.

Bloom and Kerman [3, 4], Lai [29, 30, 31, 32], Heinig-Maligranda [19], Heinig-Lai
[18] and their references.
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The authors have contributed in this direction as well. Namely, in [21], we have
studied the inequality:∫

R+
M(|ω(r)u(r)|)e−ϕ(r)dr � C

∫
R+

M(|u′(r)|)e−ϕ(r)dr, (1.3)

with an N -function M satisfying the Δ2 - condition, and two weight functions ω ,e−ϕ .
When certain criteria concerning (M,ω ,ϕ) were satisfied, this inequality was proven
to hold for functions which do not necessarily vanish when approaching 0 or ∞. We
indicated a set R ⊆W 1,1

loc (R+) , depending on (M,ω ,ϕ ) such that (1.3) holds for every
u ∈ R . This set contains C∞

0 (R+), possibly as a proper subset. In the classical case,
which corresponds to M(t) = t p, ω(r) = 1

r , ϕ(r) = −α ln r , the approach of [21]
retrieved the best constant.

In some cases inequalities (1.2) and their Orlicz variants are insufficient for ap-
plications, in particular in the regularity theory in PDEs. Therefore it is plausible to
consider inequalities with an additional term depending on u added to the right-hand
side, which can hold even when (1.3) does not.

In the current paper we are concerned with inequalities∫ b

a
M(ω(r)|u(r)|)e−ϕ(r)dr

� C1

∫ b

a
M(|u′(r)|)e−ϕ(r)dr+C2

∫ b

a
M(|u(r)|)e−ϕ(r)dr, (1.4)

with a given N -function M , and inner and outer weight functions ω ,e−ϕ . We would
like (1.4) to hold for u from a reasonably large subset R of W 1,1

loc (a,b) , depending
on (M,ω ,ϕ) and containing C∞

0 (a,b) . Once we have (1.4), we can also derive the
Orlicz-norm inequality (see Theorem 3.3):

‖ωu‖LM((a,b),μ) � D1‖u‖LM((a,b),μ) +D2‖u′‖LM((a,b),μ). (1.5)

Generalizing methods from [21], we prove (1.4) (and consequently (1.5)) for
N -functions M satisfying the Δ2 -condition, and locally finite weights ω ,e−ϕ , being
sufficiently regular. They are supposed to satisfy certain conditions depending on the
Simonenko indices of M and involving the behaviour of ω ,ω ′,ϕ ′,ϕ ′′ near the end-
points of the interval (a,b) . Those conditions are somewhat technical, but they are
practical to analyze, as one has to verify only assumptions concerning some limits and
suprema/infima.

The definition of the set R of functions u for which (1.4) holds (see e.g. Theorem
3.2) is expressed in terms of the behaviour of the function Wu(r) = M(ω(r)|u(r)|)

ϕ ′(r) e−ϕ(r)

near the endpoints. This set is dilation invariant and contains C∞
0 (a,b), possibly as a

proper subset.
Proposition 3.2 gives a condition on ϕ under which the set R is optimal. The sets

R were first introduced by the authors in [21], Section 5, and we refer to that paper for
their more detailed analysis.

Our methods can be applied e.g. to measures μ(dr) = rβ dr , μ(dr) = rβ (ln(2+
r))γdr and μ(dr) = rβ e−Crγ

dr where C > 0 and inner weight ω(r) = rα . A thorough
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treatment of inequalities for those measures can be found in our subsequent paper [23].
It turns out that in all the cases considered in that paper our theorems precisely de-
scribe the range of parameters α,β ,γ for which the inequality holds true on supersets
of C∞

0 (0,∞). In particular our sufficient conditions from Theorem 3.2 turn out to be
necessary as well in that class of weights. Moreover, in all these cases the sets R are
shown to be maximal possible. Let us remark that in the general case, the question of
optimality of sets R, as well as of finding necessary and sufficient conditions for the
validity of (1.4), remain open.

Our motivation to consider inequalities (1.4) is twofold.
First, they can serve as a tool towards constructing inequalities on R

n and in gen-
eral on domains. For example, Cianchi in [9] applies weighted Hardy inequalities on
R+ to obtain Orlicz-space Sobolev inequalities on sufficiently regular domains in R

n .
Guided by that paper, one can use Hardy-type inequality (1.5) to get other Orlicz-space
generalizations of Sobolev inequalities on domains in R

n .
The theory of constructing Hardy type inequalities for supersets of C∞

0 (a,b) is far
from being complete. Sharp conditions for the validity of some Poincaré-type inequal-
ities were found by Mazy’a, see Section 2.3.2 of [33]. His abstract isoperimetric-type
conditions use capacitary estimates involving compact sets. Only a few cases can be
determined using those estimates and it is still a challenge to construct Hardy-Sobolev-
Poincaré inequalities in a given case. Some other conditions used to derive weighted
Poincaré-type inequalities use the concept of ‘measure of noncompactness’, see e.g.
[11] and later related contributions.

Our second motivation comes from the fact that Hardy-type inequalities:∫
Ω

P(|∇ϕ ||u|)dμ � K1

∫
Ω

P(A|∇u|)dμ +K2

∫
Ω

M(|u|)dμ , (1.6)

holding for any u ∈C∞
0 (Ω) , imply the Gagliardo-Nirenberg-type inequalities for mod-

ulars and norms:∫
Ω

M(|∇u|)dμ � L
∫

Ω
P(θ |∇(2)u|)dμ +

∫
Ω

Q(
B
θ
|u|)dμ , where θ > 0

‖∇u‖LM(Ω,μ) � L1

√
‖∇(2)u‖LP(Ω,μ)‖u‖LQ(Ω,μ) +L2‖u‖LQ(Ω,μ),

which were obtained in [22]. Here P,Q are two other N -functions tied to M by cer-
tain Young-type inequality, and M satisfies the Δ2 -condition. It is well known (see e.g.
[35]) that inequalities of Gagliardo-Nirenberg type serve as a crucial tool in the regular-
ity theory, when one investigates elliptic and parabolic equations in nondivergent form
involving ∇u, where u is unknown.

Therefore we believe that estimates of the form (1.4) and (1.5) may be useful in
the regularity theory for nonlinear PDE’s in Orlicz spaces. Such PDE’s are motivated
by many models in mathematical physics, see e.g. [1, 2, 9, 13, 14].

The idea of our proof is close in spirit to the original Hardy’s proof of (1.1) from
[16]. It relies on the behaviour of functions near the endpoints. Therefore in this ap-
proach it is natural that admissible functions u should satisfy certain decay conditions
near the endpoints. Taking into account the fact that in many cases the sets R are
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optimal, we are convinced that the decay conditions near the endpoints are intrinsic
here.

To link our inequalities with those existing in the literature, let us start with the
following inequality investigated by Oinarov [36],

(∫ b

a
|ωu|qdr

) 1
q

� C

(∫ b

a
|vu|pdr+

∫ b

a
|ρu′|pdr

) 1
p

,

which involves general weight functions ω ,v,ρ .

Inequalities

∫ ∞

0
M(|rγu(r)|)rαe−rβ

dr � C1

∫ ∞

0
M(|u(r)|)rαe−rβ

dr+C2

∫ ∞

0
M(|u′(r)|)rαe−rβ

dr,

which we derive in paper [23] as an application of present methods, generalize the basic

inequality for the Gaussian measure γ(dr) = e−
r2
2 dr (cf. [5])

∫ ∞

0
(ru(r))2γ(dr) � 2

∫ ∞

0
(u(r))2γ(dr)+4

∫ ∞

0
(u′(r))2γ(dr).

Inequalities in Orlicz norms:

‖ u
d1+α ‖LB(G) � C

(
‖ u
dα ‖LA(G) +‖Du

dα ‖LA(G)

)
, (1.7)

where d(x) = dist(x,∂G) , G is a (sufficiently regular) bounded domain in R
n , were

analyzed by Cianchi in [10].

Our inequalities are close in spirit to the celebrated Cafarelli-Kohn-Nirenberg in-
equalities on R

n [7], which have the form:

‖|x|γ |u|‖Lr � C (‖|x|α |∇u|‖Lp)a ·
(
‖|x|β |u|‖Lq

)1−a
, (1.8)

holding true under suitable conditions on parameters α,β ,γ > 0, p,q,r � 1, a∈ (0,1) .
Their variants on (0,∞) were obtained by Brown and Hinton in [6].

Finally, let us mention that 1-dimensional Poincaré inequalities

(∫ b

a
| f (x)− 1

v[a,b]

∫ b

a
f dv|qρ(x)dx

) 1
q

� C

(∫ b

a
| f ′(x)|pw(x)dx

) 1
p

, (1.9)

with weights v,w,ρ , imply Hardy-type inequalities. Sharp conditions for the validity
of (1.9) can be found in [8].
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2. Notation and preliminaries

2.1. Notation

Let −∞ � a < b � +∞ be two given numbers (possibly infinite). We use the
convention sup /0 = −∞ , inf /0 = +∞ , c/∞ = 0, f χA is the function f (defined on A)
extended by 0 outside A , χ /0 ≡ 0. We write D′ = D/(D−1) for the Hölder conjugate
to the number D > 1.

If −∞ � a < b � +∞ and v,ρ are two locally integrable nonnegative functions on
(a,b) , by W 1,p((a,b),v,ρ) we denote the completion of the set

{u ∈C∞((a,b)) :
∫ b

a
|u(r)|pv(r)dr < ∞,

∫ b

a
|u′(r)|pρ(r)dr < ∞}

in the norm
(∫ b

a |u(r)|pv(r)dr+
∫ b
a |u′(r)|pρ(r)dr

) 1
p
. When v ≡ ρ ≡ 1, we omit it

from the notation, while when v = ρ , we write W 1,p((a,b),v) instead of W 1,p((a,b),v,v) .
If R ⊆ W 1,1

loc ((a,b)) is an arbitrary subset, then we define the space W 1,p
R ((a,b),v,ρ)

to be the completion of the set R∩W 1,p((a,b),v,ρ) in the space W 1,p((a,b),v,ρ) .

2.2. N-functions and Orlicz spaces

We start by recalling some known facts about Orlicz spaces (we refer to [25, 37]
for details).

DEFINITION 2.1. A function M : [0,∞) → [0,∞) is called an N -function if it is

continuous, convex, M(0) = 0, limλ→0
M(λ )

λ = 0 and limλ→∞
M(λ )

λ = ∞.

The function conjugate to an N -function (its Legendre transform) is given by the
formula

M∗(y) = sup
λ�0

[λy−M(λ )].

DEFINITION 2.2. (Δ2 -condition) A continuous function M : [0,∞) → [0,∞) such
that M(0) = 0 satisfies the Δ2 -condition if and only if

M(2λ ) � CM(λ ), (2.1)

with a positive constant C not depending on λ > 0.

For convex, differentiable functions such that M(0) = 0, condition (2.1) is equivalent
to the condition

λM′(λ ) � CM(λ ),

where C > 0 is independent of λ > 0.

Throughout the paper, we will be assuming the following condition.
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(M) M : [0,∞) → [0,∞) is a differentiable N -function, and

dM
M(λ )

λ
� M′(λ ) � DM

M(λ )
λ

for every λ > 0, (2.2)

where 1 � dM � DM .

Inequalities (2.2) imply the Δ2 -condition for M , and also for M∗ when dM > 1 (see
e.g. [25], Theorem 4.3 or [20], Proposition 4.1). Best possible constants dM and DM

in (2.2) are called the Simonenko lower and upper indices of M respectively (see [12,
15, 38]).

Inequalities (2.2) result in the estimates

M(aλ ) � max(adM ,aDM )M(λ ) =: c(a)M(λ ),
M(aλ ) � min(adM ,aDM )M(λ ) =: c(a)M(λ ), (2.3)

valid for every λ > 0,a > 0 (see e.g. [21], Lemma 4.1, part iii)), and also in the
following lemma.

LEMMA 2.1. ([21], Lemma 4.2) Suppose that M is a differentiable N -function,
and let 1 � dM � DM be two constants such that (2.2) is satisfied.

Then for every s1,s2 > 0 the following estimate holds true:

M(s1)
s1

s2 � DM −1
dM

M(s1)+
1

dM
M(s2). (2.4)

Let −∞ � a < b � +∞ . The weighted Orlicz space LM
μ ((a,b)) is by definition the

space

LM((a,b),μ)
de f
=
{

f : (a,b) → R measurable :
∫

(a,b)
M

( | f (r)|
K

)
μ(dr) � 1

for some K > 0
}
,

equipped with the Luxemburg norm

‖ f‖LM((a,b),μ) := inf

{
K > 0 :

∫
(a,b)

M

( | f (r)|
K

)
μ(dr) � 1

}
.

This norm makes the space complete and turns LM
μ ((a,b)) into a Banach space. For

M(λ ) = λ p with p > 1, the space LM
μ ((a,b)) coincides with the usual Lp((a,b),μ)

space. It is known that we always have∫
(a,b)

M

(
| f (r)|

‖ f‖LM((a,b),μ)

)
μ(dr) � 1, (2.5)

and for functions M satisfying the Δ2 -condition we have an equality here. To con-
form with previously introduced notation, when μ(dx) = ρ(x)dx, we will also write
LM((a,b),μ) = LM((a,b),ρ) .
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2.3. Orlicz-Sobolev spaces

The weighted Orlicz-Sobolev space W 1,M((a,b),ρ) is by definition the comple-
tion of the set

{u ∈C∞((a,b)) : ‖u‖LM((a,b),ρ) +‖u′‖LM((a,b),ρ) < ∞}
in the norm

‖u‖W1,M((a,b),ρ) := ‖u‖LM((a,b),ρ) +‖u′‖LM((a,b),ρ).

All the weight functions ρ = e−ϕ considered in this paper are strictly positive
and separated from zero on each compact subset of (a,b) , so we have an embedding
W 1,M((a,b),ρ) ↪→W 1,1

loc ((a,b)). Consequently every u ∈W 1,M((a,b),ρ) is locally ab-
solutely continuous on (a,b) – its derivative u′ is well defined almost everywhere and
is a locally integrable function. When additionally M satisfies the Δ2 -condition, then
the quantity

A (u) :=
∫

(a,b)
M(|u(r)|)ρ(r)dr+

∫
(a,b)

M(|u′(r)|)ρ(r)dr

is finite. It is easy to see that for M satisfying Δ2 one has un → u in W 1,M((a,b),ρ) ,
as n → ∞ , if and only if

A (un−u) n→∞→ 0.

We also have then A (un) → A (u) .

DEFINITION 2.3. Let R ⊆W1,1
loc ((a,b)) be an arbitrary subset. By W 1,M

R ((a,b),ρ)
we denote the completion of R∩W 1,M((a,b),ρ) in the space W 1,M((a,b),ρ) . In par-
ticular when R =W 1,1

loc ((a,b)) , we have W 1,M
R ((a,b),ρ) =W 1,M((a,b),ρ) . Also write

W 1,M
0 ((a,b),ρ) when R =C∞

0 ((a,b)) . Analogous notation is used for Sobolev spaces.

3. Descriptions of results

Suppose that −∞ � a < b � +∞. We will be concerned with the inequality∫ b

a
M(ω |u|)dμ � C1

∫ b

a
M(|u′|)dμ +C2

∫ b

a
M(|u|)dμ (3.1)

where M is a differentiable N -function satisfying (2.2), μ(dx) = e−ϕ(x)dx is a Radon
measure on (0,∞) , ϕ and ω are measurable functions.

Proofs of the results presented here are postponed to Section 4.

3.1. First approach. Global assumptions

We start with the description of our first results.
In this subsection we assume that ϕ and ω satisfy the following conditions:

(ϕ ) ϕ ∈C2((a,b)), ϕ ′ does not vanish on (a,b),

(ω ) ω : (a,b) → [0,∞) is a measurable function of class C1 on (a,b).
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3.1.1. Auxiliary notation

To facilitate the presentation of our results, we need to to introduce some sets and
functions. The reader should bear in mind the important choice ω(x) = |ϕ ′(r)|, when
the quantities appearing below become substantially simpler.

Let λ ∈ [0,∞] . We consider the following sets:

F := {r ∈ (a,b) : ω(r) �= 0, ω ′(r)ϕ ′(r) > 0}, (3.2)

G := {r ∈ (a,b) : ω(r) �= 0, ω ′(r)ϕ ′(r) < 0},
Fλ :=

{
r ∈ F :

ω ′(r)
ϕ ′(r)

> λ
}
,

Gλ :=
{

r ∈ G : |ω
′(r)

ϕ ′(r)
| > λ

}
.

Here F∞, G∞ are understood to be empty sets. Note that F0 = F and G0 = G .
We will also need the following functions:

Ψ1,λ (r) = 1+
ϕ ′′(r)

(ϕ ′(r))2 − ω ′(r)
ω(r)ϕ ′(r)

(
dMχG(r)+DMχFλ (r)

)
,

Ψ2,λ (r) = −1− ϕ ′′(r)
(ϕ ′(r))2 +

ω ′(r)
ω(r)ϕ ′(r)

(
dMχF(r)+DMχGλ (r)

)
. (3.3)

They are well defined for all λ ∈ [0,∞].
Further, let

Bi,λ (a,b) := inf{Ψi,λ (τ),τ ∈ (a,b)}, i = 1,2, (3.4)

L(a,b) := sup

{ |ω(r)|
|ϕ ′(r)| : r ∈ (a,b),ϕ ′(r) �= 0

}
. (3.5)

3.1.2. The results

We now state our first theorem, covering the case when the weights ω and ϕ
satisfy assumptions (ϕ ) and (ω ). It constitutes the main technical tool towards proving
our main result, Theorem 3.1, and it permits to control the behaviour of the resulting
constants. Also it yields the classical Hardy inequality (with best constants) as a special
case.

In our approach we will consider certain classes R1(a,b) or R2(a,b), depending
on M,ω ,ϕ defined as follows.

R1(a,b) :=
{

u ∈W 1,1
loc (a,b) : ∃ lim

n→∞
(Wu(bn)−Wu(an)) ∈ [0,∞] for some an ↓ a,bn ↑ b

}
,

R2(a,b) :=
{

u ∈W 1,1
loc (a,b) : ∃ lim

n→∞
(Wu(bn)−Wu(an)) ∈ [−∞,0] for some an ↓ a,bn ↑ b

}
,

where

Wu(r) :=
M(ω(r)|u(r)|)

ϕ ′(r)
e−ϕ(r). (3.6)
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For discussion of sets R we refer to Section 5 in the paper [21], where those sets
have appeared for the first time.

THEOREM 3.1. Suppose that −∞ � a < b � ∞ are given, M,ϕ ,ω satisfy (M),
(ϕ ), (ω ), R i(a,b) be defined by (3.6). Let us consider the following assumptions:

(A1) L(a,b) < ∞ and B1,λ0(a,b) > 0 for some λ0 ∈ [0,∞),

(A2) L(a,b) < ∞ and B2,λ0(a,b) > 0 for some λ0 ∈ [0,∞).

If (Ai) is satisfied where i = 1 or i = 2 , then the inequality∫ b

a
M(ω(r)|u(r)|)μ(dr) � C(i)

1

∫ b

a
M(|u(r)|)μ(dr)+C(i)

2

∫ b

a
M(|u′

(r)|)μ(dr) (3.7)

holds for all u ∈W 1,M
Ri(a,b)((a,b),e−ϕ) , with constants independent of u .

Moreover, if (Ai) holds with λ0 = 0, then (3.7) is satisfied with C(i)
1 = 0, C(i)

2 =

c
(

D2
ML(a,b)

dMBi,0(a,b)

)
.

Recall that the sets W 1,M
Ri(a,b)((a,b),e−ϕ) were introduced in Definition 2.3.

REMARK 3.1. In the case when we can have (Ai) satisfied with λ0 = 0, the con-
stants obtained are identical with those from our former paper [21], where we have got
the inequality:∫ ∞

0
M(ω(r)|u(r)|)μ(dr) � c

(
D2

ML(0,∞)
dMBi,0(0,∞)

)∫ ∞

0
M(|u′(r)|)μ(dr),

holding for all u ∈ R i(0,∞) . For M(λ ) = λ p this approach led to classical Hardy
inequality with optimal constants.

REMARK 3.2. In general, the constants we obtain are:

C(i)
1 =

(
λ0

L(a,b)+λ0

) 1
D′

M · c
(

D2
M

dMBi,λ0 (a,b)
(L(a,b)+ λ0)

1
D′

M λ
1

DM
0

)
DM

(
1− 1

D′
M

{(
λ0

L(a,b)+λ0

) 1
D′

M +
(

L(a,b)
L(a,b)+λ0

) 1
D′

M

}) ,

C(i)
2 =

(
L(a,b)

L(a,b)+λ0

) 1
D′

M · c
(

D2
M

dMBi,λ0 (a,b)
(L(a,b)+ λ0)

1
D′

M L(a,b)
1

DM

)
DM

(
1− 1

D′
M

{(
λ0

L(a,b)+λ0

) 1
D′

M +
(

L(a,b)
L(a,b)+λ0

) 1
D′

M

}) .

See Remark 4.1 in Section 4.

In the simplest case M(λ ) = λ p , we obtain a more precise statement, illustrating
Theorem 3.1.
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PROPOSITION 3.1. Suppose that −∞ � a < b � ∞, p > 1 are given, and that
ϕ ,ω satisfy (μ ), (ω ). Let the quantities L(a,b) and Bi,λ (a,b) ( i = 1,2 ) be given by

(3.4) and (3.5), and R i(a,b) be the same as in (3.6) with Wu(r) = |u(r)|pω(r)p

ϕ ′(r) e−ϕ(r) .
Moreover, let the assumptions (A1) and (A2) be the same as in Theorem 3.1. If (Ai) is
satisfied, where i = 1 or i = 2 , then the inequality

(∫ b

a
|u(r)|pω(r)p μ(dr)

) 1
p

(3.8)

� p

Bi,λ0(a,b)

{
λ0

(∫ b

a
|u(r)|p μ(dr)

) 1
p

+L(a,b)
(∫ b

a
|u′(r)|pμ(dr)

) 1
p
}

holds for all u ∈W 1,p
Ri(a,b)((a,b),e−ϕ) .

3.2. Generalization. Wider class of inequalities

It turns out that the assumptions used to obtain inequality (3.1) can be weakened.
We only need to impose those assumptions near the endpoints of (a,b) . However, this
time we will deal with new sets R .

For purpose of this subsection we assume that μ(dr) = e−ϕ(r)dr is a Radon mea-
sure on (a,b), ω : (a,b) → [0,∞) , ϕ : (a,b) → R are measurable. We will consider
local versions of (ϕ ), (ω ), near right and left endpoints separately:

(ϕ− ) ϕ is of class C2 in some neighborhood of a , ϕ ′ does not vanish in some neigh-
borhood of a ,

(ω− ) ω is locally bounded on (a,b) and of class C1 in some neighborhood of a;

(ϕ+ ) ϕ is of class C2 in some neighborhood of b , ϕ ′ does not vanish in some neigh-
borhood of b ,

(ω+ ) ω is locally bounded on (a,b) and of class C1 in some neighborhood of b.

Here by a neighborhoodof ∞ or −∞ we understand any halfline (R,∞) or (−∞,R) .

3.2.1. Auxiliary notation

Let us denote

L− =

{
limsupr→a+

ω(r)
|ϕ ′(r)| if ϕ ∈C1((a,a+ ε)) and ϕ ′ �= 0 on (a,a+ ε) for some ε > 0,

+∞ else,

L+ =

{
limsupr→b−

ω(r)
|ϕ ′(r)| ; if ϕ ∈C1((b− ε,b)) and ϕ ′ �= 0 on (b− ε,b) for some ε > 0,

+∞ else.
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We slightly modify the definitions of sets F,G,Fλ ,Gλ and also of functions Ψi,λ . To
begin with, let

E := {r ∈ (a,b) : ω ∈C1((r− εr,r+ εr)) and ϕ ∈C2((r− εr,r+ εr))
for some εr > 0, ω(r)ϕ ′(r) �= 0},

then we define the sets

F := {r ∈ E : ω ′(r)ϕ ′(r) > 0}, (3.9)

G := {r ∈ E : ω ′(r)ϕ ′(r) < 0},
Fλ := {r ∈ F :

ω ′(r)
ϕ ′(r)

> λ},

Gλ := {r ∈ G : |ω
′(r)

ϕ ′(r)
| > λ}

and the subordinate functions

Ψ1,λ (r) =
{

1+
ϕ ′′(r)

(ϕ ′(r))2 − ω ′(r)
ω(r)ϕ ′(r)

(
dMχG(r)+DMχFλ (r)

)}
χE (r), (3.10)

Ψ2,λ (r) =
{
−1− ϕ ′′(r)

(ϕ ′(r))2 +
ω ′(r)

ω(r)ϕ ′(r)
(
dMχF(r)+DMχGλ (r)

)}
χE (r).

Observe that when (ϕ ), (ω ) are satisfied, then E = (a,b)∩ {r : ω(r) �= 0} and the
definitions (3.9) and (3.10) coincide with (3.2) and (3.3), respectively.

Then we define

Bi,λ
− = liminf

r→a+
Ψi,λ (r), Bi,λ

+ = liminf
r→b−

Ψi,λ (r), i = 1,2.

Note that if Bi,λ
− > 0 (resp. Bi,λ

+ > 0), then the conditions (ϕ− ) and (ω− ) (resp. (ϕ+ )
and (ω+ )) are automatically fulfilled.

3.2.2. The results

We consider sets R i−(a,b) and R i
+(a,b) where i ∈ {1,2} defined as follows (Wu

is the same as in (3.6)):

R i
−(a,b) = {u ∈W 1,1

loc ((a,b)) : limsup
r→a+

(−1)iWu(r) � 0},

R i
+(a,b) = {u ∈W 1,1

loc ((a,b)) : limsup
r→b−

(−1)i+1Wu(r) � 0}. (3.11)

The ‘local’ versions of (A1), (A2) ( i ∈ {1,2} ) read as follows:

(Bi− ) L− < ∞, and for certain λ � 0, Bi,λ
− > 0,
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(Bi+ ) L+ < ∞, and for certain λ � 0, Bi,λ
+ > 0,

(K− ) limsupr→a+ ω(r) < ∞,

(K+ ) limsupr→b− ω(r) < ∞.

We are now ready for the statement of our new theorem.

THEOREM 3.2. Let −∞ � a < b � +∞ be fixed numbers, M be a function satis-
fying (M), sets R be defined by (3.11), dμ(x) = e−ϕ(x)dx . Suppose further that ϕ ,ω
are such measurable functions that ω is locally bounded and at least one of conditions:
(B1− ) or (B2− ) or (K− ) holds, and at least one of conditions: (B1+ ) or (B2+ ) or
(K+ ) holds.

Then there exist constants C1,C2 such that the inequality∫ b

a
M(ω(r)|u(r)|)μ(dr) � C1

∫ b

a
M(|u′(r)|)μ(dr)+C2

∫ b

a
M(|u(r)|)μ(dr) (3.12)

holds for every u in the class W 1,M
R ((a,b),e−ϕ) , where

a) R = R i−(a,b) when (Bi− ) and (K+ ) hold,

b) R = R i
+(a,b); when (K− ) and (Bi+ ) hold,

c) R = R i−(a,b)∩R j
+(a,b), i, j ∈ {1,2} when (Bi− ) and (Bj+ ) hold,

d) R = W 1,1
loc ((a,b)) when (K− ) and (K+ ) hold.

3.2.3. Optimality of the sets R

At first let us note that all local sets R in (3.11) are dilation invariant (where by
a dilation invariant set we mean such one that λu belong to R for every u ∈ R and
λ > 0) under the condition (M). This follows trivially from formula (2.2).

We are now to discuss the optimality of R . For this purpose we will consider
separately the following cases:

(−1)i+1ϕ ′ < 0 next to a and R = R i
−(a,b), (3.13)

(−1)i+1ϕ ′ > 0 next to b and R = R i
+(a,b), (3.14)

(−1)i+1ϕ ′ > 0 next to a and R = R i
−(a,b), (3.15)

(−1)i+1ϕ ′ < 0 next to b and R = R i
+(a,b). (3.16)

Note that when W 1,M
R ((a,b),e−ϕ) = W 1,M((a,b),e−ϕ) , then the set R is maximal

for (3.12) to hold. This is the case of (3.13) and (3.14), as then R is the same as
W 1,1

loc ((a,b)) .
In the cases (3.15) and (3.16), we show that under the additional assumption∫

I
|ϕ ′(r)|dr = ∞, (3.17)

where I is some neighborhood of a in case of (3.15), and of b in case of (3.16),
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the choice of R is also optimal.
Let us consider the case of (3.15). If (3.17) holds (with p = a ), then the desired

inequality cannot hold for any u ∈W 1,M((a,b),e−ϕ))\R. Also, in this case we have

W 1,M
R ((a,b),e−ϕ) = {u ∈W 1,M((a,b),e−ϕ) : liminf

r→a
|Wu(r)| = 0}, (3.18)

with
R = {u ∈W 1,1

loc ((a,b)) : liminf
r→a

|Wu(r)| = 0}.

Indeed, if there existed u ∈W 1,M((a,b),e−ϕ) \R , it would necessarily satisfy the in-
equality |Wu(r)| > c > 0, with some c > 0, for every r sufficiently close to a . This
inequality would in turn be equivalent to

M(ω(r)|u(r)|) > c|ϕ ′(r)|eϕ(r),

when r is sufficiently close to a . It would imply∫
I
M(ω(r)|u(r)|)e−ϕ(r)dr � c

∫
I
|ϕ ′(r)|dr = ∞,

(where I is some neighborhood of a ). It shows that (3.12) cannot hold with such u .
This also implies (3.18).

The case of (3.16) (and p = b ) is treated similarly.
We arrive at the following result, summarizing our considerations.

PROPOSITION 3.2. Under the assumptions of Theorem 3.2 we have

i) Inequality (3.12) holds for every u ∈W 1,M((a,b),e−ϕ) , with constants independent
of u in the following cases:

a) (Bi− ) and (K+ ), when (3.13) holds,

b) (K− ) and (Bi+ ), when (3.14) holds,

c) (Bi− ) and (Bj+ ), when (3.13) and (3.14) hold,

d) (K− ) and (K+ ).

ii) If (Bi− ), (K+ ), (3.15) hold and additionally
∫
I |ϕ ′(r)|dr = ∞ , where I is some

neighborhood of a, then inequality (3.12) holds for every u ∈W 1,M((a,b),e−ϕ)
such that liminfr→a |Wu(r)| = 0 , with constants independent of u . Moreover, if
u ∈W 1,M((a,b),e−ϕ) and liminfr→a |Wu(r)| > 0 , then inequality (3.12) cannot
hold.

iii) If (K− ) and (Bi+ ), (3.16) hold and additionally
∫
I |ϕ ′(r)|dr = ∞ , where I is some

neighborhood of b, then inequality (3.12) holds for every u ∈W 1,M((a,b),e−ϕ)
such that liminfr→b |Wu(r)| = 0 , with constants independent of u . Moreover, it
cannot hold if u ∈W 1,M((a,b),e−ϕ) and liminfr→b |Wu(r)| > 0 .
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3.3. Results in Orlicz norms

Let us remark that the inequality∫ b

a
M(ω(r)|u(r)|)μ(dr) � C

(∫ b

a
M(|u′(r)|)μ(dr)+

∫ b

a
M(|u(r)|)μ(dr)

)
, u ∈ R,

(3.19)
where R is some dilation invariant set, implies the corresponding inequality for Orlicz
norms:

‖ωu‖LM((a,b),μ) � (2C+1)
(
‖u‖LM((a,b),μ) +‖u′‖LM((a,b),μ)

)
, (3.20)

valid also for every u ∈ R.
The corresponding result reads as follows. For readers’ convenience we submit its

proof in the last section.

THEOREM 3.3. Let M be an arbitrary N -function, let μ be an arbitrary Radon
measure on (a,b), and let R be such a dilation invariant set of locally absolutely
continuous functions that inequality (3.19) holds for every element of R . Then also
inequality (3.20) holds for every function u belonging to R.

REMARK 3.3. As indicated in the Introduction, the detailed analysis of inequal-
ities (1.4) for particular weights of power, power-logarithmic, and power-exponential
type is included in our separate paper [23].

4. Proofs of theorems

Proof of Theorem 3.1. By density argument, it suffices to prove the inequality for
u ∈R i(a,b)∩W 1,M((a,b),e−ϕ) . Let u ∈ R1(a,b) (resp. u ∈R2(a,b)) and let an ↓ a,
bn ↑ b be the sequences from the definition of R1(a,b) (resp. R2(a,b)). We set

Jn :=
∫ bn

an

M(ω(r))|u(r)|)μ(dr), Gn :=
∫ bn

an

M(|u(r)|)μ(dr),

Hn :=
∫ bn

an

M(|u′(r)|)μ(dr).

We have: Jn = −∫ bn
an

hu(r)
[
e−ϕ(r)

]′
dr, where

hu(r) =
M(ω(r)|u(r)|)

ϕ ′(r)
.

Under our assumptions, it is well defined for every r ∈ (a,b) . Since u is W 1,1
loc ((a,b))

and M is locally Lipschitz, we infer that hu ∈W 1,1
loc ((a,b)) and

(hu)′(r) =
d
dr

(
1

ϕ ′(r)

)
M(ω(r)|u(r)|)

+
1

ϕ ′(r)
M′(ω(r)|u(r)|)(ω ′(r)|u(r)|+ ω(r)u′(r)sgnu(r)

)
, (4.1)
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in the sense of distributions and almost everywhere. Moreover, by the ACL-continuity
property of Sobolev functions, h is absolutely continuous on each interval [s,R]⊆ (a,b)
(see e.g. [33], Theorems 1 and 2, Sec. 1.1.3). Integrating by parts we get that for every
n,

Jn =
∫ bn

an

(hu)′(r)e−ϕ(r)dr−θn, (4.2)

where
θn = hu(bn)e−ϕ(bn) −hu(an)e−ϕ(an). (4.3)

Now insert the expression (4.1) into (4.2), getting

Jn = −
∫ bn

an

(
ϕ ′′(r)

(ϕ ′(r))2 )M(ω(r)|u(r)|)μ(dr)

+
∫ bn

an

ω ′(r)
ϕ ′(r)

M′(ω(r)|u(r)|)|u(r)|μ(dr)

+
∫ bn

an

ω(r)
ϕ ′(r)

M′(ω(r)|u(r)|)(u′(r)sgnu(r)
)

μ(dr)−θn

=: −In + IIn + IIIn−θn.

From now on the proofs of the cases: (A1) and (A2) are given separately.

PART 1. THE CASE OF (A1).

Integral IIn is now split into integrals over three sets (some of them can be empty):

F \Fλ0 = {r : ω(r) �= 0,ω ′(r)ϕ ′(r) > 0, |ω
′(r)

ϕ ′(r)
| � λ0},

G = {r : ω(r) �= 0,ω ′(r)ϕ ′(r) < 0},
Fλ0 = {r : ω(r) �= 0,ω ′(r)ϕ ′(r) > 0, |ω

′(r)
ϕ ′(r)

| > λ0},

and by (2.2) the estimate can be continued as

IIn � DM

∫ bn

an

ω ′(r)
ϕ ′(r)

M(ω(r)|u(r)|)
ω(r)

χF\Fλ0 (r)μ(dr)

+dM

∫ bn

an

ω ′(r)
ϕ ′(r)

M(ω(r)|u(r)|)
ω(r)

χG(r)μ(dr)

+DM

∫ bn

an

ω ′(r)
ϕ ′(r)

M(ω(r)|u(r)|)
ω(r)

χFλ0 (r)μ(dr)

=: IVn +Vn +VIn.

Hence we have arrived at

Jn + In−Vn−VIn � IVn + IIIn−θn. (4.4)
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Observe that on the other hand

Jn + In−Vn−VIn � B1,λ0(a,b)Jn. (4.5)

We will now estimate IVn and IIIn.
To this end, we use Lemma 2.1 with s1 = ω(r)|u(r)|, and s2 = |u(r)|/δ1 for

IVn, s1 = ω(r)|u(r)|, s2 = |u′(r)|/δ2 for IIIn, where δ1,δ2 > 0 are arbitrary positive
numbers, to be specified later on. Therefore one has (see (2.3))

IVn � DMλ0

∫ bn

an

M(ω(r)|u(r)|)
ω(r)

μ(dr)

= δ1DMλ0

∫
{r∈(an,bn):u(r) �=0}

M(ω(r)|u(r)|)
ω(r)|u(r)|

|u(r)|
δ1

μ(dr) (4.6)

� δ1DM(DM −1)λ0

dM

∫ bn

an

M(ω(r)|u(r)|)μ(dr)

+
δ1DM c( 1

δ1
)λ0

dM

∫ bn

an

M(|u(r)|)μ(dr)

=
δ1DM(DM −1)λ0

dM
Jn +

δ1DM c( 1
δ1

)λ0

dM
Gn;

IIIn � δ2DM

∫ bn

an

ω(r)
|ϕ ′(r)|

M(ω(r)|u(r)|)
ω(r)|u(r)| · |u

′(r)|
δ2

μ(dr) (4.7)

� δ2DM(DM −1)
dM

∫ bn

an

ω(r)
|ϕ ′(r)|M(ω(r)|u(r)|)μ(dr)

+
δ2DM c( 1

δ2
)

dM

∫ bn

an

ω(r)
|ϕ ′(r)|M(|u′(r)|)μ(dr)

� δ2DM(DM −1)L(a,b)
dM

Jn +
δ2DM c( 1

δ2
)L(a,b)

dM
Hn.

Adding them together, we get

IVn + IIIn � DM(DM −1)
dM

(δ1λ0 + δ2L(a,b))Jn (4.8)

+
δ1DM c( 1

δ1
)

dM
λ0Gn +

δ2DM c( 1
δ2

)

dM
L(a,b)Hn.

Combining estimates (4.4), (4.5), and (4.8) and rearranging, we end up with(
B1,λ0(a,b)− DM(DM −1)

dM
(δ1λ0 + δ2L(a,b))

)
· Jn (4.9)

�
δ1DM c( 1

δ1
)

dM
λ0Gn +

δ2DM c( 1
δ2

)

dM
L(a,b)Hn −θn.
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Now we let n→∞. Since Jn → J, Gn →G, Hn →H, and θn →α � 0 (see (4.3)),
we obtain the estimate

(B− (A1δ1 +A2δ2))J � K1δ1c

(
1
δ1

)
+K2δ2c

(
1
δ2

)
,

where

B = B1,λ0(a,b), A1 =
DM(DM −1)λ0

dM
, A2 =

DM(DM −1)L
dM

,

L = L(a,b), K1 =
DM

dM
λ0 G, K2 =

DM

dM
LH.

This can be written as (provided A1δ1 +A2δ2 < B)

J � 1
B− (A1δ1 +A2δ2)

(
K1δ1 c(

1
δ1

)+K2δ2c(
1
δ2

)
)

. (4.10)

To conclude, consider separately the cases λ0 > 0 and λ0 = 0.
When λ0 > 0, then we can choose for example δ1 = B

4A1
,δ2 = B

4A2
, which are both

well-defined and positive in this case.
When λ0 = 0, then K1 = 0 and (4.10) is just

J �
K2δ2c

(
1
δ2

)
B−A2δ2

.

For δ2 = dMB
D2

ML
we have B−A2δ2 = B

DM
> 0, and we get∫ b

a
M(ω(r)|u(r)|)μ(dr) � c

(
D2

ML(a,b)
dMB

)∫ b

a
M(|u′(r)|)μ(dr).

PART 2. THE CASE OF (A2).

Similarly as before, integral IIn is split into integrals over three sets:

G\Gλ0 = {r : ω(r) �= 0,ω ′(r)ϕ ′(r) < 0, |ω
′(r)

ϕ ′(r)
| � λ0},

F = {r : ω(r) �= 0,ω ′(r)ϕ ′(r) > 0},
Gλ0 = {r : ω(r) �= 0,ω ′(r)ϕ ′(r) < 0, |ω

′(r)
ϕ ′(r)

| > λ0},

and, by (2.2), the estimate continues as

IIn � DM

∫ bn

an

ω ′(r)
ϕ ′(r)

M(ω(r)|u(r)|)
ω(r)

χG\Gλ0 (r)μ(dr)

+dM

∫ bn

an

ω ′(r)
ϕ ′(r)

M(ω(r)|u(r)|)
ω(r)

χF(r)μ(dr)

+DM

∫ bn

an

ω ′(r)
ϕ ′(r)

M(ω(r)|u(r)|)
ω(r)

χGλ0 (r)μ(dr)

= IV ′
n +V ′

n +VI′n.
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We have arrived at

−Jn = In− IIn− IIIn + θn � In− IV ′
n−V ′

n−VI′n− IIIn + θn,

and so

B2,λ0(a,b)Jn � −Jn− In +V ′
n +VI′n � −IV ′

n− IIIn + θn. (4.11)

Observe that (4.6) holds for −IV ′
n instead of IVn, and (4.7) holds for −IIIn instead of

IIIn. Therefore we get:

−IV ′
n � δ1DM(DM −1)λ0

dM
Jn +

δ1DM c( 1
δ1

)λ0

dM
Gn

−IIIn � δ2DM(DM −1)L(a,b)
dM

Jn +
δ2DM c( 1

δ2
)L(a,b)

dM
Hn.

Consequently,

− IV ′
n− IIIn � DM(DM −1)

dM
(δ1λ0 + δ2L(a,b))Jn (4.12)

+
δ1DM c( 1

δ1
)

dM
λ0Gn +

δ2DM c( 1
δ2

)

dM
L(a,b)Hn.

Combining (4.11) and (4.12) and rearranging gives(
B2,λ0(a,b)− DM(DM −1)

dM
(δ1λ0 + δ2L(a,b))

)
· Jn

�
δ1DM c( 1

δ1
)

dM
λ0Gn +

δ2DM c( 1
δ2

)

dM
L(a,b)Hn + θn.

Conclusion of the proof under assumption (A2) is identical with this under assumption
(A1). �

REMARK 4.1. To obtain the constants listed in Remark 3.2, when λ0 �= 0 we can
choose for example

δ1 =
dMB

D2
M

(
λ0

L+ λ0

) 1
D′

M 1
λ0

, δ2 =
dMB

D2
M

(
L

L+ λ0

) 1
D′

M 1
L

,

where B stands for B1,λ0(a,b) or B2,λ0(a,b), as needed. This is an admissible choice

because A1δ1 +A2δ2 = B
D′

M
(( λ0

L+λ0
)

1
D′

M +( L
L+λ0

)
1

D′
M ) < B, which in turn follows from

the inequality γ(xγ + (1− x)γ ) < 1, for x ∈ [0,1],γ ∈ (0,1). We omit the technical
problem of optimizing the right-hand side of (4.10) over δ1,δ2 .
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Proof of Proposition 3.1 (sketch). We only consider the proof under the assump-
tion (A1). Let’s pick up the proof of Theorem 3.1 from formula (4.10). In our case
M(λ ) = λ p and so we have

A1 = (p−1)λ0, A2 = (p−1)L, K1 = λ0G, K2 = LH.

Therefore (4.10) becomes

J � λ0Gδ 1−p
1 +LHδ 1−p

2

B− (p−1)(λ0δ1 +Lδ2)
=: r(δ1,δ2),

making sense for (δ1,δ2) ∈ Δ := {(x,y) : x,y > 0,(p− 1)(λ0x + Ly) < B} . We will
be done if we minimize r(δ1,δ2) over the region Δ. To this goal, substitute δ 1 =
(p−1)λ0δ1

B , δ 2 = (p−1)Lδ2
B . Then

r(δ1,δ2) = r (δ 1,δ 2) :=
E1δ

1−p
1 +E2δ

1−p
2

1− (δ1 + δ 2)
,

where

E1 =
(

λ0

B

)p

(p−1)p−1G, E2 =
(

L
B

)p

(p−1)p−1H,

(δ 1,δ 2) ∈ Δ := {(x,y) : x+ y < 1,x,y > 0}.
Inside the region, the function r (x,y) has a single critical point

x0 =
(

p−1
p

)
E1/p

1

E1
1/p +E1/p

2

, y0 =
(

p−1
p

)
E1/p

2

E1
1/p +E1/p

2

,

and the value r(x0,y0) =
( p

B

)p (λ0G1/p +LH1/p)p is minimal in Δ . It is enough to take

δ 1 = x0,δ 2 = y0. �

Proof of Theorem 3.2. It suffices to show (3.12) for u ∈R . We prove the theorem
only in two cases: 1) when conditions (B1− ) and (B1+ ) hold, 2) when (K− ) and
(B1+ ) hold. The proofs in all remaining cases follow by similar arguments.

Suppose then that (B1− ) and (B1+ ) hold. We find numbers r0,R0 such that a <
r0 < R0 < b and L(a,r0)< ∞, B1,λ0(a,r0)> 0, and also L(R0,b)< ∞, B1,λ1(R0,b)> 0,
for some λ0,λ1 ∈ [0,∞) .

We pick two additional points: r1 = a+r0
2 , R1 = R0+b

2 and consider a smooth
partition of unity η1,η2,η3 subordinate to the covering of (a,b) by (a,r0) , (r1,R1) ,
and (R0,b) . In particular 0 � ηi(r) � 1, η1(r)+η2(r)+η3(r) ≡ 1, suppη1 ⊂ [a,r0) ,
suppη2 ⊂ (r1,R1) , suppη3 ⊂ (R0,b]. These points and mappings are fixed from now
on and they do not depend on u. We have

I :=
∫

(a,b)
M(ω(r)|u(r)|)μ(dr) =

∫
(a,b)

M((η1(r)+ η2(r)+ η3(r))ω(r)|u(r)|)μ(dr).
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From the convexity of M

M(a+b+c)= M(3 · 1
3
(a+b+c))� 3DMM

(
a+b+ c

3

)
� 3DM−1(M(a)+M(b)+M(c)),

therefore

I �
3

∑
i=1

3DM−1
∫

(a,b)
M(ηi(r)ω(r)|u(r)|)μ(dr) =: I1 + I2 + I3.

As ω is locally bounded, 0 � ηi � 1, the middle integral can be estimated by

I2 � B
∫

(r1,R1)
M(|u(r)|)μ(dr), (4.13)

where B = 3DM−1c
(
supr∈(r1,R1) |ω(r)|

)
. Moreover, as u ∈ R1−(a,b), the function

u1(r) = u(r)η1(r) vanishes in a neighborhood of r0 , and it follows that u1 ∈R1(a,r0).
From Theorem 3.1 applied to u1 on (a,r0) we get

I1 � C1

∫
(a,r0)

M(|u1(r)|)μ(dr)+C2

∫
(a,r0)

M(|u′1(r)|)μ(dr),

where C1,C2 are absolute constants not depending on u.
Further, we have

|u1(r)| � |u(r)|;
|u′1(r)| � |u(r)η ′

1(r)|+ |u′(r)η1(r)| � |u(r)| · sup
s∈(a,r0)

|η ′
1(s)|+ |u′(r)|,

and so we get

I1 � C̃1

∫
(a,r0)

M(|u(r)|)μ(dr)+ C̃2

∫
(a,r0)

M(|u′(r)|)μ(dr), (4.14)

with constants again not depending on u.
By similar arguments we obtain the estimate

I3 � D̃1

∫
(a,r0)

M(|u(r)|)μ(dr)+ D̃2

∫
(a,r0)

M(|u′(r)|)μ(dr). (4.15)

Using (4.13), (4.14) and (4.15) we finally obtain the estimate (3.12), with some con-
stants C1,C2 not depending on u .

The argument in the case when (K− ) and (B1+ ) hold is simpler. Fix a < R0 < b
such that L(R0,b) < ∞, B1,λ0(R0,b) > 0 and take r0 = a+R0

2 . Then proceed as be-
fore, considering the covering of (a,b) by two intervals (a,R0) and (r0,b) . We are
done. �

Proof of Theorem 3.3. Take 0 �= u∈R and consider ũ = u
‖u‖LM((a,b),μ)+‖u′‖LM((a,b),μ)

.

For short, write ‖u‖M instead of ‖u‖LM((a,b),μ). Since R is dilation invariant, ũ belongs
to R once u does.
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Inequality (3.19) for ũ reads∫
M(|ω ũ|)dμ � C

(∫
M( |u|

‖u‖M+‖u′‖M
))dμ +

∫
M( |u′|

‖u‖M+‖u′‖M
)dμ

)
� C

(∫
M( |u|

‖u‖M
)dμ +

∫
M( |u′|

‖u′‖M
)dμ

)
� 2C

(in the last inequality, we have used property (2.5) of Orlicz functionals). Since for any
f ∈ LM one has ‖ f‖M �

∫
M(| f |)dμ +1 (see (9.4) and (9.20) of [25]), this gives

‖ω ũ‖M � 2C+1,

and consequently (3.20). This ends the proof of the theorem. �
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